Quasi-Frobenius-Lusztig kernels for simple Lie algebras
Authors:
Gongxiang Liu, Fred Van Oystaeyen and Yinhuo Zhang
Journal:
Trans. Amer. Math. Soc. 369 (2017), 2049-2086
MSC (2010):
Primary 17B37; Secondary 16T05
DOI:
https://doi.org/10.1090/tran/6731
Published electronically:
August 22, 2016
MathSciNet review:
3581227
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In the first author’s Math. Res. Lett. paper (2014), the quasi-Frobenius-Lusztig kernel associated with $\mathfrak {sl}_{2}$ was constructed. In this paper we construct the quasi-Frobenius-Lusztig kernels associated with any simple Lie algebra $\mathfrak {g}$.
- Nicolás Andruskiewitsch and Hans-Jürgen Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417. MR 2630042, DOI https://doi.org/10.4007/annals.2010.171.375
- Iván Ezequiel Angiono, Basic quasi-Hopf algebras over cyclic groups, Adv. Math. 225 (2010), no. 6, 3545–3575. MR 2729015, DOI https://doi.org/10.1016/j.aim.2010.06.013
- Damien Calaque and Pavel Etingof, Lectures on tensor categories, Quantum groups, IRMA Lect. Math. Theor. Phys., vol. 12, Eur. Math. Soc., Zürich, 2008, pp. 1–38. MR 2432988, DOI https://doi.org/10.4171/047-1/1
- Claude Cibils and Marc Rosso, Hopf quivers, J. Algebra 254 (2002), no. 2, 241–251. MR 1933868, DOI https://doi.org/10.1016/S0021-8693%2802%2900080-7
- R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR 1128130, DOI https://doi.org/10.1016/0920-5632%2891%2990123-V
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- V. G. Drinfel′d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 6, 1419–1457. MR 1047964
- A. M. Gaĭnutdinov, A. M. Semikhatov, I. Yu. Tipunin, and B. L. Feĭgin, The Kazhdan-Lusztig correspondence for the representation category of the triplet $W$-algebra in logorithmic conformal field theories, Teoret. Mat. Fiz. 148 (2006), no. 3, 398–427 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 148 (2006), no. 3, 1210–1235. MR 2283660, DOI https://doi.org/10.1007/s11232-006-0113-6
- Shlomo Gelaki, Basic quasi-Hopf algebras of dimension $n^3$, J. Pure Appl. Algebra 198 (2005), no. 1-3, 165–174. MR 2132880, DOI https://doi.org/10.1016/j.jpaa.2004.10.003
- Pavel Etingof and Shlomo Gelaki, The small quantum group as a quantum double, J. Algebra 322 (2009), no. 7, 2580–2585. MR 2553696, DOI https://doi.org/10.1016/j.jalgebra.2009.05.046
- Pavel Etingof and Shlomo Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2005), no. 2, 371–378, 494 (English, with English and Russian summaries). MR 2200756, DOI https://doi.org/10.17323/1609-4514-2005-5-2-371-378
- Frank Hausser and Florian Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999), no. 3, 547–589. MR 1669685, DOI https://doi.org/10.1007/s002200050512
- HuaLin Huang, From projective representations to quasi-quantum groups, Sci. China Math. 55 (2012), no. 10, 2067–2080. MR 2972630, DOI https://doi.org/10.1007/s11425-012-4437-4
- Hua-Lin Huang, Quiver approaches to quasi-Hopf algebras, J. Math. Phys. 50 (2009), no. 4, 043501, 9. MR 2513989, DOI https://doi.org/10.1063/1.3103569
- Hua-Lin Huang, Gongxiang Liu, and Yu Ye, Quivers, quasi-quantum groups and finite tensor categories, Comm. Math. Phys. 303 (2011), no. 3, 595–612. MR 2786212, DOI https://doi.org/10.1007/s00220-011-1229-6
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI https://doi.org/10.1007/BF00704588
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
- Gongxiang Liu, The quasi-Hopf analogue of ${\bf u}_q(\mathfrak {sl}_2)$, Math. Res. Lett. 21 (2014), no. 3, 585–603. MR 3272031, DOI https://doi.org/10.4310/MRL.2014.v21.n3.a12
- George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296. MR 1013053, DOI https://doi.org/10.1090/S0894-0347-1990-1013053-9
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI https://doi.org/10.1007/BF00147341
- S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), no. 1, 1–9. MR 1631648, DOI https://doi.org/10.1023/A%3A1007450123281
- Shahn Majid, Quasi-quantum groups as internal symmetries of topological quantum field theories, Lett. Math. Phys. 22 (1991), no. 2, 83–90. MR 1122044, DOI https://doi.org/10.1007/BF00405171
- Peter Schauenburg, Hopf modules and the double of a quasi-Hopf algebra, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3349–3378. MR 1897403, DOI https://doi.org/10.1090/S0002-9947-02-02980-X
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B37, 16T05
Retrieve articles in all journals with MSC (2010): 17B37, 16T05
Additional Information
Gongxiang Liu
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
MR Author ID:
766485
Email:
gxliu@nju.edu.cn
Fred Van Oystaeyen
Affiliation:
Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
MR Author ID:
176900
Email:
fred.vanoystaeyen@ua.ac.be
Yinhuo Zhang
Affiliation:
Department of Mathematics and Statistics, University of Hasselt, 3590 Diepenbeek, Belgium
MR Author ID:
310850
ORCID:
0000-0002-0551-1091
Email:
yinhuo.zhang@uhasselt.be
Received by editor(s):
October 20, 2014
Received by editor(s) in revised form:
April 1, 2015
Published electronically:
August 22, 2016
Article copyright:
© Copyright 2016
American Mathematical Society