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MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT

HYPERBOLIC 3-MANIFOLDS

PASCAL COLLIN, LAURENT HAUSWIRTH, LAURENT MAZET,
AND HAROLD ROSENBERG

Abstract. We prove there exists a compact embedded minimal surface in
a complete finite volume hyperbolic 3-manifold N . We also obtain a least
area, incompressible, properly embedded, finite topology, 2-sided surface. We

prove a properly embedded minimal surface of bounded curvature has finite
topology. This determines its asymptotic behavior. Some rigidity theorems
are obtained.

1. Introduction

There has been considerable progress on the study of properly embedded minimal
surfaces in Euclidean 3-space [12]. We now know all such orientable surfaces that
are planar domains; they are planes, helicoids, catenoids and Riemann’s minimal
surfaces. Also we understand the geometry of properly embedded periodic minimal
surfaces that are finite topology in the quotient.

In hyperbolic 3-space, there is no classification of this nature. A continuous
rectifiable curve in the boundary at infinity of H3 is the asymptotic boundary of a
least area embedded simply connected surface [2].

In this paper we study the existence of periodic minimal surfaces in H3. More
precisely, we consider surfaces in complete noncompact hyperbolic 3-manifolds N
of finite volume. Throughout the paper, we will refer to such manifolds N as hyper-
bolic cusp manifolds. In a closed hyperbolic manifold (or any closed Riemannian
3-manifold), there is always a compact embedded minimal surface [13]. They can-
not be of genus zero or one, but there are many higher genus such surfaces. The
existence and deformation theory of such surfaces was initiated by K. Uhlenbeck
[22].

Hyperbolic cusp manifolds play an important role in the theory of closed hyper-
bolic 3-manifolds. Many link complements in the unit 3-sphere have such a finite
volume hyperbolic structure (see [15] and references therein). Given any V > 0,
Jorgensen proved there are a finite number of such N of volume V . Then Thurston
proved that a closed hyperbolic 3-manifold of volume less than V can be obtained
from this finite number of manifolds N given by Jorgensen by hyperbolic Dehn
surgery on at least one of the cusp ends (see [3] for details).

We will prove there is a compact embedded minimal surface in any complete
hyperbolic 3-manifold of finite volume. Since such a noncompact manifold N is
“not convex at infinity”, minimization techniques do not produce such a minimal
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surface. To understand this the reader can verify that on a complete hyperbolic 3-
punctured 2-sphere, there is no simple closed geodesic. In dimension 3, a min-max
technique, together with several maximum principles in the cusp ends of N , will
produce compact embedded minimal surfaces.

We will give two existence results of embedded compact minimal surfaces.

Theorem A. There is a compact embedded minimal surface Σ in N .

Theorem B. Let S be a closed orientable embedded surface in N which is not a
2-sphere or a torus. If S is incompressible and nonseparating, then S is isotopic to
a least area embedded minimal surface.

Concerning properly embedded noncompact minimal surfaces, there are already
existence results due to Hass, Rubinstein and Wang [9] and Ruberman [17]. Using
different arguments, we give another proof of Ruberman’s minimization result.

Theorem. Let S be a properly embedded, noncompact, finite topology, incompress-
ible, nonseparating surface in N . Then S is isotopic to a least area embedded
minimal surface.

The surfaces produced by the above theorem have bounded curvature. Actually
the techniques we develop enable us to prove:

Theorem C. Let Σ be a properly embedded minimal surface in N of bounded
curvature. Then Σ has finite topology.

Since stable minimal surfaces have bounded curvature we conclude:

Corollary 1. A properly embedded stable minimal surface in N has finite topology.

Finite topology is particularly interesting here due to the Finite Total Curvature
Theorem below that describes the geometry of the ends of a properly immersed
minimal surface in N of finite topology.

Theorem 2 (Collin, Hauswirth, Rosenberg [5]). A properly immersed minimal
surface Σ in N of finite topology has finite total curvature∫

Σ

KΣ = 2πχ(Σ).

Moreover, each end A of Σ is asymptotic to a totally geodesic 2-cusp end in an end
C of N .

We will make precise these notions.
The simplest example of a surface Σ with finite topology appearing in the above

theorem is a 3-punctured sphere. Actually, minimal 3-punctured spheres are totally
geodesic.

Theorem D. A proper minimal immersion of a 3-punctured sphere in N is totally
geodesic.

The paper is organized as follows. In Section 2, we make some general remarks
on the geometry of cusp manifolds stating some results of Jorgensen, Thurston
and Adams. In Section 3, we consider 3-punctured spheres in hyperbolic cusp
manifolds and prove Theorem D. In Section 4, we study minimal surfaces entering
the ends of hyperbolic cusp manifolds N . We prove two maximum principles which
govern the geometry of minimal surfaces in the ends of N . We also establish
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a transversality result which is used to study annular ends of minimal surfaces.
Section 5 proves Theorems A and B, the existence of compact embedded minimal
surfaces in hyperbolic cusp manifolds. Section 6 proves the minimization result in
the noncompact case. Then in Section 7, we present several examples to illustrate
these theorems.

2. Some discussion of the manifolds N
In this section we recall some facts about the geometry of a noncompact hyper-

bolic 3-manifold N of finite volume (see [3] for more details).
Such N are the union of a compact connected submanifold bounded by mean

concave tori with constant mean curvature one and a finite number of ends, each
end isometric to a quotient of a horoball of H3 by a Z2 group of parabolic isometries
leaving the horoball invariant. The horospheres in this horoball quotient to mean
curvature one tori in N .

An end of N can be parametrized by M = {(x, y, z) ∈ R3 | z ≥ 1/2} mod-
ulo a group G = G(v1, v2), generated by two translations by linearly independent
horizontal vectors v1, v2 ∈ R2 × {0}.

The end C = M/G is endowed with the quotient of the hyperbolic metric of M ,

gH =
1

z2
(dx2 + dy2 + dz2) =

1

z2
dX2.

