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DOMAINS OF DISCONTINUITY

FOR ALMOST-FUCHSIAN GROUPS

ANDREW SANDERS

Abstract. An almost-Fuchsian group Γ < Isom+(H3) is a quasi-Fuchsian
group such that the quotient hyperbolic manifold H3/Γ contains a closed in-
compressible minimal surface with principal curvatures contained in (−1, 1).
We show that the domain of discontinuity of an almost-Fuchsian group con-
tains many balls of a fixed spherical radius R > 0 in C∪{∞} = ∂∞(H3). This

yields a necessary condition for a quasi-Fuchsian group to be almost-Fuchsian
which involves only conformal geometry. As an application, we prove that
there are no doubly-degenerate geometric limits of almost-Fuchsian groups.

1. Introduction

The systematic study of closed minimal surfaces in hyperbolic 3-manifolds be-
gan with the work of Uhlenbeck in the early 1980s [Uhl83]. There, she identified
a class of quasi-Fuchsian hyperbolic 3-manifolds, the almost-Fuchsian manifolds,
which contain a unique closed, incompressible minimal surface which has principal
curvatures in (−1, 1). The structure of almost-Fuchsian manifolds has been studied
considerably by a number of authors [GHW10], [HW13]. In particular, the invari-
ants arising from quasi-conformal Kleinian group theory (e.g. Hausdorff dimension
of limit sets, distance between conformal boundary components) are controlled by
the principal curvatures of the unique minimal surface.

Given an almost-Fuchsian manifold M, this paper further explores the relation-
ship between the geometry of the unique minimal surface and the conformal surface
at infinity. As a result we will show that there are no doubly-degenerate geometric
limits of almost-Fuchsian groups. This will be achieved through a careful study of
the hyperbolic Gauss map from the minimal surface, which serves to communicate
information from the minimal surface to the conformal surface at infinity.

We briefly summarize the strategy: if Γ is the holonomy group of an almost-

Fuchsian manifold M = H3/Γ, consider the Γ-invariant minimal disk Σ̃ ⊂ H3

which projects to the unique closed, minimal surface in M. We locate disks Di ⊂ Σ̃
which are very close to being totally geodesic; the hyperbolic Gauss map from these
disks is nicely behaved and in particular satisfies a Koebe-type theorem [AG85],
namely its image contains disks of bounded radius. Epstein [Eps86] has studied the
hyperbolic Gauss map extensively. In particular, we apply his work to show that
the images of the Di under the hyperbolic Gauss map are contained in the domain
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of discontinuity for Γ. These images form barriers for the limit set of Γ. Since the
limit set of a doubly-degenerate group is equal to ∂∞(H3), these barriers form an
obstruction to Γ approaching a doubly-degenerate group.

If Σ is a surface immersed in some hyperbolic 3-manifold M, the immersion
induces a conformal structure σ on Σ which underlies the induced Riemannian
metric g. Provided the immersion is minimal, Hopf [Hop54] showed that the second
fundamental form

B = B11dx
2 + 2B12dxdy +B22dy

2

appears as the real part of

α = (B11 − iB12) dz
2,

which is a holomorphic quadratic differential on (Σ, σ). The norm ‖α‖g measures
how much Σ bends inside of M. In §3, we prove a Harnack inequality for ‖α‖g satis-
fying some bound ‖α‖g ≤ K. First we show that the norm of a bounded holomorphic
quadratic differential on the hyperbolic plane satisfies a Harnack inequality. Then,
we prove the induced metric g is uniformly comparable to the hyperbolic metric in
that conformal class. Therefore, the growth of the principal curvatures of a minimal
immersion is bounded; the surface cannot bend too much, too quickly. The disks
Di mentioned in the previous paragraph are obtained by taking balls around the
zeros of α; the Harnack inequality ensures we may pick balls of a uniform radius.

In §4, we begin the study of the hyperbolic Gauss map: given an oriented sur-

face Σ̃ ⊂ H3 in hyperbolic 3-space with oriented unit normal field N, the pair of

hyperbolic Gauss maps G± : Σ̃ → ∂∞(H3) are defined by recording the endpoint
of the geodesic ray in the direction of ±N. We show that the images of the disks

Di ⊂ Σ̃ under the hyperbolic Gauss map contain disks of a bounded radius in
∂∞(H3). To achieve this, we utilize the generalization of the Koebe 1

4 -theorem to
quasi-conformal maps due to Astala and Gehring [AG85].

In §5 the above technical results are used to prove that the domain of dis-
continuity of an almost-Fuchsian group Γ contains a disk (in fact many) of fixed
radius in C. As we mentioned above, this is an application of work of Epstein who
showed [Eps86] that the hyperbolic Gauss map from the minimal Γ-invariant disk

Σ̃ is a (quasi-conformal) diffeomorphism onto the domain of discontinuity for Γ. In
particular, we obtain definite regions Ri of ∂∞(H3) into which the limit set of Γ
cannot penetrate. Lastly in §5.1 we prove the promised theorem:

Theorem 1.1. There are no doubly-degenerate geometric limits of almost-Fuchsian
groups.

There is a technical issue in the proof of the above theorem; in order to esti-
mate the size of the regions Ri into which the limit set cannot penetrate, we must

conjugate the group Γ by some element of Isom(H3) to put the surface Σ̃ into a
normalized position. It is possible that given a sequence of almost-Fuchsian groups
Γn, the elements In by which we conjugate leave every compact set of Isom(H3).
Since the action of Isom(H3) on ∂∞(H3) is not isometric, this could destroy any
control we had gained on the size of the Ri. Proving that we may always conjugate
the group into a normalized position by an isometry with some bounded translation
distance relies strongly on the geometry of the minimal surface.

