Arithmetic of abelian varieties with constrained torsion
HTML articles powered by AMS MathViewer
- by Christopher Rasmussen and Akio Tamagawa PDF
- Trans. Amer. Math. Soc. 369 (2017), 2395-2424 Request permission
Abstract:
Let $K$ be a number field. We present several new finiteness results for isomorphism classes of abelian varieties over $K$ whose $\ell$-power torsion fields are arithmetically constrained for some rational prime $\ell$. Such arithmetic constraints are related to an unresolved question of Ihara regarding the kernel of the canonical outer Galois representation on the pro-$\ell$ fundamental group of $\mathbb {P}^1-\{0,1,\infty \}$.
Under GRH, we demonstrate the set of classes is finite for any fixed $K$ and any fixed dimension. Without GRH, we prove a semistable version of the result. In addition, several unconditional results are obtained when the degree of $K/\mathbb {Q}$ and the dimension of abelian varieties are not too large through a careful analysis of the special fiber of such abelian varieties. In some cases, the results (viewed as a bound on the possible values of $\ell$) are uniform in the degree of the extension $K/\mathbb {Q}$.
References
- Greg Anderson and Yasutaka Ihara, Pro-$l$ branched coverings of $\textbf {P}^1$ and higher circular $l$-units, Ann. of Math. (2) 128 (1988), no. 2, 271–293. MR 960948, DOI 10.2307/1971443
- Francis Brown, Mixed Tate motives over $\Bbb Z$, Ann. of Math. (2) 175 (2012), no. 2, 949–976. MR 2993755, DOI 10.4007/annals.2012.175.2.10
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math. 5 (1996), no. 4, 329–359. MR 1414285, DOI 10.1007/BF02124750
- Paul Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR 0530404
- P. D. T. A. Elliott, The least prime $k-\textrm {th}$-power residue, J. London Math. Soc. (2) 3 (1971), 205–210. MR 281686, DOI 10.1112/jlms/s2-3.2.205
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Robert M. Guralnick and Martin Lorenz, Orders of finite groups of matrices, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp. 141–161. MR 2279238, DOI 10.1090/conm/420/07974
- D. R. Heath-Brown, Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, 265–338. MR 1143227, DOI 10.1112/plms/s3-64.2.265
- Yasutaka Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. (2) 123 (1986), no. 1, 43–106. MR 825839, DOI 10.2307/1971352
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 409–464. MR 0447191
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- Hermann Minkowski, Zur Theorie der positiven quadratischen Formen, J. Reine Angew. Math. 101 (1887), 196–202 (German). MR 1580123, DOI 10.1515/crll.1887.101.196
- Fumiyuki Momose, Isogenies of prime degree over number fields, Compositio Math. 97 (1995), no. 3, 329–348. MR 1353278
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- Matthew Papanikolas and Christopher Rasmussen, On the torsion of Jacobians of principal modular curves of level $3^n$, Arch. Math. (Basel) 88 (2007), no. 1, 19–28. MR 2289596, DOI 10.1007/s00013-006-1740-8
- C. Rasmussen, On the fields of 2-power torsion of certain elliptic curves, Math. Res. Lett. 11 (2004), no. 4, 529–538. MR 2092905, DOI 10.4310/MRL.2004.v11.n4.a10
- Christopher Rasmussen, On elliptic curves of conductor $11^2$ and an open question of Ihara, Algebraic number theory and related topics 2007, RIMS Kôkyûroku Bessatsu, B12, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, pp. 101–113. MR 2605776
- Michel Raynaud, Schémas en groupes de type $(p,\dots , p)$, Bull. Soc. Math. France 102 (1974), 241–280 (French). MR 419467
- Christopher Rasmussen and Akio Tamagawa, A finiteness conjecture on abelian varieties with constrained prime power torsion, Math. Res. Lett. 15 (2008), no. 6, 1223–1231. MR 2470396, DOI 10.4310/MRL.2008.v15.n6.a12
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- J.-P. Serre, Arithmetic groups, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 105–136. MR 564421
- Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656
- Romyar T. Sharifi, Relationships between conjectures on the structure of pro-$p$ Galois groups unramified outside $p$, Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999) Proc. Sympos. Pure Math., vol. 70, Amer. Math. Soc., Providence, RI, 2002, pp. 275–284. MR 1935409, DOI 10.1090/pspum/070/1935409
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- A. Silverberg and Yu. G. Zarhin, Subgroups of inertia groups arising from abelian varieties, J. Algebra 209 (1998), no. 1, 94–107. MR 1652189, DOI 10.1006/jabr.1998.7523
- Akio Tamagawa, The Eisenstein quotient of the Jacobian variety of a Drinfel′d modular curve, Publ. Res. Inst. Math. Sci. 31 (1995), no. 2, 203–246. MR 1329480, DOI 10.2977/prims/1195164439
- John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21. MR 265368
- André Weil, Variétés abéliennes et courbes algébriques, Publ. Inst. Math. Univ. Strasbourg, vol. 8, Hermann & Cie, Paris, 1948 (French). MR 0029522
- Yu. G. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction, Invent. Math. 79 (1985), no. 2, 309–321. MR 778130, DOI 10.1007/BF01388976
Additional Information
- Christopher Rasmussen
- Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
- MR Author ID: 744241
- Email: crasmussen@wesleyan.edu
- Akio Tamagawa
- Affiliation: Research Institute for Mathematical Sciences, Kyoto 606-8502, Japan
- MR Author ID: 362316
- Email: tamagawa@kurims.kyoto-u.ac.jp
- Received by editor(s): October 30, 2013
- Received by editor(s) in revised form: April 3, 2015
- Published electronically: July 15, 2016
- Additional Notes: The first author was partially supported by JSPS kakenhi Grant Number $19 \cdot 07028$.
The second author was supported by JSPS kakenhi Grant Numbers 22340006, 15H03609. - © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 2395-2424
- MSC (2010): Primary 11G10; Secondary 11F80, 14K15
- DOI: https://doi.org/10.1090/tran/6790
- MathSciNet review: 3592515