The horospheres {z = c} quotient to tori T (c) of mean curvature one with respect
to the unit normal vector z∂z. The vertical curves {(x, y) = constant} are geodesics
orthogonal to the tori T (c), with arc length given by s = ln z. The induced metric
on T (c) is flat, and lengths on T (c) decrease exponentially as s → ∞.

We will denote by T (a, b) the subset {a ≤ z ≤ b} of C.
The Euclidean planes {ax + by = c} are totally geodesic surfaces in C. When

they are properly embedded in C, they are the totally geodesic 2-cusp ends in C
that appear in the Finite Total Curvature Theorem above.

Define Λ(C) = max{|v1|, |v2|} with |v| the Euclidean norm. We note that we
have made a choice of generators v1, v2 of the group G, so the value Λ(C) depends
on this choice (we can minimize the value of Λ among all choices, but it is not
important in the following).

Remark 1. The above notation is well adapted to study the geometry close to z = 1.
For z0 larger than 1, let H be the map (x, y, z) �→ (z0x, z0y, z0z) which sends M
to R2 × [z0/2,+∞). This map gives us then a chart of C ′ = {z ≥ z0/2} ⊂ C
parametrized by {z′ ≥ 1/2} with Λ(C ′) = Λ(C)/z0. So, considering a part of the
end that is sufficiently far away, we can always assume that Λ(C) is small.

We mention two theorems concerning the manifolds N .

Theorem 3 (Jorgensen [20]). Given V > 0, there exist a finite number of such
manifolds N whose volume is equal to V .

Theorem 4 (Thurston [20]). Any compact hyperbolic 3-manifold M3, ∂M3 = ∅,
with V ol(M) < V is obtained from the finite number of N given by Jorgensen’s
theorem by hyperbolic Dehn surgery on at least one of the cusp ends.

Concerning surface theory in N , we mention one theorem that inspired Theo-
rem D.



4296 P. COLLIN, L. HAUSWIRTH, L. MAZET, AND H. ROSENBERG

Theorem 5 (Adams [1]). Let Σ be a properly embedded 3-punctured sphere in N ,
Σ incompressible. Then Σ is isotopic to a totally geodesic 3-punctured sphere in N .

3. Minimal 3-punctured spheres are totally geodesic

In this section we prove that, under some hypotheses, a minimal surface is totally
geodesic. We first have the following result.

Theorem D. A proper minimal immersion of a 3-punctured sphere in N is totally
geodesic. Moreover, it is π1 injective.

Proof. Let Σ ⊂ N be a properly immersed minimal 3-punctured sphere in N . Let
x0 ∈ Σ and α, β, γ be three loops at x0 that are freely homotopic to embedded
loops in the different ends of Σ. We notice that α · β is homotopic to γ.

Let π : H3 → N be a universal covering map and x̃0 be in π−1(x0). Let Σ̃
be the lift of Σ passing through x̃0. The choice of x̃0 induces a monomorphism

ϕ : π1(Σ, x0) → Isom+(H3). Σ̃ is then a proper immersion of the quotient of the
universal cover of Σ by kerϕ. Let Γ be the image of the monomorphism ϕ. As a

consequence Σ̃ is properly immersed in H
3. Let us denote by Tα , Tβ and Tγ the

maps in Γ associated by ϕ to [α], [β], [γ]. We notice that Tα ◦ Tβ = Tγ .
By the Finite Total Curvature Theorem (Theorem 2), we know each end is

asymptotic to μ × R+ where μ is a geodesic in some T (c) in a cusp end of N ;
μ×R+ is a totally geodesic annulus in this cusp end. The inclusion of T (c) into N
induces an injection of the fundamental group of T (c) into that of N . Hence α, β
and γ are sent to nonzero parabolic elements of Isom+(H3) by ϕ.

Next we will prove the limit set of Σ̃ is a circle C in ∂∞H3 � S2 (a loop in ∂∞H3

is called a circle if it is the asymptotic boundary of a totally geodesic plane). More
precisely, we have the following claim, whose proof is based on Adams’ work [1].

Claim 1. There is a circle C in ∂∞H3 which is invariant by Γ. The limit set of Σ̃
is C.

Then the maximum principle yields that Σ̃ is the totally geodesic plane P
bounded by C, thus proving Theorem D. More precisely, foliate H3 ∪ ∂∞H3 mi-
nus two points by totally geodesic planes and their asymptotic boundaries so that
P is one leaf of the foliation. This foliation at ∂∞H3 is a foliation by circles with
two “poles” p and q. The circles close to p bound hyperbolic planes Q in H

3 that

are disjoint from Σ̃. As the circles in the foliations of ∂∞H3 go from p to C, there

can be no first point of contact of the planes with Σ̃ (Σ̃ is proper and the limit set

of Σ̃ is C). Hence Σ̃ is in the half space of H3 \P containing q. The same argument

with planes coming from q to C shows that Σ̃ = P . So Σ̃ is simply connected,
which implies kerϕ = {1} and Σ is π1 injective.

Let us now go back to Claim 1.

Proof of Claim 1. Using the half space model for H3 with ∞ the fixed point of Tα

and using the SL2(C) representation of Isom+(H3), we can write

Tα =

(
1 w
0 1

)
, Tβ =

(
a b
c d

)
with w ∈ C∗, a, b, c, d ∈ C such that ad−bc = 1 and a+d = 2. Then Tγ = Tα ·Tβ =(
a+ cw b+ dw

c d

)
is parabolic so it must satisfy λ = a+ cw + d = ±2.
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Since a+ d = 2 we have c = 0 if λ = 2 or c = −4/w if λ = −2. If c = 0, Tα, Tβ

and Tγ would fix the point ∞ and all elements in Γ would have ∞ as fixed point
and {∞} is the limit set of Γ. We will rule out this possibility below.

If c = −4/w, the fixed point of Tβ is xβ = w(d−a)
8 and the fixed point of Tγ is

xγ = w(d−a)
8 + w

2 . Tα leaves invariant the circle C = {w(d−a)
8 + tw, t ∈ R} ∪ {∞}.

