Accesses to infinity from Fatou components
HTML articles powered by AMS MathViewer
- by Krzysztof Barański, Núria Fagella, Xavier Jarque and Bogusława Karpińska PDF
- Trans. Amer. Math. Soc. 369 (2017), 1835-1867 Request permission
Abstract:
We study the boundary behaviour of a meromorphic map $f: \mathbb {C} \to \widehat {\mathbb {C}}$ on its simply connected invariant Fatou component $U$. To this aim, we develop the theory of accesses to boundary points of $U$ and their relation to the dynamics of $f$. In particular, we establish a correspondence between invariant accesses from $U$ to infinity or weakly repelling fixed points of $f$ and boundary fixed points of the associated inner function on the unit disc. We apply our results to describe the accesses to infinity from invariant Fatou components of the Newton maps.References
- I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277–283. MR 0402044, DOI 10.5186/aasfm.1975.0101
- I. N. Baker and P. Domínguez, Boundaries of unbounded Fatou components of entire functions, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 437–464. MR 1724391
- I. N. Baker and J. Weinreich, Boundaries which arise in the dynamics of entire functions, Rev. Roumaine Math. Pures Appl. 36 (1991), no. 7-8, 413–420. Analyse complexe (Bucharest, 1989). MR 1144573
- Krzysztof Barański, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z. 257 (2007), no. 1, 33–59. MR 2318569, DOI 10.1007/s00209-007-0114-7
- Krzysztof Barański, Núria Fagella, Xavier Jarque, and Bogusława Karpińska, Absorbing sets and Baker domains for holomorphic maps, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 144–162. MR 3384509, DOI 10.1112/jlms/jdv016
- Krzysztof Barański, Núria Fagella, Xavier Jarque, and Bogusława Karpińska, Connectivity of the Julia sets of Newton maps: A unified approach, preprint arXiv:1501.05488.
- Krzysztof Barański, Núria Fagella, Xavier Jarque, and Bogusława Karpińska, On the connectivity of the Julia sets of meromorphic functions, Invent. Math. 198 (2014), no. 3, 591–636. MR 3279533, DOI 10.1007/s00222-014-0504-5
- Krzysztof Barański and Bogusława Karpińska, Coding trees and boundaries of attracting basins for some entire maps, Nonlinearity 20 (2007), no. 2, 391–415. MR 2290468, DOI 10.1088/0951-7715/20/2/008
- Detlef Bargmann, Iteration of inner functions and boundaries of components of the Fatou set, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 1–36. MR 2458797, DOI 10.1017/CBO9780511735233.003
- Walter Bergweiler, Núria Fagella, and Lasse Rempe-Gillen, Hyperbolic entire functions with bounded Fatou components, Comment. Math. Helv. 90 (2015), no. 4, 799–829. MR 3433280, DOI 10.4171/CMH/371
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999, DOI 10.1017/CBO9780511566134
- Robert L. Devaney and Lisa R. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 55 (1987), no. 2, 253–266. MR 894579, DOI 10.1215/S0012-7094-87-05513-X
- Núria Fagella and Christian Henriksen, Deformation of entire functions with Baker domains, Discrete Contin. Dyn. Syst. 15 (2006), no. 2, 379–394. MR 2199435, DOI 10.3934/dcds.2006.15.379
- John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424
- Maurice Heins, Asymptotic spots of entire and meromorphic functions, Ann. of Math. (2) 66 (1957), 430–439. MR 94457, DOI 10.2307/1969900
- Maurice Heins, Some characterizations of finite Blaschke products of positive degree, J. Analyse Math. 46 (1986), 162–166. MR 861696, DOI 10.1007/BF02796581
- John Hubbard, Dierk Schleicher, and Scott Sutherland, How to find all roots of complex polynomials by Newton’s method, Invent. Math. 146 (2001), no. 1, 1–33. MR 1859017, DOI 10.1007/s002220100149
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- Sebastian Mayer and Dierk Schleicher, Immediate and virtual basins of Newton’s method for entire functions, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 2, 325–336 (English, with English and French summaries). MR 2226018, DOI 10.5802/aif.2184
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Johannes Rückert and Dierk Schleicher, On Newton’s method for entire functions, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 659–676. MR 2352728, DOI 10.1112/jlms/jdm046
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Mitsuhiro Shishikura, The connectivity of the Julia set and fixed points, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 257–276. MR 2508260, DOI 10.1201/b10617-9
- Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943
Additional Information
- Krzysztof Barański
- Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland
- MR Author ID: 366411
- Email: baranski@mimuw.edu.pl
- Núria Fagella
- Affiliation: Barcelona Graduate School of Mathematics and Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain
- Email: fagella@maia.ub.es
- Xavier Jarque
- Affiliation: Barcelona Graduate School of Mathematics and Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain
- Email: xavier.jarque@ub.edu
- Bogusława Karpińska
- Affiliation: Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
- MR Author ID: 646716
- Email: bkarpin@mini.pw.edu.pl
- Received by editor(s): November 25, 2014
- Received by editor(s) in revised form: March 9, 2015
- Published electronically: May 2, 2016
- Additional Notes: The second and third authors were partially supported by the Catalan grant 2009SGR-792, the Spanish grants MTM2011-26995-C02-02 and MTM2014-52209-22-2-P and the María de Maeztu grant MDM-2014-0445.
The four authors were supported by the Polish NCN grant decision DEC-2012/06/M/ ST1/00168 - © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 1835-1867
- MSC (2010): Primary 30D05, 37F10, 30D30
- DOI: https://doi.org/10.1090/tran/6739
- MathSciNet review: 3581221