1.1. Historical context. In [Uhl83], Uhlenbeck metioned that “if the area mini-
mizing surfaces in M are isolated, we expect a large number of minimal surfaces in
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quasi-Fuchsian manifolds near M .” The M she refers to is the doubly-degenerate
manifold which arises as a cyclic cover of a closed manifold fibering over the circle. It
seems likely that any doubly-degenerate hyperbolic 3-manifoldM contains infinitely
many distinct incompressible (stable) minimal surfaces which are homotopy equiv-
alent to M . Examples of this phenomenon are provided by the doubly-degenerate
manifolds M which arise as cyclic covers of closed hyperbolic 3-manifolds fibering
over the circle. In this case, there is an infinite cyclic group of isometries of M .
The general existence theory ([FHS83], [SU82] and [SY79]) yields an incompressible
minimal surface Σ in the closed manifold which M covers. Σ lifts to an incompress-
ible minimal surface in M . The translates of Σ by the infinite cyclic group of deck
transformations yield infinitely many distinct incompressible minimal surfaces in
M . Theorem 1.1 supports a general philosophy that the number of closed incom-
pressible (stable) minimal surfaces in a quasi-Fuchsian manifold should serve as a
measure of how far that manifold is from being Fuchsian.

In [HW13], the authors show that if M = H
3/Γ is an almost-Fuchsian manifold

and λ is the maximum positive principal curvature of the unique closed minimal
surface in M, then the Hausdorff dimension of the limit set of Γ is at most 1 + λ2.
The question remains whether there exists a sequence of almost-Fuchsian groups
Γn such that the Hausdorff dimension of the limit set approaches 2. Theorem 1.1
rules out the most naive way in which this might occur.

With these more technical comments in place, we comment on the main achieve-
ment of the paper. The primary advance in this paper is a soft qualitative necessary
condition for a quasi-Fuchsian group Γ to be almost-Fuchsian. The recipe is as fol-
lows: look at the domain of discontinuity. For some small threshold R > 0, which
we calibrate in the paper, if the domain of discontinuity does not contain many
balls of radius larger than R as measured in the spherical metric on ∂∞(H3), then
Γ is not almost-Fuchsian. Since almost-Fuchsian groups are defined directly using
the hyperbolic geometry of the quasi-Fuchsian manifold, it is quite interesting that
there is a necessary condition which can be stated solely in terms of the complex
geometry of Möbius transformations.

1.2. Plan of the paper. The preliminary section §2 assembles all of the definitions
and basic facts we require from the theory of Kleinian groups, minimal surfaces
and introduces the hyperbolic Gauss map. Then in §3 we prove the main technical
propositions controlling the growth of the principal curvatures of a minimal surface
in H3. In §4 we prove that under the hyperbolic Gauss map nearly flat regions in
the minimal surface are sent to disks of controlled radius in the image of the Gauss
map. Finally, in §5 we prove that the domain of discontinuity of an almost-Fuchsian
group contains disks of a fixed radius. As an application we show that there are no
doubly-degenerate geometric limits of almost-Fuchsian groups.

2. Preliminaries

In all that follows, Σ denotes a closed, connected, oriented, smooth surface of
genus greater than 1.

2.1. Kleinian groups and hyperbolic geometry. The 3-dimensional hyperbolic
space H3 is the unique, 3-dimensional complete, 1-connected Riemannian manifold
with constant negative sectional curvature −1. We will primarily work in the upper
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half-space model for hyperbolic space which consists of the smooth manifold

H
3 = {(x1, x2, x3) ∈ R

3 |x3 > 0}
together with the Riemannian metric

dh2
3 =

δijdx
idxj

x2
3

.

For H3, we use coordinates (z, t) ∈ H3 with z = x + iy ∈ C and t > 0. A
Kleinian group is a discrete (torsion-free) subgroup Γ < Isom+(H3) � PSL(2,C) of
orientation-preserving isometries of hyperbolic 3-space. Given a Kleinian group Γ,
the action onH3 extends to an action on the conformal boundary ∂∞(H3) � C∪{∞}
by Möbius transformations. This action divides ∂∞(H3) into two disjoint subsets:
Λ(Γ) and Ω(Γ). The limit set Λ(Γ) is defined to be the smallest non-empty, Γ-
invariant closed subset of ∂∞(H3). The domain of discontinuity ∂∞(H3)\Λ(Γ) =
Ω(Γ) is the largest open set on which Γ acts properly discontinuously. The quotient
M = H3/Γ is a complete hyperbolic 3-manifold with holonomy group Γ.

Given a sequence of Kleinian groups Γn, we say that Γn converges geometrically
to the group Γ if,

(1) For all γ ∈ Γ there exists γn ∈ Γn such that γn → γ in Isom(H3).
(2) If γn ∈ Γn and {γnj

} ⊂ {γn} is a subsequence such that γnj
→ γ, then

γ ∈ Γ.

We denote geometric convergence by Γn → Γ. It is well known [CEG87] that the
geometric convergence of Kleinian groups is equivalent to the base-framed, Gromov-
Hausdorff convergence of the associated quotient manifolds.

Equipping ∂∞(H3) = C ∪ {∞} with the spherical metric dS2 = |dz|2
(1+|z|2)2 , a

sequence of closed subsets An ⊂ C ∪ {∞} converges to A ⊂ C ∪ {∞} in the
Hausdorff topology if An → A with respect to the distance

d(An, A) = inf

{
r : An ⊂

⋃
x∈A

BS2(x, r) and A ⊂
⋃

x∈An

BS2(x, r)

}
.

