Julia theory for slice regular functions
HTML articles powered by AMS MathViewer
- by Guangbin Ren and Xieping Wang PDF
- Trans. Amer. Math. Soc. 369 (2017), 861-885 Request permission
Abstract:
Slice regular functions have been extensively studied over the past decade, but much less is known about their boundary behavior. In this paper, we initiate the study of Julia theory for slice regular functions. More specifically, we establish the quaternionic versions of the Julia lemma, the Julia-Carathéodory theorem, the boundary Schwarz lemma, and the Burns-Krantz rigidity theorem for slice regular self-mappings of the open unit ball $\mathbb {B}$ and of the right half-space $\mathbb {H}^+$. Our quaternionic boundary Schwarz lemma involves a Lie bracket reflecting the non-commutativity of quaternions. Together with some explicit examples, it shows that the slice derivative of a slice regular self-mapping of $\mathbb {B}$ at a boundary fixed point is not necessarily a positive real number, in contrast to that in the complex case, meaning that its commonly believed version turns out to be totally wrong.References
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- Marco Abate, The Julia-Wolff-Carathéodory theorem in polydisks, J. Anal. Math. 74 (1998), 275–306. MR 1631670, DOI 10.1007/BF02819453
- Daniel Alpay, Vladimir Bolotnikov, Fabrizio Colombo, and Irene Sabadini, Self-mappings of the quaternionic unit ball: multiplier properties, the Schwarz-Pick inequality, and the Nevanlinna-Pick interpolation problem, Indiana Univ. Math. J. 64 (2015), no. 1, 151–180. MR 3320522, DOI 10.1512/iumj.2015.64.5456
- Daniel Alpay, Fabrizio Colombo, and Irene Sabadini, Schur functions and their realizations in the slice hyperholomorphic setting, Integral Equations Operator Theory 72 (2012), no. 2, 253–289. MR 2872478, DOI 10.1007/s00020-011-1935-7
- Jim Agler, John E. McCarthy, and N. J. Young, A Carathéodory theorem for the bidisk via Hilbert space methods, Math. Ann. 352 (2012), no. 3, 581–624. MR 2885589, DOI 10.1007/s00208-011-0650-7
- Cinzia Bisi and Caterina Stoppato, The Schwarz-Pick lemma for slice regular functions, Indiana Univ. Math. J. 61 (2012), no. 1, 297–317. MR 3029399, DOI 10.1512/iumj.2012.61.5076
- Filippo Bracci and David Shoikhet, Boundary behavior of infinitesimal generators in the unit ball, Trans. Amer. Math. Soc. 366 (2014), no. 2, 1119–1140. MR 3130328, DOI 10.1090/S0002-9947-2013-05996-X
- C. Carathéodory, Uber die Winkelderivierten von beschränkten Analytischen Funktionen. Sitzungsber. Press. Acad. Viss. Berlin, Phys. Math. 4 (1929), 39-54.
- C. Carathéodory, Theory of Function of a Complex Variable, vol. II. Chelsea Publishing Company, New York, 1954.
- Fabrizio Colombo, Graziano Gentili, Irene Sabadini, and Daniele Struppa, Extension results for slice regular functions of a quaternionic variable, Adv. Math. 222 (2009), no. 5, 1793–1808. MR 2555912, DOI 10.1016/j.aim.2009.06.015
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, An extension theorem for slice monogenic functions and some of its consequences, Israel J. Math. 177 (2010), 369–389. MR 2684426, DOI 10.1007/s11856-010-0051-8
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Noncommutative functional calculus, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel AG, Basel, 2011. Theory and applications of slice hyperholomorphic functions. MR 2752913, DOI 10.1007/978-3-0348-0110-2
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385–403. MR 2520116, DOI 10.1007/s11856-009-0055-4
- Fabrizio Colombo, J. Oscar González-Cervantes, and Irene Sabadini, A nonconstant coefficients differential operator associated to slice monogenic functions, Trans. Amer. Math. Soc. 365 (2013), no. 1, 303–318. MR 2984060, DOI 10.1090/S0002-9947-2012-05689-3
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions, Duke Math. J. 32 (1965), 139–148. MR 173012
- Chiara Della Rocchetta, Graziano Gentili, and Giulia Sarfatti, A Bloch-Landau theorem for slice regular functions, Advances in hypercomplex analysis, Springer INdAM Ser., vol. 1, Springer, Milan, 2013, pp. 55–74. MR 3014609, DOI 10.1007/978-88-470-2445-8_{4}