Also we have

Tβ(∞) = −wa

4
=

w(d− a)

8
=

w

4
∈ C,

Tβ(xγ) = T−1
α (xγ) =

w(d− a)

8
− w

2
∈ C.

Hence Tβ leaves C invariant. Thus Γ leaves C invariant. Actually, C is the limit
set of Γ.

Now let us see that the limit set of Σ̃ is the limit set ∂Γ of Γ. We split Σ into the

union of a compact part K containing x0 and three cusp ends Ci. So Σ̃ splits into

the union of the lift K̃ of K and the union of pieces contained in disjoint horoballs
Hα with boundary along the horosphere ∂Hα. Because of the asymptotic behavior
of Σ, the lift gi of ∂Ci in ∂Hα is not homeomorphic to a circle. Thus there is a
nontrivial parabolic element γ ∈ Γ that leaves gi and then Hα invariant. If p is
any point in H3, the sequence γn(p) converges to the center of Hα (the asymptotic
boundary of Hα) and also to ∂Γ: the center of Hα belongs to ∂Γ.

If ∂Γ is only one point (case c = 0) it means that there is only one horoball

Hα: it is {z ≥ L}. Since any point in K̃ is at a finite distance from Hα and K̃ is
periodic, the z function reaches its minimum somewhere. The maximum principle
then gives a contradiction. So c 
= 0 and ∂Γ = C.

Now, let (pi) be a proper sequence of points in Σ̃ and assume it converges to

some point p∞ ∈ ∂∞H3; we want to prove p∞ ∈ ∂Γ = C. If all the pi belong to K̃,
there is a sequence of elements γi ∈ Γ such that the distance between pi and γi · x̃0

stays bounded. So (pi) and (γi · x̃0) have the same limit; thus p∞ is in the limit set
of Γ and so in C.

We can assume that pi ∈ Hαi
for all i. If the sequence (αi) is finite, p∞ is a

center of one of the Hα so it is in C. If the sequence (αi) is not finite, then the
distance from x̃0 to Hαi

goes to ∞. Actually there is a decreasing sequence of
neighborhoods Nm of C in H3∪∂∞H3 such that Nm contains all horoballs centered
on C whose distance to x̃∞ is larger than m and such that

⋂
m>0 Nm = C. Thus

pi ∈ Hαi
⊂ Nmi

with limmi = +∞. This implies p∞ ∈
⋂

m>0 Nm = C. �

�

The proof of the preceding result is based on the study of the group representa-
tion ϕ. It can be controlled under some other hypotheses.

Proposition 6. Let S0 and S1 be two properly immersed minimal surfaces in N
such that the immersions are homotopic. If S0 is totally geodesic, then S0 = S1.

Proof. Let f : S×[0, 1] → N be the homotopy between the two minimal immersions.
Let x0 ∈ S and x̃0 be a point in π−1(f(x0, 0)) where π : H3 → N is a covering

map. Let g : S̃× [0, 1] → N be the lift of ft such that g0(x0, 0) = x̃0 where S̃ is the
universal cover of S. This defines a group representation

ϕ : π1(S × [0, 1], (x0, 0)) = π1(S, x0) → Isom+(H3)
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such that g is ϕ-equivariant. Since f(S, 0) is totally geodesic, g(S̃, 0) is a totally
geodesic plane P . Thus if (γi) is a proper sequence in imϕ and p ∈ P , we have
γi(p) ∈ P and any limit point of (γi(p))i∈N is in the asymptotic boundary of P ,
i.e. a circle C. So the limit set of imϕ in contained in C. As in the proof

of Claim 1, this implies that g1(S̃) has C as asymptotic boundary. Then, as in

the proof of Theorem C, g(S̃, 1) is totally geodesic and equals g(S̃, 0) = P . So
S0 = f(S, 0) = f(S, 1) = S1. �

4. Minimal surfaces in the cusp ends of N
In this section, we will analyze the behavior of embedded minimal surfaces that

enter cusp ends of N . In dimension 2, the situation is simple. If N2 is a 2-cusp
(i.e. a quotient of a horodisk of H2 by a parabolic isometry leaving the horodisk
invariant), then a geodesic that enters N2 either goes straight to the cusp (i.e. it
is an orthogonal trajectory of the horocycles of the cusp) or it leaves N2 in a finite
time. In dimension 3, for the moment we know that a properly immersed minimal
annulus that enters a cusp end ofN 3 is asymptotic to a 2-cusp of the end (γ×[c,∞),
γ a compact geodesic of T (c)), or the intersection of the minimal annulus with the
end of N is compact.

We will establish two maximum principles in the ends of N which will control
the geometry of embedded minimal surfaces in the ends.

Let C = M/G(v1, v2) be an end of N , parametrized by the quotient of M =
{(x, y, z) ∈ R

3|z ≥ 1/2} as in Section 2, with Λ(C) = Λ(v1, v2) the diameter of
T (1). Recall that we can make Λ(C) as small as we wish by passing to a subend
C ′ of C defined by z ≥ z0, z0 large.

We modify the metric on C introducing smooth functions Ψ : [1/2,∞) → R

satisfying Ψ(z) = z for 1/2 ≤ z ≤ 1, and Ψ nondecreasing. There will be other
conditions on Ψ as we proceed.

Let gΨ = 1
Ψ2(X)dX

2 be a new metric on C; gΨ is the hyperbolic metric of N for

1/2 ≤ z ≤ 1.
The mean curvature of the torus T (z) in the metric gΨ equals Ψ′(z), with respect

to the unit normal Ψ(z)∂z (so points towards the cusp: perhaps it is zero). The
sectional curvatures for gΨ are

KgΨ =

{
−Ψ′(z)2 for the (∂x, ∂y) plane,

Ψ(z)Ψ′′(z)−Ψ′(z)2 for the (∂x, ∂z) and (∂y, ∂z) planes.

