## How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?

HTML articles powered by AMS MathViewer

- by Michael Winkler PDF
- Trans. Amer. Math. Soc.
**369**(2017), 3067-3125 Request permission

## Abstract:

The chemotaxis-Navier-Stokes system \begin{equation*} (\star )\qquad \qquad \qquad \quad \begin {cases} n_t + u\cdot \nabla n & =\ \ \Delta n - \nabla \cdot (n\chi (c)\nabla c),\\[1mm] c_t + u\cdot \nabla c & =\ \ \Delta c-nf(c), \\[1mm] u_t + (u\cdot \nabla )u & =\ \ \Delta u + \nabla P + n \nabla \Phi , \\[1mm] \nabla \cdot u & =\ \ 0 \end{cases} \qquad \qquad \qquad \quad \end{equation*} is considered under boundary conditions of homogeneous Neumann type for $n$ and $c$, and Dirichlet type for $u$, in a bounded convex domain $\Omega \subset \mathbb {R}^3$ with smooth boundary, where $\Phi \in W^{1,\infty }(\Omega )$ and $\chi$ and $f$ are sufficiently smooth given functions generalizing the prototypes $\chi \equiv const.$ and $f(s)=s$ for $s\ge 0$.

It is known that for all suitably regular initial data $n_0, c_0$ and $u_0$ satisfying $0\not \equiv n_0\ge 0$, $c_0\ge 0$ and $\nabla \cdot u_0=0$, a corresponding initial-boundary value problem admits at least one global weak solution which can be obtained as the pointwise limit of a sequence of solutions to appropriately regularized problems. The present paper shows that after some relaxation time, this solution enjoys further regularity properties and thereby complies with the concept of *eventual energy solutions*, which is newly introduced here and which inter alia requires that two quasi-dissipative inequalities are ultimately satisfied.

Moreover, it is shown that actually for any such eventual energy solution $(n,c,u)$ there exists a waiting time $T_0\in (0,\infty )$ with the property that $(n,c,u)$ is smooth in $\bar \Omega \times [T_0,\infty )$ and that \begin{eqnarray*} n(x,t)\to \overline {n_0}, \qquad c(x,t)\to 0 \qquad \mbox {and} \qquad u(x,t)\to 0 \end{eqnarray*} hold as $t\to \infty$, uniformly with respect to $x\in \Omega$. This resembles a classical result on the three-dimensional Navier-Stokes system, asserting eventual smoothness of arbitrary weak solutions thereof which additionally fulfill the associated natural energy inequality. In consequence, our results inter alia indicate that under the considered boundary conditions, the possibly destabilizing action of chemotactic cross-diffusion in ($\star$) does not substantially affect the regularity properties of the fluid flow at least on large time scales.

