The Connes embedding property for quantum group von Neumann algebras
HTML articles powered by AMS MathViewer
- by Michael Brannan, Benoît Collins and Roland Vergnioux PDF
- Trans. Amer. Math. Soc. 369 (2017), 3799-3819 Request permission
Abstract:
For a compact quantum group $\mathbb {G}$ of Kac type, we study the existence of a Haar trace-preserving embedding of the von Neumann algebra $L^\infty (\mathbb {G})$ into an ultrapower of the hyperfinite II$_1$-factor (the Connes embedding property for $L^\infty (\mathbb {G})$). We establish a connection between the Connes embedding property for $L^\infty (\mathbb {G})$ and the structure of certain quantum subgroups of $\mathbb {G}$ and use this to prove that the II$_1$-factors $L^\infty (O_N^+)$ and $L^\infty (U_N^+)$ associated to the free orthogonal and free unitary quantum groups have the Connes embedding property for all $N \ge 4$. As an application, we deduce that the free entropy dimension of the standard generators of $L^\infty (O_N^+)$ equals $1$ for all $N \ge 4$. We also mention an application of our work to the problem of classifying the quantum subgroups of $O_N^+$.References
- Saad Baaj, Georges Skandalis, and Stefaan Vaes, Measurable Kac cohomology for bicrossed products, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1497–1524. MR 2115374, DOI 10.1090/S0002-9947-04-03734-1
- Teodor Banica, Théorie des représentations du groupe quantique compact libre $\textrm {O}(n)$, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 3, 241–244 (French, with English and French summaries). MR 1378260
- Teodor Banica, Le groupe quantique compact libre $\textrm {U}(n)$, Comm. Math. Phys. 190 (1997), no. 1, 143–172 (French, with English summary). MR 1484551, DOI 10.1007/s002200050237
- Teodor Banica and Julien Bichon, Hopf images and inner faithful representations, Glasg. Math. J. 52 (2010), no. 3, 677–703. MR 2679923, DOI 10.1017/S0017089510000510
- Teodor Banica, Julien Bichon, Benoît Collins, and Stephen Curran, A maximality result for orthogonal quantum groups, Comm. Algebra 41 (2013), no. 2, 656–665. MR 3011789, DOI 10.1080/00927872.2011.633138
- Teodor Banica and Benoît Collins, Integration over compact quantum groups, Publ. Res. Inst. Math. Sci. 43 (2007), no. 2, 277–302. MR 2341011, DOI 10.2977/prims/1201011782
- Teodor Banica and Roland Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461–1501. MR 2554941, DOI 10.1016/j.aim.2009.06.009
- P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix Brownian motion, Invent. Math. 152 (2003), no. 2, 433–459. MR 1975007, DOI 10.1007/s00222-002-0281-4
- Michael Brannan, Approximation properties for free orthogonal and free unitary quantum groups, J. Reine Angew. Math. 672 (2012), 223–251. MR 2995437, DOI 10.1515/crelle.2011.166
- Michael Brannan, Strong asymptotic freeness for free orthogonal quantum groups, Canad. Math. Bull. 57 (2014), no. 4, 708–720. MR 3270793, DOI 10.4153/CMB-2014-004-9
- Richard Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), no. 4, 857–872. MR 1503378, DOI 10.2307/1968843
- Valerio Capraro and Martino Lupini, Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Lecture Notes in Mathematics, vol. 2136, Springer, Cham, 2015. With an appendix by Vladimir Pestov. MR 3408561, DOI 10.1007/978-3-319-19333-5
- Alexandru Chirvasitu, Residually finite quantum group algebras, J. Funct. Anal. 268 (2015), no. 11, 3508–3533. MR 3336732, DOI 10.1016/j.jfa.2015.01.013
- Benoît Collins and Ken Dykema, A linearization of Connes’ embedding problem, New York J. Math. 14 (2008), 617–641. MR 2465797
- Benoît Collins, Johannes Härtel, and Andreas Thom, Homology of free quantum groups, C. R. Math. Acad. Sci. Paris 347 (2009), no. 5-6, 271–276 (English, with English and French summaries). MR 2537535, DOI 10.1016/j.crma.2009.01.021
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Alain Connes and Dimitri Shlyakhtenko, $L^2$-homology for von Neumann algebras, J. Reine Angew. Math. 586 (2005), 125–168. MR 2180603, DOI 10.1515/crll.2005.2005.586.125
- Stephen Curran, Quantum rotatability, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4831–4851. MR 2645052, DOI 10.1103/PhysRevX.1.011002
- Stephen Curran and Roland Speicher, Asymptotic infinitesimal freeness with amalgamation for Haar quantum unitary random matrices, Comm. Math. Phys. 301 (2011), no. 3, 627–659. MR 2784275, DOI 10.1007/s00220-010-1164-y
- Kenny De Commer, Amaury Freslon, and Makoto Yamashita, CCAP for universal discrete quantum groups, Comm. Math. Phys. 331 (2014), no. 2, 677–701. With an appendix by Stefaan Vaes. MR 3238527, DOI 10.1007/s00220-014-2052-7
- Michel Dubois-Violette and Guy Launer, The quantum group of a nondegenerate bilinear form, Phys. Lett. B 245 (1990), no. 2, 175–177. MR 1068703, DOI 10.1016/0370-2693(90)90129-T