If a sequence of Kleinian groups Γn converges geometrically to Γ, it is a simple
exercise to verify that the limit set of Γ satisfies Λ(Γ) ⊂ lim

n→∞
Λ(Γn) where the limit

is taken with respect to the Hausdorff topology.
Now we restrict to the case that there is an isomorphism ρ : π1(Σ, p0) → Γ.

The representation ρ is quasi-Fuchsian if and only if Ω(Γ) consists of precisely
two invariant, connected, simply-connected components. The quotient Ω(Γ)/Γ =

X+ ∪ X− is a disjoint union of two marked Riemann surfaces (X+, X−), each
diffeomorphic to Σ, where the bar over X− denotes the surface with the opposite
orientation. The marking, which is a choice of homotopy equivalence f± : Σ → X±,
is determined by the requirement that f±

∗ = ρ. Conversely, we have the Bers’
simultaneous uniformization theorem [Ber60],

Theorem 2.1. Given an ordered pair of marked, closed Riemann surfaces (X+, X−)
each diffeomorphic to Σ, there exists an isomorphism ρ : π1(Σ, p) → Γ, unique up

to conjugation in PSL(2,C), such that Ω(Γ)/Γ = X+ ∪X−.

It is a striking feature of the diversity of hyperbolic 3-manifolds that there exist
isomorphisms ρ : π1(Σ, p) → Γ onto Kleinian groups which are not quasi-Fuchsian.
A Kleinian surface group Γ � π1(Σ, p) is called doubly degenerate if the domain
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of discontinuity for Γ is empty; Ω(Γ) = ∅. The first explicit examples of doubly-
degenerate groups were free groups of rank 2 discovered by Jørgensen [Jor77].

Due to the resolution of the ending lamination conjecture, the isometry classifi-
cation of doubly-degenerate manifolds is now well understood. Nonetheless, their
fine scale geometry is extremely intricate and interesting. Bonahon showed [Bon86]
that they are diffeomorphic to Σ × R; then the ending lamination theorem (for
surface groups) [Min10], [BCM12] in conjunction with Thurston’s double limit the-
orem [Thu] can be applied to see that every doubly-degenerate group is a geometric
limit of quasi-Fuchsian groups.

2.2. Minimal surfaces and almost-Fuchsian manifolds. Let (M,h) be a 3-
dimensional Riemannian manifold. Given an immersion f : Σ → M, the area of f
is the area of the Riemannian manifold (Σ, g) where g = f∗(h). Suppose f(Σ) is
two-sided in M and let ν be a globally defined unit normal vector field. Then given
X and Y tangent vectors to f(Σ), we have the second fundamental form B defined
by

B(X,Y ) = h(∇Xν, Y )

where ∇ is the Levi-Cevita connection of h. The second fundamental form B defines
a symmetric, contravariant 2-tensor on Σ. By the spectral theorem for self-adjoint
operators, B is diagonalizable with eigenvalues λ1, λ2 whose product λ1λ2 is a
smooth function on Σ. They are called the principal curvatures of the immersion
and ‖B‖2g = λ2

1 + λ2
2.

Contracting with the metric g yields the mean curvature of the immersion,

H = gijBij ,

where repeated upper and lower indices are to be summed over. The immersion
f : Σ → M is minimal if H = λ1+λ2 = 0. Equivalently, f is a critical point for the
area functional defined on the space of immersions of Σ into M. A minimal surface
is said to be least area if f : Σ → M has least area among all maps homotopic to
f ; least area maps are minimal.

Now suppose M is a hyperbolic 3-manifold. If f : Σ → M is an immersion as
above, the Gauss equation of the immersion is

Kg = −1 + λ1λ2(2.1)

where Kg is the sectional curvature of the metric g.
If f is a minimal immersion, it follows that

Kg = −1− λ2(2.2)

where we have packaged the principal curvatures into a single smooth function
λ2 = λ2

1 = λ2
2 since they satisfy λ1 = −λ2. Then

1

2
‖B‖2g = λ2(2.3)

and

Kg = −1− 1

2
‖B‖2g.(2.4)

We now present the principal object of study.

Definition 2.2. A quasi-Fuchsian 3-manifold M is almost-Fuchsian if there exists
a minimal immersion f : Σ → M with ‖B‖2g(x) < 2 for all x ∈ Σ.
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The following classification theorem is due to Uhlenbeck [Uhl83].

Theorem 2.3. Suppose M is almost-Fuchsian and homotopy equivalent to Σ.
Then,

• f : Σ → M such that ‖B‖2g(x) < 2 is the only closed minimal surface of
any kind in M.

• f : Σ → M is incompressible, i.e., it is a π1−injective, smooth embedding.
• The normal exponential map from f(Σ) is a diffeomorphism onto M. In
these coordinates the metric on Σ× R can be expressed as

dt2 + g(cosh (t) I(·) + sinh (t) S(·), cosh (t) I(·) + sinh (t) S(·)).
Here I is the identity operator and S(X) = ∇X(ν) is the shape operator
associated to the second fundamental form.

The following theorem, first observed by Hopf [Hop54], will be of great impor-
tance to us.

Theorem 2.4. Let f : Σ → M be a minimal immersion and M a constant cur-
vature Riemannian 3-manifold. Let z be a local holomorphic coordinate for the
Riemann surface structure induced on Σ. If B is the second fundamental form of
the immersion, then the expression

α = (B11 − iB12)dz
2

is an invariantly defined holomorphic quadratic differential on Σ with Re(α) = B.

