Thompson’s theorem for $\mathrm {II}_1$ factors
HTML articles powered by AMS MathViewer
- by Matthew Kennedy and Paul Skoufranis PDF
- Trans. Amer. Math. Soc. 369 (2017), 1495-1511 Request permission
Abstract:
A theorem of Thompson provides a non-self-adjoint variant of the classical Schur-Horn theorem by characterizing the possible diagonal values of a matrix with given singular values. We prove an analogue of Thompson’s theorem for II$_1$ factors.References
- M. Argerami and P. Massey, A Schur-Horn theorem in $\textrm {II}_1$ factors, Indiana Univ. Math. J. 56 (2007), no. 5, 2051–2059. MR 2359722, DOI 10.1512/iumj.2007.56.3113
- Martín Argerami and Pedro Massey, Towards the carpenter’s theorem, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3679–3687. MR 2529874, DOI 10.1090/S0002-9939-09-09999-7
- Martín Argerami and Pedro Massey, Schur-Horn theorems in $\textrm {II}_\infty$-factors, Pacific J. Math. 261 (2013), no. 2, 283–310. MR 3037568, DOI 10.2140/pjm.2013.261.283
- William Arveson and Richard V. Kadison, Diagonals of self-adjoint operators, Operator theory, operator algebras, and applications, Contemp. Math., vol. 414, Amer. Math. Soc., Providence, RI, 2006, pp. 247–263. MR 2277215, DOI 10.1090/conm/414/07814
- B. V. Rajarama Bhat and Mohan Ravichandran, The Schur-Horn theorem for operators with finite spectrum, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3441–3453. MR 3238420, DOI 10.1090/S0002-9939-2014-12114-9
- Kong Ming Chong, Some extensions of a theorem of Hardy, Littlewood and Pólya and their applications, Canadian J. Math. 26 (1974), 1321–1340. MR 352377, DOI 10.4153/CJM-1974-126-1
- Kenneth J. Dykema, Junsheng Fang, Donald W. Hadwin, and Roger R. Smith, The carpenter and Schur-Horn problems for masas in finite factors, Illinois J. Math. 56 (2012), no. 4, 1313–1329. MR 3231485
- T. Fack, Sur la notion de valuer caractéristique, J. Operator Theory 7 (1982), no. 2, 207-333.
- Thierry Fack and Hideki Kosaki, Generalized $s$-numbers of $\tau$-measurable operators, Pacific J. Math. 123 (1986), no. 2, 269–300. MR 840845
- Fumio Hiai, Majorization and stochastic maps in von Neumann algebras, J. Math. Anal. Appl. 127 (1987), no. 1, 18–48. MR 904208, DOI 10.1016/0022-247X(87)90138-7
- Alfred Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620–630. MR 63336, DOI 10.2307/2372705
- G. H. Hardy and J. E. Littlewood, Inequalities, Cambridge University Press, 1934.
- Fumio Hiai and Yoshihiro Nakamura, Majorizations for generalized $s$-numbers in semifinite von Neumann algebras, Math. Z. 195 (1987), no. 1, 17–27. MR 888123, DOI 10.1007/BF01161595
- Eizaburo Kamei, Majorization in finite factors, Math. Japon. 28 (1983), no. 4, 495–499. MR 717521
- L. Mirsky, Inequalities and existence theorems in the theory of matrices, J. Math. Anal. Appl. 9 (1964), no. 1, 99-118.
- F. Murray and J. von Neumann, On rings of operators, Annals of Mathematics (1936), 116-229.
- Dénes Petz, Spectral scale of selfadjoint operators and trace inequalities, J. Math. Anal. Appl. 109 (1985), no. 1, 74–82. MR 796042, DOI 10.1016/0022-247X(85)90176-3
- M. Ravichandran, The Schur-Horn theorem in von Neumann algebras (2012), 22 pp., available at arXiv:1209.0909.
- I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsber. Berl. Math. Ges. 22 (1923), 9-20.
- Allan M. Sinclair and Roger R. Smith, Finite von Neumann algebras and masas, London Mathematical Society Lecture Note Series, vol. 351, Cambridge University Press, Cambridge, 2008. MR 2433341, DOI 10.1017/CBO9780511666230
- Fuk Yum Sing, Some results on matrices with prescribed diagonal elements and singular values, Canad. Math. Bull. 19 (1976), no. 1, 89–92. MR 424850, DOI 10.4153/CMB-1976-012-5
- R. C. Thompson, Singular values, diagonal elements, and convexity, SIAM J. Appl. Math. 32 (1977), no. 1, 39–63. MR 424847, DOI 10.1137/0132003
Additional Information
- Matthew Kennedy
- Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- MR Author ID: 836009
- Email: mkennedy@math.carleton.ca
- Paul Skoufranis
- Affiliation: Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095
- MR Author ID: 966934
- Email: pskoufra@math.ucla.edu
- Received by editor(s): January 29, 2015
- Received by editor(s) in revised form: February 28, 2015
- Published electronically: March 21, 2016
- Additional Notes: The first author was partially supported by a research grant from NSERC (Canada).
The second author was partially supported by a research grant from the NSF (USA) - © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 1495-1511
- MSC (2010): Primary 46L10; Secondary 15A42
- DOI: https://doi.org/10.1090/tran/6711
- MathSciNet review: 3572280