Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Preservation of depth in the local geometric Langlands correspondence
HTML articles powered by AMS MathViewer

by Tsao-Hsien Chen and Masoud Kamgarpour PDF
Trans. Amer. Math. Soc. 369 (2017), 1345-1364 Request permission

Abstract:

It is expected that, under mild conditions, the local Langlands correspondence preserves depths of representations. In this article, we formulate a conjectural geometrisation of this expectation. We prove half of this conjecture by showing that the depth of a categorical representation of the loop group is greater than or equal to the depth of its underlying geometric Langlands parameter. A key ingredient of our proof is a new definition of the slope of a meromorphic connection, a definition which uses opers.
References
  • Ettore Aldrovandi and Behrang Noohi, Butterflies. I. Morphisms of 2-group stacks, Adv. Math. 221 (2009), no. 3, 687–773. MR 2511036, DOI 10.1016/j.aim.2008.12.014
  • P. Baum, A. Aubert, R. Plymen, and M. Sollevand, Depth and the local Langlands correspondence, 2014, http://arxiv.org/pdf/1311.1606v2.pdf.
  • Donald G. Babbitt and V. S. Varadarajan, Formal reduction theory of meromorphic differential equations: a group theoretic view, Pacific J. Math. 109 (1983), no. 1, 1–80. MR 716289
  • A. Beilinson, Langlands parameters for Heisenberg modules, Studies in Lie theory, Progr. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 51–60. MR 2214245, DOI 10.1007/0-8176-4478-4_{4}
  • A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, 1997, http://www.math.uchicago.edu/~mitya/langlands.html.
  • A. Beilinson and V. Drinfeld, Opers, 2005, http://arxiv.org/pdf/math/0501398.pdf.
  • B. Bremer and D. Sage, A theory of minimal K-types for flat G-bundles, 2013, http://arxiv.org/pdf/1306.3176.pdf.
  • F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
  • F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
  • A. V. Chervov and A. I. Molev, On higher-order Sugawara operators, Int. Math. Res. Not. IMRN 9 (2009), 1612–1635. MR 2500972, DOI 10.1093/imrn/rnn168
  • Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174
  • V. Drinfeld, On a theorem of Kostant, 2007, http://www.math.uchicago.edu/~mitya/ langlands/Kostant-Theorem.pdf.
  • V. G. Drinfel′d and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81–180 (Russian). MR 760998
  • Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR 2082709, DOI 10.1090/surv/088
  • Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR 1187549, DOI 10.1142/s0217751x92003781
  • Edward Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
  • Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69–260. MR 2263193, DOI 10.1007/978-0-8176-4532-8_{3}
  • Edward Frenkel and Dennis Gaitsgory, Localization of $\mathfrak {g}$-modules on the affine Grassmannian, Ann. of Math. (2) 170 (2009), no. 3, 1339–1381. MR 2600875, DOI 10.4007/annals.2009.170.1339
  • Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence: the spherical case, Algebraic analysis and around, Adv. Stud. Pure Math., vol. 54, Math. Soc. Japan, Tokyo, 2009, pp. 167–186. MR 2499556, DOI 10.2969/aspm/05410167
  • Edward Frenkel and Dennis Gaitsgory, $D$-modules on the affine flag variety and representations of affine Kac-Moody algebras, Represent. Theory 13 (2009), 470–608. MR 2558786, DOI 10.1090/S1088-4165-09-00360-4
  • Edward Frenkel and Benedict Gross, A rigid irregular connection on the projective line, Ann. of Math. (2) 170 (2009), no. 3, 1469–1512. MR 2600880, DOI 10.4007/annals.2009.170.1469
  • Edward Frenkel and Xinwen Zhu, Any flat bundle on a punctured disc has an oper structure, Math. Res. Lett. 17 (2010), no. 1, 27–37. MR 2592725, DOI 10.4310/MRL.2010.v17.n1.a3
  • Masoud Kamgarpour, Compatibility of the Feigin-Frenkel isomorphism and the Harish-Chandra isomorphism for jet algebras, Trans. Amer. Math. Soc. 368 (2016), no. 3, 2019–2038. MR 3449232, DOI 10.1090/S0002-9947-2014-06419-2
  • M. Kamgarpour, On the notion of conductor in the local geometric Langlands correspondence, 2015, http://arxiv.org/abs/1507.02733.
  • Masoud Kamgarpour and Travis Schedler, Geometrization of principal series representations of reductive groups, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2273–2330 (English, with English and French summaries). MR 3449212
  • Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232. MR 291177
  • Nicholas M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 69–106 (English, with French summary). MR 867916
  • Nicholas M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), no. 1, 13–61. MR 862711, DOI 10.1007/BF01389152
  • Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
  • Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
  • Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
  • R. P. Langlands, Functoriality and Reciprocity - Two Lectures at IAS, 2011, http://publications.ias.edu/sites/default/files/functoriality.pdf.
  • Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), no. 3, 397–424. With an appendix by David Eisenbud and Edward Frenkel. MR 1856396, DOI 10.1007/s002220100152
  • Mark Reeder and Jiu-Kang Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), no. 2, 437–477. MR 3164986, DOI 10.1090/S0894-0347-2013-00780-8
  • J.-P. Serre, Local class field theory, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979.
  • J. K. Yu, Smooth models associated to concave functions in Bruhat-Tits Theory, 2002, http://www2.ims.nus.edu.sg/preprints/2002-20.pdf.
  • Jiu-Kang Yu, Bruhat-Tits theory and buildings, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 53–77. MR 2508720, DOI 10.1090/fim/026/02
  • X. Zhu, Frenkel-Gross’ irregular connection and Heinloth-Ngô-Yun’s are the same, 2012, http://arxiv.org/abs/1210.2680.
Similar Articles
Additional Information
  • Tsao-Hsien Chen
  • Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
  • Email: chenth@math.northwestern.edu
  • Masoud Kamgarpour
  • Affiliation: School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
  • Email: masoud@uq.edu.au
  • Received by editor(s): November 24, 2014
  • Received by editor(s) in revised form: January 8, 2015, and July 22, 2015
  • Published electronically: July 20, 2016

  • Dedicated: To Volodya Drinfeld, on the occasion of his sixtieth birthday
  • © Copyright 2016 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 369 (2017), 1345-1364
  • MSC (2010): Primary 17B67, 17B69, 22E50, 20G25
  • DOI: https://doi.org/10.1090/tran/6794
  • MathSciNet review: 3572276