In terms of the quadratic differential α, the almost-Fuchsian condition translates
to the condition that λ2 = ‖α‖2g < 1. Uhlenbeck’s Theorem 2.3 along with an
implicit function theorem argument (see [Uhl83]) shows that the space of isotopy
classes of almost-Fuchsian manifolds is parameterized via an open neighborhood of
the zero section of the bundle of holomorphic quadratic differential over T (Σ) the
Teichmuller space of Σ. Recall the Teichmuller space T (Σ) is the space of isotopy
classes of complex structures on Σ compatible with the orientation. The bundle
of holomorphic quadratic differentials can be identified with T ∗T (Σ) the cotangent
bundle of T (Σ).

We will denote the space (of isotopy classes) of almost-Fuchsian manifolds by
AF , and say that (g, α) ∈ AF is an almost-Fuchsian manifold with data (g, α)
if there exists an almost-Fuchsian manifold such that the unique minimal surface
has induced metric g and second fundamental form Re(α). Throughout the paper,
we are concerned with specific manifolds and not just manifolds up to isotopy, so
(g, α) ∈ AF is understood to be a representative of the isotopy class.

Given (g, α) ∈ AF with holonomy group Γ, we call a lift of the unique, incom-
pressible minimal surface in H3/Γ to H3 an almost-Fuchsian disk with data (g, α).

An almost-Fuchsian disk Σ̃ ⊂ H3 is normalized if

(1) The point p = (0, 0, 1) ∈ Σ̃ and the oriented unit normal to Σ̃ at p is
(0, 0,−1).

(2) The principal curvatures vanish at p : α(p) = 0.

If (g, α) ∈ AF with holonomy group Γ, we can always select I ∈ Isom(H3) such
that the IΓI−1-invariant almost-Fuchsian disk is normalized. Such a choice of I is
unique up to the action of the circle group U(1) < Isom(H3) of rotations about the
z-axis in the upper half-space model of hyperbolic space.
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2.3. Hyperbolic Gauss map. Details on the material in this section may be
found in the paper of Epstein [Eps86]. Let S ⊂ H3 be an oriented, embedded
surface. Let N be a global unit normal vector field on S such that if {X,Y } ⊂ TS
is an oriented basis of the tangent space of S, then {X,Y,N} extends to an oriented
basis of TH3. Given p ∈ S, let γp(t) be the unit speed geodesic ray with initial point

γp(0) = p and initial velocity
dγp(t)

dt |t=0 = N.

Definition 2.5. The forward hyperbolic Gauss map associated to S is the map
G+
S : S → ∂∞(H3) defined by

G+
S (p) = lim

t→+∞
γp(t).

If we use −N in the definition we shall call the associated map G−
S the backwards

hyperbolic Gauss map.
We quickly recall the results we shall utilize from [Eps84], [Eps86]. Let f : D →

H3 be an immersion of the unit disk D such that the principal curvatures are always
contained in (−1 + ε, 1− ε) for some ε > 0. Epstein proves,

Theorem 2.6 ([Eps84], [Eps86]). Let S = f(D). The immersion f : D → H3

satisfies:

(1) f is a proper embedding.
(2) f extends to an embedding f : D → H3 ∪ ∂∞(H3). So ∂∞(S) = f(∂D \ D)

is a Jordan curve.
(3) Each hyperbolic Gauss map G±

S : S → ∂∞(H3) is a quasi-conformal dif-
feomorphism onto a component of ∂∞(H3) \ ∂∞(S). Note that the Jordan
curve theorem implies ∂∞(H3) \ ∂∞(S) consists of two components.

Figure 1. The image of a disk under the forward hyperbolic
Gauss map from a totally geodesic plane in H

3.
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Recall that given a homeomorphism f : D1 → D2 between domains D1, D2 ⊂ C,
we say that f is a quasi-conformal homeomorphism if:

• f ∈ H1
loc(D1), that is, both f and its distributional derivatives fz, fz are

locally square-integrable on D1.
• There exists μ ∈ L∞(D1) with ‖μ‖L∞ < 1 such that fz = μfz in the sense
of distributions.

Remark. The quasiconformal maps we meet will be smooth, so the references to
distributions above can be safely ignored.

Defining the dilatation of f to be the quantity

K =
1 + ‖μ‖L∞

1− ‖μ‖L∞
,(2.5)

f is said to be K-quasi-conformal. Observe that a 1-quasi-conformal map is con-
formal.

From Theorem 2.6 it immediately follows that if Σ̃ ⊂ H3 is an almost-Fuchsian
disk invariant under an almost-Fuchsian group Γ, each hyperbolic Gauss map

G±
˜Σ
: Σ̃ → ∂∞(H3)

is a (quasi-conformal) diffeomorphism onto one component of the domain of dis-

continuity Ω of Γ. Furthermore, π1(Σ, p0) � Γ implies ∂∞(Σ̃) identifies homeomor-
phically with the limit set Λ(Γ).

3. Technical estimates

This section contains some technical results which give us control on the growth
of the principal curvature function for a minimal surface immersed in a hyperbolic
3-manifold.

We begin with a basic result establishing a bound on the growth of the L∞-norm
of a bounded, holomorphic quadratic differential α = f(z) dz2 on H2. We denote
the canonical bundle of holomorphic 1-forms on H2 by KH2 . In this section we will
utilize the Poincaré disk model of the hyperbolic plane consisting of the unit disk
D ⊂ C with the metric

4|dz|2
(1− |z|2)2 .

Proposition 3.1. Let α ∈ H0
(
H2,K2

H2

)
be a holomorphic quadratic differential on

the hyperbolic plane and assume there exists a C > 0 such that sup
z∈H2

‖α‖H2(z) ≤ C.

Assume there is z0 ∈ H2 such that α(z0) = 0. Then for all ε > 0, there exists
r = r(ε, C) > 0 such that

‖α‖H2(x) < ε

for all x ∈ BH2(z0, r) where BH2(z0, r) is the ball of hyperbolic radius r centered at
z0.