We will always introduce Ψ’s such that |Ψ′| and |ΨΨ′′| are bounded by some
fixed constant. Hence the sectional curvatures of the new metrics will be uniformly
bounded as well. Then given ε0 > 0, there is a k0 > 0 such that a stable minimal
surface in (C, gΨ) has curvature bounded by k0 at all points at least at a distance
ε0 from the boundary. The bound k0 depends only on the bound of the sectional
curvatures and ε0, not on the injectivity radius [16].

Remark 2. The pullback of the gΨ by the map H defined in Remark 1 is H∗gΨ =
gΨz0

where Ψz0(z) = 1
z0
Ψ(z0z). This modification does not change the estimates

on Ψ′ and ΨΨ′′.

4.1. Maximum principles. In this section we prove maximum principles for a
cusp end C endowed with a metric gΨ. The following estimates will depend on an
upper-bound on |Ψ′| and |ΨΨ′′|.
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We have a first result.

Proposition 7 (Maximum principle I). Let k0, ε0 > 0. There is a Λ0 = Λ(k0, ε0)
such that if Σ is an embedded minimal surface in (C, gΨ) with |AΣ| ≤ k0 and
Λ(C) ≤ Λ0, then if p ∈ Σ is at least an intrinsic distance ε0 from ∂Σ and if
z(q) ≤ z(p) for all q in the intrinsic ε0-disk centered at p, then Σ = {z = z(p)} and
Ψ′(z(p)) = 0.

Proof. Let π : M → C be the covering projection and Σ̃ = π−1(Σ). We may
suppose p = π(0, 0, z(p)).

Since the curvature of Σ̃ is bounded by k0, Σ̃ is a graph of bounded geometry
in a neighborhood of p. Hence there exists μ = μ(k0, ε0) and a smooth function
u : Dμ(0, 0) → R, Dμ(0, 0) = {x2+y2 ≤ μ}, u(0, 0) = z(p) and the graph of u in M

is a subset of Σ̃. μ can be chosen such that if q ∈ graph(u), then dΣ(π(q), p) < ε0.
Hence z(p) is a maximum value of u in Dμ(0, 0).

Now Σ̃ is invariant by G(v1, v2), so if Λ0 < μ/2, we have v1, v2 ∈ Dμ/2(0, 0). So
Dμ(0, 0) ∩Dμ(v1) = D 
= ∅.

Let u1 : D → R be u1(q) = u(q − v1); the graph of u1 is contained in Σ̃. Then
u1(v1) = u(O) ≥ u(v1) since u reaches its maximum at O = (0, 0). Also O ∈ D,
u1(O) = u(−v1) ≤ u(O). Thus the graphs of u and u1 over D must intersect,

and since Σ̃ is embedded, u = u1 on D. Hence u1 is a smooth continuation of u
to Dμ(O) ∪ Dμ(v1). Repeating this with G = Zv1 + Zv2, we see that u extends

smoothly to an entire minimal graph contained in Σ̃. This graph is periodic with
respect to G hence bounded below. The maximum principle at a minimum point
of u implies that u is constant. Hence u = u(0, 0) = z(p) and T (z(p)) is minimal
so Ψ′(z(p)) = 0. �

Next we use the maximum principle I to prove a compact embedded minimal
surface cannot go far into a cusp end, no a priori curvature bound assumed. More
precisely we have the following statement.

Proposition 8 (Maximum principle II). Let 0 < t0 < 1/2. There is a Λ0 = Λ0(t0)
such that if Λ(C) ≤ Λ0 and Σ is a compact embedded minimal surface in (C, gΨ)
with ∂Σ ⊂ T (1− t0) (Σ being transverse to T (1− t0)), then Σ ⊂ {z ≤ 1}.

Proof. First suppose Σ is a stable minimal surface. Then by curvature bounds for
stable surfaces [16], we know there is a k0 such that |AΣ| ≤ k0 on Σ∩{z ≥ 1−t0/2};
k0 depends on our assumed bounds on Ψ′,ΨΨ′′. By the maximum principle I, there
is a Λ0, only depending on t0, such that if Λ(C) ≤ Λ0, then z has no maximum
larger than 1. Hence Σ ⊂ {z ≤ 1}.

Now suppose that Σ is not stable. Choose c0 and c so that z < c0 < c on

Σ and consider Σ ⊂ X = {1/2 ≤ z ≤ c}. We remark that Σ separates
◦
X, the

interior of X. Indeed any loop in
◦
X is homotopic to a loop in T (c0) which does not

intersect Σ. So the intersection number mod 2 of a loop with Σ is always 0 since

it is a homotopy invariant. This proves that Σ separates
◦
X. Then denote by A

the connected component of X \Σ which contains {z = c}. A priori the boundary
of A is mean convex except for {z = c}. But we can modify the function Ψ for
c0 ≤ z ≤ c such that Ψ′(c) = 0 and keeping Ψ nondecreasing and the bounds on Ψ′

and ΨΨ′′ (c should be assumed very large). Then T (c) is now minimal and A has
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mean convex boundary. In A, there exists a least area surface Σ̃ with ∂Σ = ∂Σ̃.

Now the maximum of the z function on Σ̃ is larger than the one on Σ. Since Σ̃ is

stable we already know that Σ̃ ⊂ {z ≤ 1}, so Σ as well. �
4.2. Transversality. Now we will see that embedded minimal surfaces of bounded
curvature are “strongly transversal” to T (c) in C endowed with the hyperbolic
metric.

Proposition 9. Let k0, ε0 > 0 be given. There exist constants Λ0 and θ0 > 0 such
that if Σ is an embedded minimal surface in (C, gH), Λ(C) ≤ Λ0, |AΣ| ≤ k0, with
∂Σ at an intrinsic distance greater than ε0 of the points of Σ in T (1), then the
angle between Σ and T (1) is at least θ0. The constants Λ0 and θ0 only depend on
k0 and ε0.