- Chiara Della Rocchetta, Graziano Gentili, and Giulia Sarfatti, The Bohr theorem for slice regular functions, Math. Nachr. 285 (2012), no. 17-18, 2093–2105. MR 3002603, DOI 10.1002/mana.201100232
- R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662–1691. MR 2737796, DOI 10.1016/j.aim.2010.08.015
- Graziano Gentili and Giulia Sarfatti, Landau-Toeplitz theorems for slice regular functions over quaternions, Pacific J. Math. 265 (2013), no. 2, 381–404. MR 3096506, DOI 10.2140/pjm.2013.265.381
- Graziano Gentili and Caterina Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J. 56 (2008), no. 3, 655–667. MR 2490652, DOI 10.1307/mmj/1231770366
- Graziano Gentili, Caterina Stoppato, and Daniele C. Struppa, Regular functions of a quaternionic variable, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. MR 3013643, DOI 10.1007/978-3-642-33871-7
- Graziano Gentili and Daniele C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris 342 (2006), no. 10, 741–744 (English, with English and French summaries). MR 2227751, DOI 10.1016/j.crma.2006.03.015
- Graziano Gentili and Daniele C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), no. 1, 279–301. MR 2353257, DOI 10.1016/j.aim.2007.05.010
- Graziano Gentili and Daniele C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225–241. MR 2607115, DOI 10.1216/RMJ-2010-40-1-225
- Graziano Gentili and Fabio Vlacci, Rigidity for regular functions over Hamilton and Cayley numbers and a boundary Schwarz Lemma, Indag. Math. (N.S.) 19 (2008), no. 4, 535–545. MR 2546830, DOI 10.1016/S0019-3577(09)00011-1
- Michel Hervé, Quelques propriétés des applications analytiques d’une boule à $m$ dimensions dan elle-même, J. Math. Pures Appl. (9) 42 (1963), 117–147 (French). MR 159962
- Alfred Herzig, Die Winkelderivierte und das Poisson-Stieltjes-Integral, Math. Z. 46 (1940), 129–156 (German). MR 1301, DOI 10.1007/BF01181434
- Gaston Julia, Extension nouvelle d’un lemme de Schwarz, Acta Math. 42 (1920), no. 1, 349–355 (French). MR 1555173, DOI 10.1007/BF02404416
- Serena Migliorini and Fabio Vlacci, A new rigidity result for holomorphic maps, Indag. Math. (N.S.) 13 (2002), no. 4, 537–549. MR 2015837, DOI 10.1016/S0019-3577(02)80032-5
- Guangbin Ren and Xieping Wang, Carathéodory theorems for slice regular functions, Complex Anal. Oper. Theory 9 (2015), no. 5, 1229–1243. MR 3346777, DOI 10.1007/s11785-014-0432-9
- Guangbin Ren and Xieping Wang, The growth and distortion theorems for slice monogenic functions, submitted.
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Donald Sarason, Angular derivatives via Hilbert space, Complex Variables Theory Appl. 10 (1988), no. 1, 1–10. MR 946094, DOI 10.1080/17476938808814282
- Donald Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10, John Wiley & Sons, Inc., New York, 1994. A Wiley-Interscience Publication. MR 1289670
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- David Shoikhet, Semigroups in geometrical function theory, Kluwer Academic Publishers, Dordrecht, 2001. MR 1849612, DOI 10.1007/978-94-015-9632-9
- Caterina Stoppato, Poles of regular quaternionic functions, Complex Var. Elliptic Equ. 54 (2009), no. 11, 1001–1018. MR 2572530, DOI 10.1080/17476930903275938
- Caterina Stoppato, Singularities of slice regular functions, Math. Nachr. 285 (2012), no. 10, 1274–1293. MR 2955794, DOI 10.1002/mana.201100082
- Caterina Stoppato, A new series expansion for slice regular functions, Adv. Math. 231 (2012), no. 3-4, 1401–1416. MR 2964609, DOI 10.1016/j.aim.2012.05.023
Additional Information
- Guangbin Ren
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Email: rengb@ustc.edu.cn
- Xieping Wang
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- MR Author ID: 1110977
- Email: pwx@mail.ustc.edu.cn
- Received by editor(s): January 28, 2015
- Published electronically: March 18, 2016
- Additional Notes: This work was supported by the NNSF of China (11371337), RFDP (20123402110068).
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 861-885
- MSC (2010): Primary 30G35, 30C80, 32A40, 31B25
- DOI: https://doi.org/10.1090/tran/6717
- MathSciNet review: 3572257