Proof. Without loss of generality, assume z0 = 0 ∈ D. Writing α(z) = f(z) dz2, the
condition

sup
z∈H2

‖α‖H2(z) ≤ C(3.1)
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becomes

(1− |z|2)2
4

|f(z)| ≤ C(3.2)

for all z ∈ D. Define an auxiliary holomorphic function defined on D by

g(z) = C ′f

(
1

2
z

)
(3.3)

with

C ′ =

(
1− 1

4

)2
4C

.(3.4)

Utilizing (3.2),

|g(z)| =
(
1− 1

4

)2
4C

∣∣∣∣f (
1

2
z

)∣∣∣∣ ≤
(
1− 1

4

)2(
1− |z|2

4

)2 ≤ 1(3.5)

which proves that

|g(z)| ≤ 1.

By construction g(0) = 0, hence the Schwarz lemma implies

|g(z)| ≤ |z|.(3.6)

Thus,

‖α‖H2

(
1

2
z

)
=

(1− 1
4 |z|2)2
4

∣∣∣∣f (
1

2
z

)∣∣∣∣ ≤ (1− 1
4 |z|2)2
4C ′ |z| < ε(3.7)

provided |z| < 4C ′ε. Thus, on the Euclidean disk of radius 2C ′ε the estimate stated
in the theorem holds. Translating to hyperbolic radius we obtain

r = log

(
1 + 2C ′ε

1− 2C ′ε

)
.(3.8)

This completes the proof. �

Our next task is to apply the bound from Proposition 3.1 to the case of the norm
of a quadratic differential arising from a minimal surface in an almost-Fuchsian man-
ifold. Fortunately, the next lemma shows that the induced metric on the surface
is uniformly comparable to the hyperbolic metric. Recall that given a Riemann-
ian metric g on Σ, the Koebe-Poincaré uniformization theorem provides a unique
hyperbolic metric in the conformal class of g.

Lemma 3.2. Let (g, α) ∈ AF and suppose h is the unique hyperbolic metric in the
conformal class of g with g = e2uh. Then,

− ln(2)

2
< u ≤ 0.

Proof. Since g = e2uh and the sectional curvature of h is equal to −1, we have the
standard equation,

Kg = e−2u(−Δhu− 1),

whereKg is the sectional curvature of g. A further application of the Gauss equation
(2.1) reveals,

−1− ‖α‖2g = e−2u(−Δhu− 1).(3.9)
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Since (g, α) ∈ AF , the inequality −1 − ‖α‖2g > −2 holds. Let p ∈ Σ be a local
minimum for u. Then,

−2 < e−2u(−Δhu− 1) ≤ −e−2u

since −Δhu(p) ≤ 0. Thus, − ln(2)
2 < u.

The inequality u ≤ 0 is proved in [Uhl83]. This completes the proof. �
Now we establish uniform estimates on the norm of α near a zero for any (g, α) ∈

AF . This will be crucial for our applications. In lieu of the previous lemma, the
following proposition is a direct consequence of Proposition 3.1.

Proposition 3.3. Let (g, α) ∈ AF and p ∈ Σ such that α(p) = 0. Then for all
ε > 0, there exists r(ε) > 0 such that

‖α‖g(x) < ε

for all x ∈ Bg(p, r), where Bg(p, r) is the ball of radius r centered at p as measured
in the metric g.

Remark. The above estimate is obvious for each (g, α) by the continuity of ‖α‖g.
The key point is the uniformity, namely that r depends only on ε > 0 and not on
(g, α).

Remark. Note that α is a holomorphic quadratic differential on a closed Riemann
surface of genus g > 1. Thus, they are holomorphic sections of the square of the
canonical bundle K2 which has degree 4g−4. By standard Riemann surface theory,
α has 4g − 4 zeros counting multiplicity.

Remark. The above proposition is equally true if we work in the metric universal

cover Σ̃ of Σ. This will be important in our applications.

Proof of Proposition 3.3. Let g = e2uh where h is the unique hyperbolic metric
in the conformal class of g. Then ‖α‖g = e−2u‖α‖h. Combined with Lemma 3.2
this implies ‖α‖g < 2‖α‖h. Let p ∈ Σ be such that α(p) = 0. Since ‖α‖g < 1,
Proposition 3.1 implies that for all ε > 0 we can find r′ > 0 such that ‖α‖h(x) < ε

2

for all x ∈ Bh(p, r
′). Now, since u > − ln(2)

2 we observe Bg(p, r) ⊂ Bh(p, r
′) where

r = r′√
2
. It follows that

‖α‖g(x) < 2‖α‖h(x) < ε

for all x ∈ Bg(p, r) ⊂ Bh(p, r
′). �

By the Gauss equation, on Bg(p, r) the sectional curvature Kg of g satisfies
−1−ε2 ≤ Kg ≤ −1. Thus the disks Bg(p, r) are very close to being totally geodesic.
These are the nearly geodesic regions referred to in the introduction.

4. Thick regions in the Gauss map image

In this section we show that the nearly geodesic regions previously obtained
are mapped, via the hyperbolic Gauss map, to regions in ∂∞(H3) which have a
uniformly bounded thickness. This will rely on the generalization of the Koebe
1
4 -theorem due to Astala and Gehring [AG85].