## References

- Hans Wilhelm Alt and Stephan Luckhaus,
*Quasilinear elliptic-parabolic differential equations*, Math. Z.**183**(1983), no. 3, 311–341. MR**706391**, DOI 10.1007/BF01176474 - Herbert Amann,
*Compact embeddings of vector-valued Sobolev and Besov spaces*, Glas. Mat. Ser. III**35(55)**(2000), no. 1, 161–177. Dedicated to the memory of Branko Najman. MR**1783238** - Yulan Wang and Xinru Cao,
*Global classical solutions of a 3D chemotaxis-Stokes system with rotation*, Discrete Contin. Dyn. Syst. Ser. B**20**(2015), no. 9, 3235–3254. MR**3402690**, DOI 10.3934/dcdsb.2015.20.3235 - Myeongju Chae, Kyungkeun Kang, and Jihoon Lee,
*Global existence and temporal decay in Keller-Segel models coupled to fluid equations*, Comm. Partial Differential Equations**39**(2014), no. 7, 1205–1235. MR**3208807**, DOI 10.1080/03605302.2013.852224 - Emmanuele DiBenedetto,
*Degenerate parabolic equations*, Universitext, Springer-Verlag, New York, 1993. MR**1230384**, DOI 10.1007/978-1-4612-0895-2 - Marco Di Francesco, Alexander Lorz, and Peter Markowich,
*Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior*, Discrete Contin. Dyn. Syst.**28**(2010), no. 4, 1437–1453. MR**2679718**, DOI 10.3934/dcds.2010.28.1437 - Elio Espejo and Takashi Suzuki,
*Reaction terms avoiding aggregation in slow fluids*, Nonlinear Anal. Real World Appl.**21**(2015), 110–126. MR**3261583**, DOI 10.1016/j.nonrwa.2014.07.001 - C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler,
*Self-concentration and large-scale coherence in bacterial dynamics*, Phys. Rev. Lett.**93**(2004), 098103-1-4. - Renjun Duan, Alexander Lorz, and Peter Markowich,
*Global solutions to the coupled chemotaxis-fluid equations*, Comm. Partial Differential Equations**35**(2010), no. 9, 1635–1673. MR**2754058**, DOI 10.1080/03605302.2010.497199 - Renjun Duan and Zhaoyin Xiang,
*A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion*, Int. Math. Res. Not. IMRN**7**(2014), 1833–1852. MR**3190352**, DOI 10.1093/imrn/rns270 - Yoshikazu Giga,
*The Stokes operator in $L_{r}$ spaces*, Proc. Japan Acad. Ser. A Math. Sci.**57**(1981), no. 2, 85–89. MR**605289** - Yoshikazu Giga,
*Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system*, J. Differential Equations**62**(1986), no. 2, 186–212. MR**833416**, DOI 10.1016/0022-0396(86)90096-3 - Yoshikazu Giga and Hermann Sohr,
*Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains*, J. Funct. Anal.**102**(1991), no. 1, 72–94. MR**1138838**, DOI 10.1016/0022-1236(91)90136-S - Daniel Henry,
*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244** - T. Hillen and K. J. Painter,
*A user’s guide to PDE models for chemotaxis*, J. Math. Biol.**58**(2009), no. 1-2, 183–217. MR**2448428**, DOI 10.1007/s00285-008-0201-3 - Miguel A. Herrero and Juan J. L. Velázquez,
*A blow-up mechanism for a chemotaxis model*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**24**(1997), no. 4, 633–683 (1998). MR**1627338** - S. Ishida,
*Global existence for chemotaxis-Navier-Stokes systems with rotation in 2D bounded domains*, Preprint. - W. Jäger and S. Luckhaus,
*On explosions of solutions to a system of partial differential equations modelling chemotaxis*, Trans. Amer. Math. Soc.**329**(1992), no. 2, 819–824. MR**1046835**, DOI 10.1090/S0002-9947-1992-1046835-6 - E. F. Keller and L. A. Segel,
*Initiation of slime mold aggregation viewed as an instability*, J. Theor. Biol.**26**(1970), 399–415. - Alexander Kiselev and Lenya Ryzhik,
*Biomixing by chemotaxis and enhancement of biological reactions*, Comm. Partial Differential Equations**37**(2012), no. 2, 298–318. MR**2876833**, DOI 10.1080/03605302.2011.589879 - Alexander Kiselev and Lenya Ryzhik,
*Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case*, J. Math. Phys.**53**(2012), no. 11, 115609, 9. MR**3026554**, DOI 10.1063/1.4742858 - O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva,
*Linear and quasilinear equations of parabolic type*, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Translated from the Russian by S. Smith. MR**0241822** - Jean Leray,
*Sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Math.**63**(1934), no. 1, 193–248 (French). MR**1555394**, DOI 10.1007/BF02547354 - Jian-Guo Liu and Alexander Lorz,
*A coupled chemotaxis-fluid model: global existence*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**28**(2011), no. 5, 643–652 (English, with English and French summaries). MR**2838394**, DOI 10.1016/j.anihpc.2011.04.005 - N. Mizoguchi and M. Winkler,
*Blow-up in the two-dimensional parabolic Keller-Segel system*, Preprint. - Hermann Sohr,
*The Navier-Stokes equations*, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2001. An elementary functional analytic approach. MR**1928881**, DOI 10.1007/978-3-0348-8255-2 - V. A. Solonnikov,
*Schauder estimates for the evolutionary generalized Stokes problem*, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 165–200. MR**2343611**, DOI 10.1090/trans2/220/08 - Y. Tao,
*Boundedness in a Keller-Segel-Stokes system modeling the process of coral fertilization*, Preprint. - Youshan Tao and Michael Winkler,
*Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant*, J. Differential Equations**252**(2012), no. 3, 2520–2543. MR**2860628**, DOI 10.1016/j.jde.2011.07.010 - Youshan Tao and Michael Winkler,
*Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion*, Discrete Contin. Dyn. Syst.**32**(2012), no. 5, 1901–1914. MR**2871341**, DOI 10.3934/dcds.2012.32.1901 - Youshan Tao and Michael Winkler,
*Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**30**(2013), no. 1, 157–178. MR**3011296**, DOI 10.1016/j.anihpc.2012.07.002 - I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein,
*Bacterial swimming and oxygen transport near contact lines*, Proc. Nat. Acad. Sci. USA**102**(2005), 2277–2282. - Dmitry Vorotnikov,
*Weak solutions for a bioconvection model related to Bacillus subtilis*, Commun. Math. Sci.**12**(2014), no. 3, 545–563. MR**3144997**, DOI 10.4310/CMS.2014.v12.n3.a8 - M. Wiegner,
*The Navier-Stokes equations—a neverending challenge?*, Jahresber. Deutsch. Math.-Verein.**101**(1999), no. 1, 1–25. MR**1692378** - Michael Winkler,
*Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops*, Comm. Partial Differential Equations**37**(2012), no. 2, 319–351. MR**2876834**, DOI 10.1080/03605302.2011.591865 - Michael Winkler,
*Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system*, J. Math. Pures Appl. (9)**100**(2013), no. 5, 748–767 (English, with English and French summaries). MR**3115832**, DOI 10.1016/j.matpur.2013.01.020 - Michael Winkler,
*Stabilization in a two-dimensional chemotaxis-Navier-Stokes system*, Arch. Ration. Mech. Anal.**211**(2014), no. 2, 455–487. MR**3149063**, DOI 10.1007/s00205-013-0678-9 - Michael Winkler,
*Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity*, Calc. Var. Partial Differential Equations**54**(2015), no. 4, 3789–3828. MR**3426095**, DOI 10.1007/s00526-015-0922-2 - M. Winkler,
*Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system*, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, to appear. - Q. Zhang and Y. Li,
*Decay rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system*, Preprint.

## Additional Information

**Michael Winkler**- Affiliation: Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany
- MR Author ID: 680863
- Email: michael.winkler@math.uni-paderborn.de
- Received by editor(s): February 16, 2015
- Received by editor(s) in revised form: April 21, 2015
- Published electronically: July 29, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 3067-3125 - MSC (2010): Primary 35B65, 35B40; Secondary 35K55, 92C17, 35Q30, 35Q92
- DOI: https://doi.org/10.1090/tran/6733
- MathSciNet review: 3605965