- Pierre Fima and Roland Vergnioux, A cocycle in the adjoint representation of the orthogonal free quantum groups, Int. Math. Res. Not. IMRN 20 (2015), 10069–10094. MR 3455859, DOI 10.1093/imrn/rnu268
- Amaury Freslon, Examples of weakly amenable discrete quantum groups, J. Funct. Anal. 265 (2013), no. 9, 2164–2187. MR 3084500, DOI 10.1016/j.jfa.2013.05.037
- Yusuke Isono, Examples of factors which have no Cartan subalgebras, Trans. Amer. Math. Soc. 367 (2015), no. 11, 7917–7937. MR 3391904, DOI 10.1090/tran/6321
- Kenley Jung, The free entropy dimension of hyperfinite von Neumann algebras, Trans. Amer. Math. Soc. 355 (2003), no. 12, 5053–5089. MR 1997595, DOI 10.1090/S0002-9947-03-03286-0
- David Kyed, $L^2$-homology for compact quantum groups, Math. Scand. 103 (2008), no. 1, 111–129. MR 2464704, DOI 10.7146/math.scand.a-15072
- François Lemeux, The fusion rules of some free wreath product quantum groups and applications, J. Funct. Anal. 267 (2014), no. 7, 2507–2550. MR 3250372, DOI 10.1016/j.jfa.2014.07.002
- Wolfgang Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and $L^2$-Betti numbers. II. Applications to Grothendieck groups, $L^2$-Euler characteristics and Burnside groups, J. Reine Angew. Math. 496 (1998), 213–236. MR 1605818, DOI 10.1515/crll.1998.031
- Ann Maes and Alfons Van Daele, Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), no. 1-2, 73–112. MR 1645264
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR 2266879, DOI 10.1017/CBO9780511735127
- Narutaka Ozawa, About the Connes embedding conjecture: algebraic approaches, Jpn. J. Math. 8 (2013), no. 1, 147–183. MR 3067294, DOI 10.1007/s11537-013-1280-5
- Vladimir G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), no. 4, 449–480. MR 2460675, DOI 10.2178/bsl/1231081461
- P. Podleś and S. L. Woronowicz, Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), no. 2, 381–431. MR 1059324, DOI 10.1007/BF02473358
- Sorin Popa, Free-independent sequences in type $\textrm {II}_1$ factors and related problems, Astérisque 232 (1995), 187–202. Recent advances in operator algebras (Orléans, 1992). MR 1372533
- Zhong-Jin Ruan, Amenability of Hopf von Neumann algebras and Kac algebras, J. Funct. Anal. 139 (1996), no. 2, 466–499. MR 1402773, DOI 10.1006/jfan.1996.0093
- Stefaan Vaes and Roland Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), no. 1, 35–84. MR 2355067, DOI 10.1215/S0012-7094-07-14012-2
- Roland Vergnioux, Paths in quantum Cayley trees and $L^2$-cohomology, Adv. Math. 229 (2012), no. 5, 2686–2711. MR 2889142, DOI 10.1016/j.aim.2012.01.011
- Dan Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. I, Comm. Math. Phys. 155 (1993), no. 1, 71–92. MR 1228526, DOI 10.1007/BF02100050
- Dan Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. II, Invent. Math. 118 (1994), no. 3, 411–440. MR 1296352, DOI 10.1007/BF01231539
- Dan Voiculescu, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Notices 1 (1998), 41–63. MR 1601878, DOI 10.1155/S107379289800004X
- Dan Voiculescu, Free entropy, Bull. London Math. Soc. 34 (2002), no. 3, 257–278. MR 1887698, DOI 10.1112/S0024609301008992
- Shuzhou Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), no. 3, 671–692. MR 1316765, DOI 10.1007/BF02101540
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157, DOI 10.1007/BF01219077
Additional Information
- Michael Brannan
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 376 Altgeld Hall, 1409 W. Green Street, Urbana, Illinois 61801
- Address at time of publication: Department of Mathematics, Mailstop 3368, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 887928
- Email: mbrannan@math.tamu.edu
- Benoît Collins
- Affiliation: Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan – and – Département de Mathématique et Statistique, Université d’Ottawa, 585 King Edward, Ottawa, Ontario K1N6N5, Canada – and – CNRS, Institut Camille Jordan, Université Lyon 1, 69622 Villeurbanne cedex, France
- MR Author ID: 710054
- Email: collins@math.kyoto-u.ac.jp
- Roland Vergnioux
- Affiliation: UFR Sciences, LMNO, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032 Caen cedex 5, France
- MR Author ID: 737444
- Email: roland.vergnioux@unicaen.fr
- Received by editor(s): January 7, 2015
- Received by editor(s) in revised form: May 14, 2015
- Published electronically: November 8, 2016
- Additional Notes: The first author’s research was partially supported by an NSERC postdoctoral fellowship
The second author’s research was partially supported by NSERC, ERA, Kakenhi and ANR-14-CE25-0003 funding - © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 3799-3819
- MSC (2010): Primary 46L65, 46L54, 20G42, 22D25
- DOI: https://doi.org/10.1090/tran/6752
- MathSciNet review: 3624393