Proof. If this proposition fails, there exist Σn, pn ∈ Σn ∩ T (1) in a hyperbolic cusp
Cn satisfying the hypotheses, such that Λ(Cn) and the angle between Σn and T (1)
at pn goes to zero. Lift Σn to M so that pn = (0, 0, 1). The curvature bound gives
the existence of a disk D = Dμ(0, 0) ⊂ R2 and smooth functions un on D whose
graphs are contained in Σn (for large n). These functions have bounded C2,α norm
by the curvature bound and the fact that their gradient at (0, 0) converges to zero.
Hence a subsequence of the un converges to a minimal graph u over D, and the
graph of u is tangent to T (1) at (0, 0, 1).

Let vn1 , v
n
2 be the generators of the group leaving Cn invariant. Let v0 be in D.

Since Λ(Cn) → 0, there is a sequence (an1 , a
n
2 )n∈N in Z2 such that an1v

n
1 +an2 v

n
2 → v0.

The graph of un(· − (an1v
n
1 + an2v

n
2 )) over D+ an1v

n
1 + an2v

n
2 is also a part of a lift of

Σn. Since Σn is embedded, its lift is also embedded. So, for any n, we have either
un(·) ≤ un(· − (an1v

n
1 + an2v

n
2 )) or un(·) ≥ un(· − (an1v

n
1 + an2v

n
2 )). Thus at the limit,

u(·) ≤ u(· − v0) or u(·) ≥ u(· − v0) on D ∩ (D + v0).
Let S be the totally geodesic surface in M tangent to {z = 1} at (0, 0, 1). Over

D, S can be described as the graph of a radial function h. We have h(0, 0) = 1 and
there is α > 0 such that, over D, h(x, y) ≤ 1 − α(x2 + y2). The functions u and
h are two solutions of the minimal surface equation with the same value and the
same gradient at the origin. So the function u−h looks like a harmonic polynomial
of degree at least 2.

If the degree is 2, one can find v0 ∈ D \ {(0, 0)} such that (u − h)(v0) < 0 and
(u− h)(−v0) < 0. Then we have

u(v0) < h(v0) < h(0, 0) = u(v0 − v0),

u((0, 0)− v0) < h(−v0) < h(0, 0) = u(0, 0).

This contradicts u(·) ≤ u(· − v0) or u(·) ≥ u(· − v0) on the whole D ∩ (D + v0).
If the degree is larger than 3, the growth at the origin of h implies that there is

a disk D′ centered at the origin included in D such that u < 1 in D′ \ {(0, 0)}. So
if v0 ∈ D′ \ {(0, 0)} we have

u(v0) < u(0, 0) = u(v0 − v0) and u((0, 0)− v0) = u(−v0) < u(0, 0).

This gives also a contradiction u(·) ≤ u(· − v0) or u(·) ≥ u(· − v0) on the whole
D ∩ (D + v0). �

We notice that Remark 1 can be used to get strong transversality with T (c) for
c ≥ 1.

A consequence of Proposition 9 is then the following result.
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Theorem C. Let Σ be a properly embedded minimal surface in N of bounded
curvature. Then Σ has finite topology.

Proof. If k0 is an upper bound of the norm of the second fundamental form of Σ,
Proposition 9 gives a constant Λ0. Now N can be decomposed as the union of a
compact part K and a finite number of cusp ends Ci with Λ(Ci) ≤ Λ0. Since Σ

is transversal to the tori Ti(c), Σ has the same topology as Σ ∩
◦
K, so it has finite

topology. �

5. Existence of compact embedded minimal surfaces in N
Producing minimal surfaces is often done by minimizing the area in a certain

class of surfaces. In order to ensure the compactness of our surface in N , a min-max
argument is more suitable in our proof of the following existence result.

Theorem A. There exists a compact embedded minimal surface in any N .

Proof. Let C1, · · · , Ck be the cusp ends of N . Let zi be the z-coordinates in Ci and
assume that Λ(Ci) ≤ Λ0, for 1 ≤ i ≤ k and Λ0 the constant given by the maximum
principle II. This can always be realized by Remarks 1 and 2.

Now we change the hyperbolic metric in each end Ci as follows. Let Ψ :
[1/2,∞) → R satisfy Ψ(z) = z for 1/2 ≤ z ≤ 1, Ψ′(z) > 0 and limz→∞ Ψ(z) = 3/2.

Let L be large (to be specified later) and modify the metric gΨ in [L,L + 1] so
the new metric gives a compactification of Ci by removing {zi ≥ L} and attaching
a solid torus to T (L). The precise way to do this will be explained below. With
this new metric the mean curvature of the tori Ti(z) is increasing for L ≤ z ≤ L+1,
going from Ψ′(L) at z = L to ∞ as z → L+ 1. z = L+ 1 corresponds to the core

of the solid torus. We do this in each cusp and get a compact manifold Ñ without
boundary endowed with a certain metric. We notice that the manifold does not
depend on L, but the metric does.

Now we can choose a Morse function f on Ñ such that all the tori Ti(z), 1/2 ≤
z ≤ L, 1 ≤ i ≤ k, are level surfaces of f .

This Morse function f defines a sweep-out of the manifold Ñ , and

M0 = max
t∈R

H2(f−1(t))

essentially does not depend on L (in fact it can decrease when L increases). Here
H2 is the 2-dimensional Hausdorff measure.

Almgren-Pitts min-max theory applies to this sweep-out and gives a compact
embedded minimal surface Σ in Ñ whose area is at most M0 (see Theorem 1.6 in

[4]). Let us now see that Σ actually lies in the hyperbolic part of Ñ so in N .
Since Ψ → 3/2, the metric on Ti(k, k + 1) is uniformly controlled and close to

being flat. As a consequence of the monotonicity formula for minimal surfaces
(see Theorem 17.6 in [19]), if Σ ∩ Ti(k + 1/2) 
= ∅ (1 ≤ k ≤ L − 1), the area of
Σ ∩ Ti(k, k + 1) is at least some c0 > 0. The constant c0 only depends on the
ambient sectional curvature bound and the vij ’s (the vectors in the end Ci).