Let (g, α) be the data for a normalized almost-Fuchsian disk Σ̃ ⊂ H3. By the
uniformization theorem, there exists a conformal diffeomorphism

φ : D → (Σ̃, g)(4.1)
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satisfying f(0) = p. Since φ is conformal,

φ∗g = e2uh(4.2)

for some u ∈ C∞(Σ) where h is the hyperbolic metric on D. If dVg is the volume
element arising from the metric g, then

φ∗dVg = e2udVh.(4.3)

Convention. The following notation is in place for the rest of this section:

Σ̃ ⊂ H3 is a normalized almost-Fuchsian disk with data (g, α). Recall, this means

(0, 0, 1) = p ∈ Σ̃ is such that α(p) = 0. Choose an ε > 0; then Proposition 3.3 yields
r > 0 such that the norm of α is less than ε on Bg(p, r). Whenever r or ε appear
in statements below, it is these fixed quantities to which we refer.

Proposition 4.1. Let Σ̃ be a normalized almost-Fuchsian disk with data (g, α) ∈
AF . Let

φ : D → (Σ̃, g)(4.4)

be a uniformization such that φ(0) = p. Then there exists r1 = r1(r) > 0 such that

BC(0, r1) ⊂ φ−1(Bg(p, r)).(4.5)

Furthermore,

Jφ(z) > 2(4.6)

for all z ∈ D. Here Jφ(z) is the Jacobian of φ at z calculated with respect to the
Euclidean metric on D. Also, BC(0, r1) is the Euclidean ball centered at 0 of radius
r1.

Proof. First, any metric g such that (g, α) ∈ AF is uniformly comparable to the
hyperbolic metric by Lemma 3.2. This implies that there exists a fixed annulus
A ⊂ D centered at the origin which contains the boundary of φ−1(Bg(p, r)) for
every (g, α) ∈ AF . On a fixed compact subset of D (which is taken to be the closed
ball bounded by the outer ring of the annulus A), the hyperbolic metric is uniformly
comparable to the Euclidean metric. Thus there exists r1 > 0 independent of (g, α)
such that

BC(0, r1) ⊂ φ−1(Bg(p, r)).(4.7)

We note that BC(0, r1) can be taken to be the ball bounded by the inner ring of
the annulus A.

Writing φ∗(g) = e2uh, then by (4.3), the Jacobian of φ (with respect to the
Euclidean metric on D) is given by

Jφ(z) =
4e2u(z)

(1− |z|2)2 .(4.8)

Applying the estimate in Lemma 3.2 reveals

Jφ(z) > 2(4.9)

for all z ∈ D = H2. This completes the proof. �

The following proposition which controls the distortion of the hyperbolic Gauss
map is due to Epstein [Eps86].
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Proposition 4.2. Let Σ̃ be a normalized almost-Fuchsian disk with data (g, α).
Then:

(1) The hyperbolic Gauss map

G+
˜Σ
: Bg(p, r) → C(4.10)

is quasi-conformal with dilatation K ≤
(

1+ε
1−ε

) 1
2

.

(2) There exists a universal constant C > 0 such that

JG+
˜Σ

(x) > C(1− ε2)(4.11)

for all x ∈ Bg(p, r) where the Jacobian of G+ is computed with respect to
the Euclidean metric on C.

Proof. These facts can be found on pages 120 − 121 of [Eps86]. Epstein uses the
spherical metric on C, but in a bounded neighborhood of zero the spherical metric
and Euclidean metric are uniformly comparable. Thus, the C we obtain in (4.11)
is some multiple of that obtained by Epstein. �

Next, we introduce the generalization of Koebe’s 1
4 -theorem due to Astala and

Gehring [AG85]. Let U, V ⊂ C be open domains and

f : U → V(4.12)

a K-quasi-conformal mapping with Jacobian Jf . Then log Jf is locally integrable
and the quantity

(log Jf )B =
1

|B|

∫
B

log Jf dx,(4.13)

with B ⊂ U a ball, is well defined. For each x ∈ U, define

B(x) = BC(x, dC(x, ∂U))(4.14)

to be the largest open ball centered at x which remains in U. Lastly, define

af (x) = exp

(
1

2
(log Jf )B(x)

)
.(4.15)

The promised generalization follows.

Theorem 4.3 ([AG85]). Suppose U and V are open domains in C and f : U → V
is K-quasi-conformal. Then there exists a constant C = C(K) such that

1

C

dC(f(x), ∂V )

dC(x, ∂U)
≤ af (x) ≤ C

dC(f(x), ∂V )

dC(x, ∂U)
.(4.16)

Given Σ̃ ⊂ H3 a normalized almost-Fuchsian disk with data (g, α), fix a uni-
formization

φ : D → (Σ̃, g)(4.17)

such that φ(0) = p as in Proposition 4.1. Consider the composition

Φ := G+
˜Σ
◦ φ : D → C(4.18)

where we have identified ∂∞(H3) with C∪ {∞}. Our strategy is to apply Theorem
4.3 to the function Φ. We collect the necessary properties of Φ below.
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Proposition 4.4. The map Φ : D → C above satisfies:

(1) Φ(0) = 0.
(2) The restriction of Φ to the sub-disk BC(0, r1) from Proposition 4.1 is K-

quasi-conformal with K independent of (g, α).
(3) There exists β(r1) = β > 0 such that JΦ(z) > β for all z ∈ BC(0, r1) with

β independent of (g, α).

Proof. First,
Φ(0) = 0

is a direct consequence of the fact that Σ̃ is normalized. Next, Φ is a composition
of a conformal map φ with the hyperbolic Gauss map G+

˜Σ
. Thus, the restriction of

Φ to BC(0, r1) is K-quasi-conformal if G+
˜Σ
is K-quasi-conformal on Bg(p, r). This is

proved in Proposition 4.2 which verifies (2). Lastly, the Jacobian is multiplicative:

JΦ(z) = JG+
˜Σ

(φ(z))Jφ(z).(4.19)

Combining Propositions 4.1 and 4.2, the product on the right is bounded below by
β = 2C(1− ε2). This proves (3) and the proof is complete. �

Proposition 4.4 and Theorem 4.3 combine to show that the image of the Gauss
map contains disks of a definite size.

