Torus invariant transverse Kähler foliations
HTML articles powered by AMS MathViewer
- by Hiroaki Ishida PDF
- Trans. Amer. Math. Soc. 369 (2017), 5137-5155 Request permission
Abstract:
In this paper, we show the convexity of the image of a moment map on a transverse symplectic manifold equipped with a torus action under a certain condition. We also study properties of moment maps in the case of transverse Kähler manifolds. As an application, we give a positive answer to the conjecture posed by Cupit-Foutou and Zaffran.References
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- Fiammetta Battaglia and Dan Zaffran, Foliations modeling nonrational simplicial toric varieties, Int. Math. Res. Not. IMRN 22 (2015), 11785–11815. MR 3456702, DOI 10.1093/imrn/rnv035
- L. Battisti, LVMB manifolds and quotients of toric varieties, Math. Z. 275 (2013), no. 1-2, 549–568. MR 3101820, DOI 10.1007/s00209-013-1147-8
- Frédéric Bosio, Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano-Verjovsky, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1259–1297 (French, with English and French summaries). MR 1860666, DOI 10.5802/aif.1855
- Frédéric Bosio and Laurent Meersseman, Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes, Acta Math. 197 (2006), no. 1, 53–127. MR 2285318, DOI 10.1007/s11511-006-0008-2
- Stéphanie Cupit-Foutou and Dan Zaffran, Non-Kähler manifolds and GIT-quotients, Math. Z. 257 (2007), no. 4, 783–797. MR 2342553, DOI 10.1007/s00209-007-0144-1
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- Hiroaki Ishida, Complex manifolds with maximal torus actions, J. Reine Angew. Math., published ahead of print., DOI 10.1515/crelle-2016-0023
- Paulette Libermann and Charles-Michel Marle, Symplectic geometry and analytical mechanics, Mathematics and its Applications, vol. 35, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the French by Bertram Eugene Schwarzbach. MR 882548, DOI 10.1007/978-94-009-3807-6
- J. J. Loeb and M. Nicolau, On the complex geometry of a class of non-Kählerian manifolds, Israel J. Math. 110 (1999), 371–379. MR 1750427, DOI 10.1007/BF02808191
- Santiago López de Medrano and Alberto Verjovsky, A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 253–269. MR 1479504, DOI 10.1007/BF01233394
- Laurent Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000), no. 1, 79–115. MR 1760670, DOI 10.1007/s002080050360
- Laurent Meersseman and Alberto Verjovsky, Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math. 572 (2004), 57–96. MR 2076120, DOI 10.1515/crll.2004.054
- Taras Panov and Yuri Ustinovsky, Complex-analytic structures on moment-angle manifolds, Mosc. Math. J. 12 (2012), no. 1, 149–172, 216 (English, with English and Russian summaries). MR 2952429, DOI 10.17323/1609-4514-2012-12-1-149-172
- Taras Panov, Yury Ustinovskiy, and Misha Verbitsky, Complex geometry of moment-angle manifolds, Math. Z. 284 (2016), no. 1-2, 309–333. MR 3545497, DOI 10.1007/s00209-016-1658-1
- Yu. M. Ustinovsky, Geometry of compact complex manifolds with maximal torus action, Proc. Steklov Inst. Math. 286 (2014), no. 1, 198–208. Published in Russian in Tr. Mat. Inst. Steklova 286 (2014), 219–230. MR 3482597, DOI 10.1134/S0081543814060108
Additional Information
- Hiroaki Ishida
- Affiliation: Department of Mathematics and Computer Science, Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan
- MR Author ID: 938837
- Email: ishida@sci.kagoshima-u.ac.jp
- Received by editor(s): October 12, 2015
- Received by editor(s) in revised form: May 17, 2016
- Published electronically: March 17, 2017
- Additional Notes: The author was supported by JSPS Research Fellowships for Young Scientists
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 5137-5155
- MSC (2010): Primary 53D20; Secondary 14M25, 32M05, 57S25
- DOI: https://doi.org/10.1090/tran/7070
- MathSciNet review: 3632563