This monotonicity formula gives at least linear growth for Σ. More precisely, if a
connected component of Σ intersects Ti(1) and Ti(L), it has area at least c0(L−1).
Hence by choosing L larger than M0/c0 there is no component of Σ meeting both
Ti(1) and Ti(L).
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Also, no connected component lies entirely in {zi ≥ 1}. Indeed, the zi would
have a minimum on the component which is impossible by the classical maximum
principle and the sign of the mean curvature on Ti(z). Thus Σ stays out of {zi ≥ L}.
Hence by the maximum principle II, Σ does not enter in any {zi ≥ 1}, which
completes the proof.

Let us now give the definition of the new metric on [L,L + 1]. The tori Ti(c)

are the quotient of R2 by vi1, v
i
2, so they can be parametrized by u

vi
1

2π + v
vi
2

2π where

(u, v) ∈ S
1 × S

1. With this parametrization, the metric gΨ on Ci is then

1

4π2Ψ(zi)2
(|v1|2du2 + 2〈v1, v2〉dudv + |v2|2dv2 + dz2i )

=
1

Ψ(zi)2
(a2du2 + 2bdudv + c2dv2 + dz2i )

where 〈v1, v2〉 denotes the usual scalar product in R2. Let ϕ be a smooth nonin-
creasing function on [L,L+1] such that ϕ(z) = 1 near L and ϕ(z) = ((L+1)−z)/a
near L+ 1. We then change the metric on {L ≤ zi ≤ L+ 1} by

(1)
1

Ψ2(zi)
(dz2i + a2ϕ(zi)

2du2 + 2bϕ(zi)dudv + c2dv2).

Actually, this change consists of cutting {zi ≥ L} from the cusp end Ci and gluing a
solid torus along T (L). To see this, let D be the unit disk with its polar coordinates
(r, θ) ∈ [0, 1] × S

1 and let us define the map h : D × S
1 → S

1 × S
1 × [L,L + 1] by

(r, θ, v) �→ (θ, v, L+ 1− r). The induced metric by h from the one in (1) for r near
0 is

1

Ψ2(L+ 1− r)
(dr2 + a2

r2

a2
dθ2 + 2b

r

a
dθdv + c2dv2)

=
1

Ψ2(L+ 1− r)
(dr2 + r2dθ2 + 2

b

a
rdθdv + c2dv2).

This is a well-defined metric on the solid torus D × S1.
With this new metric, the tori Ti(c) = {zi = c} (c ∈ [L,L + 1)) have constant

mean curvature Ψ′(c)− ϕ′(c)
2ϕ(c)Ψ(c) > 0 with respect to Ψ(z)∂z. �

A minimization argument can be done under some hypotheses to produce com-
pact minimal surfaces.

Theorem B. Let S be a closed orientable embedded surface in N which is not a
2-sphere or a torus. If S is incompressible and nonseparating, then S is isotopic to
a least area embedded minimal surface.

Proof. Let C1, · · · , Ck be the cusp ends of N . Let zi be the z-coordinates in Ci

such that the surface S does not enter in {zi ≥ 1}. We assume that Λ(Ci) ≤ Λ0, for
1 ≤ i ≤ k and Λ0 the constant given by the maximum principle II for the function
Ψ below.

Let Ψ : R∗
+ → R be a smooth increasing function such that Ψ(z) = z on (0, 1]

and Ψ′(2) = 0.
For each a ≥ 1, let N (a) be N with each cusp end truncated at zi = a; i.e.

N (a) = N \
⋃

1≤i≤k{zi > a}. We remark that the N (a) are all diffeomorphic to
each other.
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Let n be an integer. In each cusp end Ci, we change the metric on N (2n) by
using a function Ψn : [1/2, 2n] → R; z �→ nΨ( zn ). So Ψn(z) = z on [1/2, n] and
Ψ′

n(2n) = 0; the torus Tj(2n) is minimal. We notice that the metric on N (n) is
not modified.

Let us minimize the area in the isotopy class of S in the manifold with minimal
boundary N (2n). By Theorem 5.1 and remarks before Theorem 6.12 in [10], there
is a least area surface Σn in N (2n) which is isotopic to S. Theorem 5.1 in [10] can
be applied because N (2n) is P 2-irreducible (N (2n) is orientable and its universal
cover is diffeomorphic to R3). Moreover the minimization process does not produce
a nonorientable surface since, in that case, S would be isotopic to the boundary of
the tubular neighborhood of it; hence S would separate N . Finally Σn is not one
connected component of ∂N (2n) since S is not a torus.

In N (2n), ({z = c})c∈[1,2n] is a mean convex foliation so Σn ∩ N (1) 
= ∅. By
the maximum principle II, it implies that Σn ⊂ N (1) so in a piece of N where the
metric never changes. A priori, the surfaces Σn could be different. But, since they
all lie in N (1), they all appear in the minimization process in N (2) so they all have
the same area. So Σ1 is a least area surface in the isotopy class of S in N with the
hyperbolic metric. �

Remark 3. We can notice that there is a uniform lower bound for the area of minimal
surfaces in manifolds N . The point is that the thick part of such a manifold N is
not empty. So at each point in the thick part there is an embedded geodesic ball of
radius ε3/2 centered at that point where ε3 is the Margulis constant of hyperbolic
3-manifolds.

Each connected component of the thin part is either a hyperbolic cusp or the
tubular neighborhood of a closed geodesic. So it is foliated by mean convex surfaces,
and a minimal surface Σ cannot be included in such a component. So there is x ∈ Σ
in the thick part. Thus we can apply a monotonicity formula (see [19]) to conclude
that the area of the part of Σ inside the geodesic ball of radius ε3/2 and center x is
larger than a constant c3 > 0 that depends only on the geometry of the hyperbolic
ε3/2 ball.

When the compact minimal surface Σ is stable, we can be more precise (see [8],
where Hass attributes this estimate to Uhlenbeck). Applying the stability inequality
to the constant function 1, we get that∫

Σ

−(Ric(N,N) + |A|2) ≥ 0.