Proposition 4.5. Let Σ̃ be a normalized almost-Fuchsian disk. Then there exists

R > 0 such that BC(0, R) ⊂ G+
˜Σ
(Σ̃) where BC(0, R) is the Euclidean disk of radius

R centered at 0 ∈ C.

Proof. Consider the map

Φ := G+
˜Σ
◦ φ : BC(0, r1) → C.(4.20)

By Proposition 4.4(3), there exists β > 0 such that

aΦ(0) ≥ exp

(
1

2
log β

)
.(4.21)

Noting that Φ is K-quasi-conformal by Proposition 4.4(2), Theorem 4.3 yields√
β ≤

CdC
(
0, ∂(Φ(BC(0, r1)))

)
dC

(
0, ∂(BC(0, r1))

) =
CdC

(
0, ∂(Φ(BC(0, r1)))

)
r1

(4.22)

since dC(0, ∂(BC(0, r1))) = r1. Above, we have taken U = BC(0, r1) and V = Φ(U).

Letting R = r1
√
β

C completes the proof. �

5. Main results

In this section, we present the main results concerning the domain of disconti-
nuity of an almost-Fuchsian group. An almost-Fuchsian group Γ is normalized if
the Γ-invariant almost-Fuchsian disk is normalized.

Theorem 5.1. Let Γ be a normalized almost-Fuchsian group. Then the domain of
discontinuity Ω of Γ contains BC(0, R) ⊂ C for some R > 0.

Proof. Let Σ̃ be the normalized Γ-invariant almost-Fuchsian disk. By Theorem

2.6, the forward hyperbolic Gauss map G+
˜Σ

: Σ̃ → ∂∞(H3) is a (quasi-conformal)

diffeomorphism onto one connected component Ω+ of the domain of discontinuity.

By Proposition 4.5, BC(0, R) ⊂ G+
˜Σ
(Σ̃) = Ω+ for some R > 0. �
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Figure 2. The disk contained inside the image of the hyperbolic
Gauss map lying in the domain of discontinuity for some almost-
Fuchsian group Γ with limit set ΛΓ.

Note that given an almost-Fuchsian group Γ, conjugating Γ by a rotation so that
0 ∈ Ω followed by a translation with arbitrarily large translation distance in the
direction of the positive t-axis, we obtain an almost-Fuchsian group whose domain
of discontinuity contains a disk around zero of arbitrarily large radius. Of course,
the resulting almost-Fuchsian group is not normalized. This is the essential point
of the above theorem.

We can actually do better than the previous theorem. Because the almost-

Fuchsian disk Σ̃ is the universal cover of a closed minimal surface whose non-
negative principal curvature equals the norm of a holomorphic quadratic differential,

the principal curvatures of Σ̃ are zero at a countably infinite set of points. Thus, the
arguments given above can be applied one by one to each such point. Furthermore,
we may use the opposite pointing normal to obtain the same results for the opposing
domain of discontinuity. With this in mind, we can refine the above theorem in the
following way.

Theorem 5.2. Let Γ be a normalized almost-Fuchsian group and Σ̃ the almost-
Fuchsian Γ-invariant disk with data (g, α) ∈ AF . For a fixed compact set E ⊂ H

3

containing p = (0, 0, 1), consider any set of points {pi} ⊂ Σ̃ contained in E ∩ Σ̃
such that ‖α‖g(pi) = 0 for each i. Then there exists an R′(E) > 0 such that⋃
i

BS2

(
G±

˜Σ
(pi), R

′
)
⊂ Ω where Ω is the domain of discontinuity of Γ.

Remark. By Theorem 2.6, Σ̃ is properly embedded so that E∩Σ̃ is compact. As any
set of zeros {pi} is necessarily discrete (they are zeros of a holomorphic quadratic
differential), any compact set of zeros is finite.

Proof. First, we claim there exists a positive integer K(E) such that the cardinality

of the set of zeros of α contained in Σ̃ ∩ E is always less than K. As observed in

the remark above, Σ̃ ∩ E is compact. Because the metric on the minimal surface
is uniformly comparable to the hyperbolic metric, there exists a uniform constant

C > 0 such that the area of Σ̃ ∩E is bounded above by C. By the Gauss equation



DOMAINS OF DISCONTINUITY FOR ALMOST-FUCHSIAN GROUPS 1305

the area of the closed minimal surface which Σ̃ covers is at least π(2g−2) where g is
the genus, thus a fundamental domain for the action of the almost-Fuchsian group
has area at least π(2g − 2). Then there are at most C

π(2g−2) fundamental domains

which lie in Σ̃ ∩ E. Since each fundamental domain contains at most 4g − 4 zeros
of α, we take K(E) equal to the nearest integer greater than (4g− 4) C

π(2g−2) =
2C
π .

For any set of zeros {pi}ni=1 ⊂ Σ̃ ∩ E, each member of a collection of normal-
izing elements {Ii}ni=1 ⊂ Isom(H3) (i.e. Ii satisfies Ii(pi) = p = (0, 0, 1)

)
lies in

a fixed compact set in Isom(H3). This follows from the fact that each Ii will be
a composition of a hyperbolic element of uniformly bounded translation distance
(specifically bounded by the distance from p to ∂E) and a rotation. Fixing the
R > 0 of Theorem 5.1, we set R′ equal to the minimum of the spherical radii of
the disks I (BC(0, R)) where I ∈ Isom(H3) ranges over the finite set of all words
of length at most n in the Ii and their inverses. Remember that we first estab-
lished that there exists a universal constant such that n < K(E) and so this is a
bounded list over all almost-Fuchsian disks. Each Ii is a conformal transformation
so indeed I(BC(0, R)) is a disk. Then, the argument in Theorem 5.1 implies that⋃
i

BS2

(
G+

˜Σ
(pi), R

′
)
⊂ Ω.

