Abelian-by-central Galois groups of fields I: A formal description
HTML articles powered by AMS MathViewer
- by Adam Topaz PDF
- Trans. Amer. Math. Soc. 369 (2017), 2721-2745 Request permission
Abstract:
Let $K$ be a field whose characteristic is prime to a fixed positive integer $n$ such that $\mu _n \subset K$, and choose $\omega \in \mu _n$ as a primitive $n$-th root of unity. Denote the absolute Galois group of $K$ by $\operatorname {Gal}(K)$, and the mod-$n$ central-descending series of $\operatorname {Gal}(K)$ by $\operatorname {Gal}(K)^{(i)}$. Recall that Kummer theory, together with our choice of $\omega$, provides a functorial isomorphism between $\operatorname {Gal}(K)/\operatorname {Gal}(K)^{(2)}$ and $\operatorname {Hom}(K^\times ,\mathbb {Z}/n)$. Analogously to Kummer theory, in this note we use the Merkurjev-Suslin theorem to construct a continuous, functorial and explicit embedding $\operatorname {Gal}(K)^{(2)}/\operatorname {Gal}(K)^{(3)} \hookrightarrow \operatorname {Fun}(K\smallsetminus \{0,1\},(\mathbb {Z}/n)^2)$, where $\operatorname {Fun}(K\smallsetminus \{0,1\},(\mathbb {Z}/n)^2)$ denotes the group of $(\mathbb {Z}/n)^2$-valued functions on $K\smallsetminus \{0,1\}$. We explicitly determine the functions associated to the image of commutators and $n$-th powers of elements of $\operatorname {Gal}(K)$ under this embedding. We then apply this theory to prove some new results concerning relations between elements in abelian-by-central Galois groups.References
- Fedor A. Bogomolov, On two conjectures in birational algebraic geometry, Algebraic geometry and analytic geometry (Tokyo, 1990) ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 26–52. MR 1260938
- Fedor Bogomolov and Yuri Tschinkel, Commuting elements of Galois groups of function fields, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998) Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 75–120. MR 1977585
- Fedor Bogomolov and Yuri Tschinkel, Reconstruction of function fields, Geom. Funct. Anal. 18 (2008), no. 2, 400–462. MR 2421544, DOI 10.1007/s00039-008-0665-8
- Fedor Bogomolov and Yuri Tschinkel, Reconstruction of higher-dimensional function fields, Mosc. Math. J. 11 (2011), no. 2, 185–204, 406 (English, with English and Russian summaries). MR 2859233, DOI 10.17323/1609-4514-2011-11-2-185-204
- Sunil K. Chebolu, Ido Efrat, and Ján Mináč, Quotients of absolute Galois groups which determine the entire Galois cohomology, Math. Ann. 352 (2012), no. 1, 205–221. MR 2885583, DOI 10.1007/s00208-011-0635-6
- Ido Efrat, Abelian subgroups of pro-$2$ Galois groups, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1031–1035. MR 1242081, DOI 10.1090/S0002-9939-1995-1242081-X
- Antonio José Engler and Jochen Koenigsmann, Abelian subgroups of pro-$p$ Galois groups, Trans. Amer. Math. Soc. 350 (1998), no. 6, 2473–2485. MR 1451599, DOI 10.1090/S0002-9947-98-02063-7
- I. Efrat and J. Mináč, Galois groups and cohomological functors, Preprint (2011), available at http://arxiv.org/abs/1103.1508.
- Ido Efrat and Ján Mináč, On the descending central sequence of absolute Galois groups, Amer. J. Math. 133 (2011), no. 6, 1503–1532. MR 2863369, DOI 10.1353/ajm.2011.0041
- Ido Efrat and Ján Mináč, Small Galois groups that encode valuations, Acta Arith. 156 (2012), no. 1, 7–17. MR 2997568, DOI 10.4064/aa156-1-2
- Antonio José Engler and João Bosco Nogueira, Maximal abelian normal subgroups of Galois pro-$2$-groups, J. Algebra 166 (1994), no. 3, 481–505. MR 1280589, DOI 10.1006/jabr.1994.1164
- Alexander Grothendieck, Brief an G. Faltings, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 49–58 (German). With an English translation on pp. 285–293. MR 1483108
- Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. MR 2266528, DOI 10.1017/CBO9780511607219
- Jochen Koenigsmann, Encoding valuations in absolute Galois groups, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 107–132. MR 2018554
- John P. Labute, Classification of Demushkin groups, Canadian J. Math. 19 (1967), 106–132. MR 210788, DOI 10.4153/CJM-1967-007-8
- A. S. Merkurjev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136.
- Ján Mináč and Michel Spira, Witt rings and Galois groups, Ann. of Math. (2) 144 (1996), no. 1, 35–60. MR 1405942, DOI 10.2307/2118582
- Ján Mináč, John Swallow, and Adam Topaz, Galois module structure of $(\ell ^n)$th classes of fields, Bull. Lond. Math. Soc. 46 (2014), no. 1, 143–154. MR 3161770, DOI 10.1112/blms/bdt082
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- F. Pop, Pro-l birational anabelian geometry over algebraically closed fields I, Preprint (2003), available at http://arxiv.org/abs/math/0307076.
- Florian Pop, Pro-$\ell$ abelian-by-central Galois theory of prime divisors, Israel J. Math. 180 (2010), 43–68. MR 2735055, DOI 10.1007/s11856-010-0093-y
- F. Pop, On Bogomolov’s birational anabelian program II, Preprint (2011), available at http://www.math.upenn.edu/~pop/Research/Papers.html.
- Florian Pop, On the birational anabelian program initiated by Bogomolov I, Invent. Math. 187 (2012), no. 3, 511–533. MR 2891876, DOI 10.1007/s00222-011-0331-x
- A. Silberstein, Anabelian intersection theory I: The conjecture of Bogomolov-Pop and applications, Preprint (2012), available at http://arxiv.org/abs/1211.4608.
- A. Topaz, Commuting-liftable subgroups of Galois groups II, J. Reine Angew. Math. (to appear) (2014), available at http://www.arxiv.org/abs/1208.0583.
Additional Information
- Adam Topaz
- Affiliation: Department of Mathematics, 970 Evans Hall #3840, University of California, Berkeley, Berkeley, California 94720-3840
- MR Author ID: 1051144
- Email: atopaz@math.berkeley.edu
- Received by editor(s): August 26, 2014
- Received by editor(s) in revised form: April 20, 2015
- Published electronically: September 1, 2016
- Additional Notes: This research was supported by NSF postdoctoral fellowship DMS-1304114.
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 2721-2745
- MSC (2010): Primary 12G05, 12F10, 20J06, 20E18
- DOI: https://doi.org/10.1090/tran/6740
- MathSciNet review: 3592526