Since |A|2 = −2(KΣ + 1), the Gauss-Bonnet formula gives

Area(Σ) ≥ −1

2

∫
Σ

KΣ = −1

2
χ(Σ) = 2π(g − 1)

with g the genus of Σ. Now the Gauss equation implies KΣ is less than or equal to
−1, so the Gauss-Bonnet formula yields g > 1. Thus |Σ| is greater than or equal
to 2π. Also, combining the Gauss equation and the Gauss-Bonnet formula yields
|Σ| less than or equal to 4π(g − 1); Σ need not be stable.

6. Existence of noncompact embedded minimal surfaces in N
In [9], Hass, Rubinstein and Wang construct proper minimal surfaces in man-

ifolds N by a minimization argument in homotopy classes. In [17], Ruberman
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constructs least area surfaces in the isotopy class. Here we make use of results in
Section 4 to give a different approach on the proof of this second result.

First we remark that, in manifolds N , there is always a “Seifert” surface. N
is topologically the interior of a compact manifold N with tori boundary compo-
nents and each boundary torus is incompressible. By Lemma 6.8 in [11], there is
a compact embedded surface S in N with nonempty boundary which is incom-
pressible and 2-sided; moreover it is nonseparating. Then S = S ∩N is a properly
embedded smooth surface in N , S incompressible, of finite topology, noncompact,
nonseparating and 2-sided.

The result is the following statement.

Theorem 10. Let S be a properly embedded, noncompact, finite topology, incom-
pressible, nonseparating surface in N . Then S is isotopic to a least area embedded
minimal surface.

Proof. S has a finite number of annular ends A1, · · · , Ap, each one being included
in one cusp end Ci of N . Since Aj is incompressible in Ci, we can isotope S so that
each annular end Aj is totally geodesic in the end Ci it enters. We still call S this
new surface and we notice that its area is finite for the hyperbolic metric.

Let Ψ : R∗
+ → R be a smooth increasing function such that Ψ(z) = z on (0, 1]

and Ψ′(4/3) = 0. Let Λ0 be the constant given by the maximum principle II and
the transversality lemma (Propositions 8 and 9). Assume the ends of N are chosen
so that Λ(Ci) ≤ Λ0 for each end Ci.

As in the proof of Theorem B, we denote N (a) = N \
⋃

1≤i≤k{zi > a}. We

remark that N (a) is diffeomorphic to N .
Let n be a large integer. In each cusp end Ci, we change the metric on N (4n)

by using a function Ψn : [1/2, 4n] → R; z �→ 3nΨ( z
3n ). So Ψn(z) = z on [1/2, 3n]

and Ψ′
n(4n) = 0; the torus Tj(4n) is minimal. We notice that the metric on N (3n)

is not modified.
Let S(4n) = S ∩ N (4n); the area of S(4n) is bounded by some constant A

independent of n. By Theorem 6.12 in [10], there is a least area surface Σ(4n) in
N (4n), isotopic to S(4n) and ∂Σ(4n) = ∂S(4n). We remark that Σ(4n) is stable
so has bounded curvature away from its boundary (independent of n) (see [16]).

In each cusp end Ci, Proposition 9 implies Σ(4n) is transverse to the tori T1(a),
1 ≤ a ≤ 2n (see Remark 1 in order to apply Proposition 9). So each intersection
Σ(4n)∩T1(a) is composed of the same number of Jordan curves for 1 ≤ a ≤ 2n. The
next claims prove that this number is equal to the number of boundary components
of Σ(4n) on T1(4n).

Claim 2. Let Ω be a domain in Σ(4n) with boundary in T1(a) (1 ≤ a ≤ n). Then
Ω does not enter in any {zi ≥ a}.
Proof. If Σ enters in one {zi ≥ a}, by transversality, it enters in {zi ≥ 2n}. So the
function zi will have a maximum larger than 2n, which is impossible by Proposi-
tion 8 (see also Remark 1). �
Claim 3. Let γ be a connected component of Σ(4n) ∩ T1(a) (1 ≤ a ≤ n). Then γ
is not trivial in π1(T1(a)).

Proof. Assume that γ is trivial in π1(T1(a)). Since Σ(4n) is incompressible, γ
bounds a disk Δ in Σ(4n). By Claim 2, Δ stays in N (a) where the metric is
still hyperbolic. So we can lift Δ to a minimal disk Δ′ in R2 × R+ (with the
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hyperbolic metric) with boundary in z1 = a and entirely included in {z1 ≤ a}.
This is impossible by the maximum principle since {z1 = s} has constant mean
curvature one. �

Claim 4. Let Σ be a connected component of Σ(4n) ∩ {n ≤ z1 ≤ 4n}. Then Σ is
an annulus with one boundary component in T1(n) and one in T1(4n).

Proof. Let us first prove that the inclusion map of Σ in {n ≤ z1 ≤ 4n} is π1-
injective. So let γ be a loop in Σ which bounds a disk in {n ≤ z1 ≤ 4n}. Since
Σ(4n) is incompressible, there is a disk Δ in Σ(4n) bounded by γ. If Δ is in
Σ, we are done. If not, there is a subdisk Δ′ of Δ with boundary in T1(n), but
this is impossible by Claim 3. So the inclusion map is π1-injective. We notice
that π1({n ≤ z1 ≤ 4n}) is Abelian, so π1(Σ) is Abelian. This implies that Σ is
topologically a sphere, a disk, an annulus or a torus. The sphere and the torus are
not possible since Σ has a nonempty boundary. Claim 2 implies that Σ must have
a boundary component on T1(4n). If the whole boundary of Σ is in T1(4n), the
z1 function admits a minimum on Σ that is impossible by the maximum principle
since the T1(c), n ≤ c ≤ 4n, have positive mean curvature. So Σ is an annulus with
one boundary component in T1(n) and one in T1(4n). �

With these claims, we have thus proved that Σ(4n)∩N (n) is isotopic to S∩N (n)
(here, we allow the boundary to move). We also notice that because of the curvature
estimate on Σ(4n) and the transversality estimate given by Proposition 9, the
intersection curves Σ(4n) ∩ T1(a) (1 ≤ a ≤ n) have bounded curvature. So they
have a well-controlled geometry far in the cusp. More precisely, there is a0 such
that Σ(4n) ∩ {a0 ≤ z1 ≤ n} is a graph over S ∩ {a0 ≤ z1 ≤ n}. So the sequence
Σ(4n)∩N (n) is a sequence of surfaces with uniformly bounded area and curvature
whose behavior in the cusps is well controlled. Thus a subsequence converges to
a minimal surface Σ. This convergence says that Σ(4n) ∩ N (k) can be written as
a graph or a double graph over Σ ∩ N (k). In the first case, the surface Σ is then
isotopic to S. In the second case, Σ(4n) ∩ N (k) is isotopic to the boundary of a
tubular neighborhood of Σ ∩ N (k) in N (k); this implies that Σ(4n) ∩ N (k) is a
separating surface, which is impossible by the properties of S. �

We notice that the area estimate given in Remark 3 is also true for noncompact
minimal surfaces. Indeed, because of the asymptotic behavior of a stable mini-
mal surface, the constant function 1 can be used as a test function even in the
noncompact case.

7. Some examples

In this section, we give some “explicit” examples that illustrate the above theo-
rems.

H. Schwarz and A. Novius [18] constructed periodic minimal surfaces in R3 by
constructing minimal surfaces in a cube possessing the symmetries of the cube.
These surfaces then extend to R3 by symmetry in the faces.

K. Polthier [14] constructed periodic embedded minimal surfaces in H3 in an
analogous manner. Let P be a finite side polyhedron of H3 such that symmetry in
the faces of P tessellate H

3. If Σ0 is an embedded minimal surface in P , meeting
the faces of P orthogonally and with the same symmetry as P , then Σ extends to
an embedded minimal surface in H3 by symmetry in the faces. Polthier makes this
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work for many polyhedron P , e.g. for all the regular ideal Platonic solids whose
vertices are on the spheres at infinity. Among these examples, one can obtain
examples in complete hyperbolic 3-manifolds of finite volume.

We first describe how this technique yields an embedded genus 3 compact mini-
mal surface in the figure eight knot complement N .

Let T be an ideal regular tetrahedron of H3; all the dihedral angles are 2π/3. In
the Klein model of H3 (the unit ball of R3), T is a regular Euclidean tetrahedron
with its four vertices on the unit sphere. Label the faces of T and two vertices of
T , as in Figure 1a. Then identify face A with face B by a rotation by 2π/3 about
v , and identify D with C by a rotation by 2π/3 about w.

A B

C

D
w

v

(a)

p

T1

(b)

D1

p

T1

(c)

Figure 1. A minimal surface in the Gieseking manifold

The quotient of T by these face matchings produces a nonorientable hyperbolic
3-manifold of finite volume. There is one vertex, and its link is a Klein bottle. This
manifold N was discovered by Gieseking in 1912 [7].

The orientable 2-sheeted cover N ′ of the Gieseking manifold is diffeomorphic
to the complement of the figure eight knot in S

3, hence is a complete hyperbolic
manifold of finite volume. In [21], Thurston explains how N ′ is homeomorphic to
the complement of the figure eight knot (see also [6]).
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We construct an embedded compact minimal surface in N that lifts to a surface
of genus 3 in N ′.

The geodesics from each vertex of T to its opposite face all meet at one point
p in T . Join p to each edge of T by the minimizing geodesic. Also join p to each
vertex of T by a geodesic. This produces the edges of a tessellation of T by 24
congruent tetrahedra.

Consider the tetrahedron T1 of this tessellation as in Figure 1b. By a conjugate
surface technique, Polthier proved there exists an embedded minimal disk D1 in T1

meeting the boundary of T1 orthogonally as in Figure 1c. Symmetry by the faces
of T1 (and the faces of the symmetric tetrahedron of the tessellation of T ) extend
D1 to an embedded minimal surface S meeting each face of T in one embedded
Jordan curve in the interior of the face. S is topologically a sphere minus 4 points.

The face identifications on T send S ∩A to S ∩B and S ∩D to S ∩C. Hence S
passes to the quotient in N to a compact embedded minimal surface whose topology
is the connected sum of two Klein bottles. The lift of this toN ′ is a genus 3 compact
embedded minimal surface.

A Seifert surface for the figure eight knot is an incompressible surface homeomor-
phic to a once punctured torus. Applying Theorem 10 gives a properly embedded
minimal one punctured torus in the complement of the figure eight knot.

Theorem 4 of Adams [1] yields many totally geodesic properly embedded 3-
punctured spheres in complete hyperbolic 3-manifolds N of finite volume. Suppose
N arises as a link or knot complement that contains an embedded incompressible
3-punctured sphere (so by Adams, it is isotopic to a totally geodesic one), for
example if the link or the knot contains a part as in Figure 2a such that the disk
D with 2 punctures is a 3-punctured incompressible sphere in N . An example is
the Whitehead link (Figure 2b).

(a)

D

(b)

Figure 2. Incompressible 3-punctured sphere in general position
and in the complement of Whitehead link

The Borromean ring is also a hyperbolic link. Its complement contains an em-
bedded incompressible thrice punctured sphere (Figure 3a) and an embedded once
punctured torus (Figure 3b) which is isotopic to a properly embedded minimal once
punctured torus by Theorem 10.

It will be interesting to estimate the areas of the minimal surfaces obtained by
Theorems A, B and 10 as in Remark 3. For example, consider the figure eight knot
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(a) (b)

(c)

Figure 3. Incompressible 3-punctured sphere and 1-punctured
torus in the complement of Borromean rings and an incompressible
1-punctured torus in the figure eight knot complement

complement N . We know there is a properly embedded minimal once punctured
torus Σ in N by Theorem 10 (Figure 3c). The Finite Total Curvature Theorem
(Theorem 2) and the Gauss equation tell us the area of Σ is strictly less than 2π
(there are no embedded totally geodesic surfaces in N ).

What is the area of Σ? What is the properly embedded, noncompact, minimal
surface of smallest area (if it exists) in N ? And in all such manifolds N ?
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