Quasi-Frobenius-Lusztig kernels for simple Lie algebras
Authors:
Gongxiang Liu, Fred Van Oystaeyen and Yinhuo Zhang
Journal:
Trans. Amer. Math. Soc. 369 (2017), 2049-2086
MSC (2010):
Primary 17B37; Secondary 16T05
DOI:
https://doi.org/10.1090/tran/6731
Published electronically:
August 22, 2016
MathSciNet review:
3581227
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In the first author's Math. Res. Lett. paper (2014), the quasi-Frobenius-Lusztig kernel associated with was constructed. In this paper we construct the quasi-Frobenius-Lusztig kernels associated with any simple Lie algebra
.
- [1] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417. MR 2630042, https://doi.org/10.4007/annals.2010.171.375
- [2] Iván Ezequiel Angiono, Basic quasi-Hopf algebras over cyclic groups, Adv. Math. 225 (2010), no. 6, 3545–3575. MR 2729015, https://doi.org/10.1016/j.aim.2010.06.013
- [3] Damien Calaque and Pavel Etingof, Lectures on tensor categories, Quantum groups, IRMA Lect. Math. Theor. Phys., vol. 12, Eur. Math. Soc., Zürich, 2008, pp. 1–38. MR 2432988, https://doi.org/10.4171/047-1/1
- [4] Claude Cibils and Marc Rosso, Hopf quivers, J. Algebra 254 (2002), no. 2, 241–251. MR 1933868, https://doi.org/10.1016/S0021-8693(02)00080-7
- [5] R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR 1128130, https://doi.org/10.1016/0920-5632(91)90123-V
- [6] V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- [7] V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- [8] V. G. Drinfel′d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 6, 1419–1457. MR 1047964
- [9] A. M. Gaĭnutdinov, A. M. Semikhatov, I. Yu. Tipunin, and B. L. Feĭgin, The Kazhdan-Lusztig correspondence for the representation category of the triplet 𝑊-algebra in logorithmic conformal field theories, Teoret. Mat. Fiz. 148 (2006), no. 3, 398–427 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 148 (2006), no. 3, 1210–1235. MR 2283660, https://doi.org/10.1007/s11232-006-0113-6
- [10] Shlomo Gelaki, Basic quasi-Hopf algebras of dimension 𝑛³, J. Pure Appl. Algebra 198 (2005), no. 1-3, 165–174. MR 2132880, https://doi.org/10.1016/j.jpaa.2004.10.003
- [11] Pavel Etingof and Shlomo Gelaki, The small quantum group as a quantum double, J. Algebra 322 (2009), no. 7, 2580–2585. MR 2553696, https://doi.org/10.1016/j.jalgebra.2009.05.046
- [12] Pavel Etingof and Shlomo Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2005), no. 2, 371–378, 494 (English, with English and Russian summaries). MR 2200756, https://doi.org/10.17323/1609-4514-2005-5-2-371-378
- [13] Frank Hausser and Florian Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999), no. 3, 547–589. MR 1669685, https://doi.org/10.1007/s002200050512
- [14] HuaLin Huang, From projective representations to quasi-quantum groups, Sci. China Math. 55 (2012), no. 10, 2067–2080. MR 2972630, https://doi.org/10.1007/s11425-012-4437-4
- [15] Hua-Lin Huang, Quiver approaches to quasi-Hopf algebras, J. Math. Phys. 50 (2009), no. 4, 043501, 9. MR 2513989, https://doi.org/10.1063/1.3103569
- [16] Hua-Lin Huang, Gongxiang Liu, and Yu Ye, Quivers, quasi-quantum groups and finite tensor categories, Comm. Math. Phys. 303 (2011), no. 3, 595–612. MR 2786212, https://doi.org/10.1007/s00220-011-1229-6
- [17] Michio Jimbo, A 𝑞-difference analogue of 𝑈(𝔤) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, https://doi.org/10.1007/BF00704588
- [18] Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
- [19] Gongxiang Liu, The quasi-Hopf analogue of 𝑢_{𝑞}(𝔰𝔩₂), Math. Res. Lett. 21 (2014), no. 3, 585–603. MR 3272031, https://doi.org/10.4310/MRL.2014.v21.n3.a12
- [20] George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296. MR 1013053, https://doi.org/10.1090/S0894-0347-1990-1013053-9
- [21] George Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, https://doi.org/10.1007/BF00147341
- [22] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), no. 1, 1–9. MR 1631648, https://doi.org/10.1023/A:1007450123281
- [23] Shahn Majid, Quasi-quantum groups as internal symmetries of topological quantum field theories, Lett. Math. Phys. 22 (1991), no. 2, 83–90. MR 1122044, https://doi.org/10.1007/BF00405171
- [24] Peter Schauenburg, Hopf modules and the double of a quasi-Hopf algebra, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3349–3378. MR 1897403, https://doi.org/10.1090/S0002-9947-02-02980-X
- [25] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B37, 16T05
Retrieve articles in all journals with MSC (2010): 17B37, 16T05
Additional Information
Gongxiang Liu
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email:
gxliu@nju.edu.cn
Fred Van Oystaeyen
Affiliation:
Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
Email:
fred.vanoystaeyen@ua.ac.be
Yinhuo Zhang
Affiliation:
Department of Mathematics and Statistics, University of Hasselt, 3590 Diepenbeek, Belgium
Email:
yinhuo.zhang@uhasselt.be
DOI:
https://doi.org/10.1090/tran/6731
Received by editor(s):
October 20, 2014
Received by editor(s) in revised form:
April 1, 2015
Published electronically:
August 22, 2016
Article copyright:
© Copyright 2016
American Mathematical Society