Repeating the same argument with the opposite pointing normal proves that

there exists R′′ > 0 such that
⋃
i

BS2

(
G−

˜Σ
(pi), R

′′
)
⊂ Ω. Letting R′ = min{R′, R′′}

completes the proof. �

5.1. Geometric limits of almost-Fuchsian groups. In this section, we prove
that a geometrically convergent sequence of almost-Fuchsian groups cannot limit to
a doubly-degenerate group. The mantra is that the disks guaranteed to exist in each
domain of discontinuity form barriers into which the limit set cannot penetrate.

Theorem 5.3. Suppose Γn is a sequence of almost-Fuchsian groups and Γn → Γ
geometrically. Then Γ is not doubly-degenerate.

Proof. Recall that the limit set of a doubly-degenerate group Γ is equal to ∂∞(H3).
Suppose Γn is a sequence of almost-Fuchsian groups converging geometrically to
Γ. By Theorem 5.1 there exists an R > 0 and a sequence of transformations In ∈
Isom(H3) such that

Λ(InΓnI
−1
n ) ∩BC(0, R) = ∅.(5.1)

We shall refer to any such sequence In as a normalizing sequence.
First suppose that the In remain in a compact subset of Isom(H3). Choose

a subsequence such that In → I where we have relabeled the indices. Then
InΓnI

−1
n → IΓI−1 geometrically. Since Λ(IΓI−1) = IΛ(Γ), the limit set of IΓI−1

is also equal to ∂∞(H3). We conclude that

∂∞(H3) = Λ(IΓI−1) ⊂ lim
n→∞

Λ(InΓnI
−1
n )

and so

lim
n→∞

Λ(InΓnI
−1
n ) = ∂∞(H3)
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in the Hausdorff topology on closed subsets of ∂∞(H3). In particular, since the
spherical and Euclidean metrics are comparable on compact subsets in the Eu-
clidean topology (they nearly agree around 0 ∈ C), given any R > 0 there exists an
N ∈ N such that

Λ(InΓnI
−1
n ) ∩BC(0, R) �= ∅

for every n ≥ N. This contradicts equation (5.1).
Now suppose that no normalizing sequence In remains in a compact subset of

Isom(H3). We work towards a contradiction. Let Σ̃n be the unique Γn-invariant

almost-Fuchsian disk. We select a sequence of points pn ∈ Σ̃n satisfying the follow-
ing properties:

(1) Each pn ∈ Σ̃n is such that the principal curvatures of Σ̃n vanish at pn.
(2) There exists x ∈ C ⊂ ∂∞(H3) such that, after perhaps passing to a subse-

quence, pn → x where the convergence is in the Euclidean topology on the
closed upper half-space H3 ∪ ∂∞(H3).

A (sub-)sequence can be found satisfying both conditions since we have assumed
every sequence pn of vanishing principal curvature leaves every compact subset
of H3. Next, conjugate each group Γn by a parabolic isometry, represented by a
Möbius transformation

Jn = z + an,

which maps pn to some point (0, 0, pn) ∈ H3 where we have abused notation in
calling the z-coordinate by the same name. Note that assumption (2) on the se-
quence pn implies |an| ≤ K for some K > 0. As the next step, conjugate each
group further by an elliptic isometry to make the downward pointing unit normal
vector to Jn(pn) directed at 0 ∈ ∂∞(H3). Further abusing notation, we label the
new sequence of groups as Γn and denote the unique Γn-invariant almost-Fuchsian

disks by Σ̃n.
It remains true that Λ(Γn) → ∂∞(H3) since the parabolic elements were chosen

from a compact set of isometries and elliptic elements act as isometries of the
spherical metric from which the Hausdorff topology was induced.

Given the above prerequisites, a Σ̃n-normalizing sequence In takes the form

In =

(
λn 0
0 λ−1

n

)
∈ PSL(2,R) ⊂ Isom+(H3)(5.2)

for some λn → ∞.

Since In(Σ̃n) is a sequence of normalized almost-Fuchsian disks, by Theorem 5.2
there exists an R′ > 0 such that

Λ(InΓnI
−1
n ) ∩BS2(∞, R′) = ∅.(5.3)

Since λn → ∞, there exists an N ∈ N such that

∂∞(H3) \ I−1
n (BS2(∞, R′)) = (C ∪ {∞}) \ I−1

n (BS2(∞, R′))(5.4)

⊂ BS2(0, R
′)(5.5)

for all n > N. Applying I−1
n to equation (5.3) we obtain that,

Λ(Γn) ∩ I−1
n BS2(∞, R′) = ∅.(5.6)



DOMAINS OF DISCONTINUITY FOR ALMOST-FUCHSIAN GROUPS 1307

Note that the above is true because I−1
n is injective, so it maps non-intersecting

sets to non-intersectings sets. By line (5.4) this implies that for all n > N

Λ(Γn) ⊂ BS2(0, R
′),(5.7)

but this is impossible since Λ(Γn) → ∂∞(H3). This contradiction implies that we
may always find a normalizing sequence which remains in a compact subset of
Isom(H3). But, we have already shown this case above, hence Γn cannot geometri-
cally limit to a doubly-degenerate group. This completes the proof. �
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