## Moduli of parabolic sheaves on a polarized logarithmic scheme

HTML articles powered by AMS MathViewer

- by Mattia Talpo PDF
- Trans. Amer. Math. Soc.
**369**(2017), 3483-3545 Request permission

## Abstract:

We generalize the construction of moduli spaces of parabolic sheaves given by Maruyama and Yokogawa to the case of a projective fine saturated log scheme with a fixed global chart. Furthermore we construct moduli spaces of parabolic sheaves without fixing the weights.## References

- Jarod Alper,
*Adequate moduli spaces and geometrically reductive group schemes*, Algebr. Geom.**1**(2014), no. 4, 489–531. MR**3272912**, DOI 10.14231/AG-2014-022 - Jarod Alper,
*Good moduli spaces for Artin stacks*, Ann. Inst. Fourier (Grenoble)**63**(2013), no. 6, 2349–2402 (English, with English and French summaries). MR**3237451** - Indranil Biswas,
*Parabolic bundles as orbifold bundles*, Duke Math. J.**88**(1997), no. 2, 305–325. MR**1455522**, DOI 10.1215/S0012-7094-97-08812-8 - Niels Borne,
*Sur les représentations du groupe fondamental d’une variété privée d’un diviseur à croisements normaux simples*, Indiana Univ. Math. J.**58**(2009), no. 1, 137–180 (French, with English summary). MR**2504408**, DOI 10.1512/iumj.2009.58.3734 - Niels Borne and Angelo Vistoli,
*Parabolic sheaves on logarithmic schemes*, Adv. Math.**231**(2012), no. 3-4, 1327–1363. MR**2964607**, DOI 10.1016/j.aim.2012.06.015 - Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli,
*Fundamental algebraic geometry*, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005. Grothendieck’s FGA explained. MR**2222646**, DOI 10.1090/surv/123 - Daniel Huybrechts and Manfred Lehn,
*The geometry of moduli spaces of sheaves*, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR**2665168**, DOI 10.1017/CBO9780511711985 - Jaya N. N. Iyer and Carlos T. Simpson,
*A relation between the parabolic Chern characters of the de Rham bundles*, Math. Ann.**338**(2007), no. 2, 347–383. MR**2302066**, DOI 10.1007/s00208-006-0078-7 - Kazuya Kato,
*Logarithmic structures of Fontaine-Illusie*, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR**1463703** - Max Lieblich,
*Moduli of twisted sheaves*, Duke Math. J.**138**(2007), no. 1, 23–118. MR**2309155**, DOI 10.1215/S0012-7094-07-13812-2 - Takuro Mochizuki,
*Kobayashi-Hitchin correspondence for tame harmonic bundles and an application*, Astérisque**309**(2006), viii+117 (English, with English and French summaries). MR**2310103** - V. B. Mehta and C. S. Seshadri,
*Moduli of vector bundles on curves with parabolic structures*, Math. Ann.**248**(1980), no. 3, 205–239. MR**575939**, DOI 10.1007/BF01420526 - M. Maruyama and K. Yokogawa,
*Moduli of parabolic stable sheaves*, Math. Ann.**293**(1992), no. 1, 77–99. MR**1162674**, DOI 10.1007/BF01444704 - Fabio Nironi,
*Moduli spaces of semistable sheaves on projective Deligne-Mumford stacks*, Preprint, arXiv:0811.1949. - Arthur Ogus,
*Lectures on logarithmic algebraic geometry*, TeXed notes, http://math.berkeley.edu/~ogus/preprints/log_book/logbook.pdf. - Martin C. Olsson,
*Logarithmic geometry and algebraic stacks*, Ann. Sci. École Norm. Sup. (4)**36**(2003), no. 5, 747–791 (English, with English and French summaries). MR**2032986**, DOI 10.1016/j.ansens.2002.11.001 - Martin Olsson and Jason Starr,
*Quot functors for Deligne-Mumford stacks*, Comm. Algebra**31**(2003), no. 8, 4069–4096. Special issue in honor of Steven L. Kleiman. MR**2007396**, DOI 10.1081/AGB-120022454 - C. S. Seshadri,
*Fibrés vectoriels sur les courbes algébriques*, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR**699278** - The Stacks Project authors,
*Stacks Project*, http://stacks.math.columbia.edu. - Mattia Talpo,
*Infinite root stacks of logarithmic schemes and moduli of parabolic sheaves*, Ph.D. thesis, available at https://www.academia.edu/8683508/Infinite_root_stacks_of_logarithmic_schemes_and_moduli_of_parabolic_sheaves, 2014. - M. Talpo and A. Vistoli,
*Infinite root stacks and quasi-coherent sheaves on logarithmic schemes*, Preprint, arXiv:1410.1164. - Kôji Yokogawa,
*Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves*, J. Math. Kyoto Univ.**33**(1993), no. 2, 451–504. MR**1231753**, DOI 10.1215/kjm/1250519269

## Additional Information

**Mattia Talpo**- Affiliation: Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia V6T 1Z2, Canada
- Email: mtalpo@math.ubc.ca
- Received by editor(s): January 24, 2015
- Received by editor(s) in revised form: May 12, 2015
- Published electronically: October 12, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 3483-3545 - MSC (2010): Primary 14D20, 14D23
- DOI: https://doi.org/10.1090/tran/6747
- MathSciNet review: 3605978