## Abelian-by-central Galois groups of fields I: A formal description

HTML articles powered by AMS MathViewer

- by Adam Topaz PDF
- Trans. Amer. Math. Soc.
**369**(2017), 2721-2745 Request permission

## Abstract:

Let $K$ be a field whose characteristic is prime to a fixed positive integer $n$ such that $\mu _n \subset K$, and choose $\omega \in \mu _n$ as a primitive $n$-th root of unity. Denote the absolute Galois group of $K$ by $\operatorname {Gal}(K)$, and the mod-$n$ central-descending series of $\operatorname {Gal}(K)$ by $\operatorname {Gal}(K)^{(i)}$. Recall that Kummer theory, together with our choice of $\omega$, provides a functorial isomorphism between $\operatorname {Gal}(K)/\operatorname {Gal}(K)^{(2)}$ and $\operatorname {Hom}(K^\times ,\mathbb {Z}/n)$. Analogously to Kummer theory, in this note we use the Merkurjev-Suslin theorem to construct a continuous, functorial and explicit embedding $\operatorname {Gal}(K)^{(2)}/\operatorname {Gal}(K)^{(3)} \hookrightarrow \operatorname {Fun}(K\smallsetminus \{0,1\},(\mathbb {Z}/n)^2)$, where $\operatorname {Fun}(K\smallsetminus \{0,1\},(\mathbb {Z}/n)^2)$ denotes the group of $(\mathbb {Z}/n)^2$-valued*functions*on $K\smallsetminus \{0,1\}$. We explicitly determine the functions associated to the image of commutators and $n$-th powers of elements of $\operatorname {Gal}(K)$ under this embedding. We then apply this theory to prove some new results concerning relations between elements in abelian-by-central Galois groups.

## References

- Fedor A. Bogomolov,
*On two conjectures in birational algebraic geometry*, Algebraic geometry and analytic geometry (Tokyo, 1990) ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 26–52. MR**1260938** - Fedor Bogomolov and Yuri Tschinkel,
*Commuting elements of Galois groups of function fields*, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998) Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 75–120. MR**1977585** - Fedor Bogomolov and Yuri Tschinkel,
*Reconstruction of function fields*, Geom. Funct. Anal.**18**(2008), no. 2, 400–462. MR**2421544**, DOI 10.1007/s00039-008-0665-8 - Fedor Bogomolov and Yuri Tschinkel,
*Reconstruction of higher-dimensional function fields*, Mosc. Math. J.**11**(2011), no. 2, 185–204, 406 (English, with English and Russian summaries). MR**2859233**, DOI 10.17323/1609-4514-2011-11-2-185-204 - Sunil K. Chebolu, Ido Efrat, and Ján Mináč,
*Quotients of absolute Galois groups which determine the entire Galois cohomology*, Math. Ann.**352**(2012), no. 1, 205–221. MR**2885583**, DOI 10.1007/s00208-011-0635-6 - Ido Efrat,
*Abelian subgroups of pro-$2$ Galois groups*, Proc. Amer. Math. Soc.**123**(1995), no. 4, 1031–1035. MR**1242081**, DOI 10.1090/S0002-9939-1995-1242081-X - Antonio José Engler and Jochen Koenigsmann,
*Abelian subgroups of pro-$p$ Galois groups*, Trans. Amer. Math. Soc.**350**(1998), no. 6, 2473–2485. MR**1451599**, DOI 10.1090/S0002-9947-98-02063-7 - I. Efrat and J. Mináč,
*Galois groups and cohomological functors*, Preprint (2011), available at http://arxiv.org/abs/1103.1508. - Ido Efrat and Ján Mináč,
*On the descending central sequence of absolute Galois groups*, Amer. J. Math.**133**(2011), no. 6, 1503–1532. MR**2863369**, DOI 10.1353/ajm.2011.0041 - Ido Efrat and Ján Mináč,
*Small Galois groups that encode valuations*, Acta Arith.**156**(2012), no. 1, 7–17. MR**2997568**, DOI 10.4064/aa156-1-2 - Antonio José Engler and João Bosco Nogueira,
*Maximal abelian normal subgroups of Galois pro-$2$-groups*, J. Algebra**166**(1994), no. 3, 481–505. MR**1280589**, DOI 10.1006/jabr.1994.1164 - Alexander Grothendieck,
*Brief an G. Faltings*, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 49–58 (German). With an English translation on pp. 285–293. MR**1483108** - Philippe Gille and Tamás Szamuely,
*Central simple algebras and Galois cohomology*, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. MR**2266528**, DOI 10.1017/CBO9780511607219 - Jochen Koenigsmann,
*Encoding valuations in absolute Galois groups*, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 107–132. MR**2018554** - John P. Labute,
*Classification of Demushkin groups*, Canadian J. Math.**19**(1967), 106–132. MR**210788**, DOI 10.4153/CJM-1967-007-8 - A. S. Merkurjev and A. A. Suslin,
*$K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism*, Izv. Akad. Nauk SSSR Ser. Mat.**46**(1982), no. 5, 1011–1046, 1135–1136. - Ján Mináč and Michel Spira,
*Witt rings and Galois groups*, Ann. of Math. (2)**144**(1996), no. 1, 35–60. MR**1405942**, DOI 10.2307/2118582 - Ján Mináč, John Swallow, and Adam Topaz,
*Galois module structure of $(\ell ^n)$th classes of fields*, Bull. Lond. Math. Soc.**46**(2014), no. 1, 143–154. MR**3161770**, DOI 10.1112/blms/bdt082 - Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg,
*Cohomology of number fields*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR**2392026**, DOI 10.1007/978-3-540-37889-1 - F. Pop,
*Pro-l birational anabelian geometry over algebraically closed fields I*, Preprint (2003), available at http://arxiv.org/abs/math/0307076. - Florian Pop,
*Pro-$\ell$ abelian-by-central Galois theory of prime divisors*, Israel J. Math.**180**(2010), 43–68. MR**2735055**, DOI 10.1007/s11856-010-0093-y - F. Pop,
*On Bogomolov’s birational anabelian program II*, Preprint (2011), available at http://www.math.upenn.edu/~pop/Research/Papers.html. - Florian Pop,
*On the birational anabelian program initiated by Bogomolov I*, Invent. Math.**187**(2012), no. 3, 511–533. MR**2891876**, DOI 10.1007/s00222-011-0331-x - A. Silberstein,
*Anabelian intersection theory I: The conjecture of Bogomolov-Pop and applications*, Preprint (2012), available at http://arxiv.org/abs/1211.4608. - A. Topaz,
*Commuting-liftable subgroups of Galois groups II*, J. Reine Angew. Math. (to appear) (2014), available at http://www.arxiv.org/abs/1208.0583.

## Additional Information

**Adam Topaz**- Affiliation: Department of Mathematics, 970 Evans Hall #3840, University of California, Berkeley, Berkeley, California 94720-3840
- MR Author ID: 1051144
- Email: atopaz@math.berkeley.edu
- Received by editor(s): August 26, 2014
- Received by editor(s) in revised form: April 20, 2015
- Published electronically: September 1, 2016
- Additional Notes: This research was supported by NSF postdoctoral fellowship DMS-1304114.
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 2721-2745 - MSC (2010): Primary 12G05, 12F10, 20J06, 20E18
- DOI: https://doi.org/10.1090/tran/6740
- MathSciNet review: 3592526