Fine compactified Jacobians of reduced curves
HTML articles powered by AMS MathViewer
- by Margarida Melo, Antonio Rapagnetta and Filippo Viviani PDF
- Trans. Amer. Math. Soc. 369 (2017), 5341-5402 Request permission
Abstract:
To every singular reduced projective curve $X$ one can associate many fine compactified Jacobians, depending on the choice of a polarization on $X$, each of which yields a modular compactification of a disjoint union of a finite number of copies of the generalized Jacobian of $X$. We investigate the geometric properties of fine compactified Jacobians focusing on curves having locally planar singularities. We give examples of nodal curves admitting nonisomorphic (and even nonhomeomorphic over the field of complex numbers) fine compactified Jacobians. We study universal fine compactified Jacobians, which are relative fine compactified Jacobians over the semiuniversal deformation space of the curve $X$. Finally, we investigate the existence of twisted Abel maps with values in suitable fine compactified Jacobians.References
- Valery Alexeev, Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004), no. 4, 1241–1265. MR 2105707
- Allen B. Altman, Anthony Iarrobino, and Steven L. Kleiman, Irreducibility of the compactified Jacobian, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 1–12. MR 0498546
- Steven L. Kleiman and Allen B. Altman, Bertini theorems for hypersurface sections containing a subscheme, Comm. Algebra 7 (1979), no. 8, 775–790. MR 529493, DOI 10.1080/00927877908822375
- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–112. MR 555258, DOI 10.1016/0001-8708(80)90043-2
- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme. II, Amer. J. Math. 101 (1979), no. 1, 10–41. MR 527824, DOI 10.2307/2373937
- D. Arinkin, Cohomology of line bundles on compactified Jacobians, Math. Res. Lett. 18 (2011), no. 6, 1215–1226. MR 2915476, DOI 10.4310/MRL.2011.v18.n6.a11
- Dima Arinkin, Autoduality of compactified Jacobians for curves with plane singularities, J. Algebraic Geom. 22 (2013), no. 2, 363–388. MR 3019453, DOI 10.1090/S1056-3911-2012-00596-7
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- Victor V. Batyrev, Birational Calabi-Yau $n$-folds have equal Betti numbers, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 1–11. MR 1714818, DOI 10.1017/CBO9780511721540.002
- Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169–179. MR 998478, DOI 10.1515/crll.1989.398.169
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- J. Briançon, M. Granger, and J.-P. Speder, Sur le schéma de Hilbert d’une courbe plane, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 1, 1–25 (French). MR 618728
- Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994), no. 3, 589–660. MR 1254134, DOI 10.1090/S0894-0347-1994-1254134-8
- Lucia Caporaso, Juliana Coelho, and Eduardo Esteves, Abel maps of Gorenstein curves, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 1, 33–59. MR 2420522, DOI 10.1007/s12215-008-0002-y
- Lucia Caporaso and Eduardo Esteves, On Abel maps of stable curves, Michigan Math. J. 55 (2007), no. 3, 575–607. MR 2372617, DOI 10.1307/mmj/1197056458
- Sebastian Casalaina-Martin and Jesse Leo Kass, A Riemann singularity theorem for integral curves, Amer. J. Math. 134 (2012), no. 5, 1143–1165. MR 2975232, DOI 10.1353/ajm.2012.0038
- Sebastian Casalaina-Martin, Jesse Leo Kass, and Filippo Viviani, The local structure of compactified Jacobians, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 510–542. MR 3335286, DOI 10.1112/plms/pdu063
- Fabrizio Catanese, Pluricanonical-Gorenstein-curves, Enumerative geometry and classical algebraic geometry (Nice, 1981) Progr. Math., vol. 24, Birkhäuser Boston, Boston, MA, 1982, pp. 51–95. MR 685764
- Pierre-Henri Chaudouard and Gérard Laumon, Le lemme fondamental pondéré. I. Constructions géométriques, Compos. Math. 146 (2010), no. 6, 1416–1506 (French, with English and French summaries). MR 2735371, DOI 10.1112/S0010437X10004756
- Pierre-Henri Chaudouard and Gérard Laumon, Le lemme fondamental pondéré. II. Énoncés cohomologiques, Ann. of Math. (2) 176 (2012), no. 3, 1647–1781 (French, with French summary). MR 2979859, DOI 10.4007/annals.2012.176.3.6
- Juliana Coelho and Marco Pacini, Abel maps for curves of compact type, J. Pure Appl. Algebra 214 (2010), no. 8, 1319–1333. MR 2593665, DOI 10.1016/j.jpaa.2009.10.014
- R. Donagi and T. Pantev, Langlands duality for Hitchin systems, Invent. Math. 189 (2012), no. 3, 653–735. MR 2957305, DOI 10.1007/s00222-012-0373-8
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Eduardo Esteves, Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3045–3095. MR 1828599, DOI 10.1090/S0002-9947-01-02746-5
- Eduardo Esteves, Compactified Jacobians of curves with spine decompositions, Geom. Dedicata 139 (2009), 167–181. MR 2481843, DOI 10.1007/s10711-008-9322-5
- Eduardo Esteves, Mathieu Gagné, and Steven Kleiman, Abel maps and presentation schemes, Comm. Algebra 28 (2000), no. 12, 5961–5992. Special issue in honor of Robin Hartshorne. MR 1808614, DOI 10.1080/00927870008827199
- Eduardo Esteves, Mathieu Gagné, and Steven Kleiman, Autoduality of the compactified Jacobian, J. London Math. Soc. (2) 65 (2002), no. 3, 591–610. MR 1895735, DOI 10.1112/S002461070100309X
- Eduardo Esteves and Steven Kleiman, The compactified Picard scheme of the compactified Jacobian, Adv. Math. 198 (2005), no. 2, 484–503. MR 2183386, DOI 10.1016/j.aim.2005.06.006
- B. Fantechi, L. Göttsche, and D. van Straten, Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999), no. 1, 115–133. MR 1658220
- Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005. Grothendieck’s FGA explained. MR 2222646, DOI 10.1090/surv/123
- Robin Hartshorne, Generalized divisors on Gorenstein schemes, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), 1994, pp. 287–339. MR 1291023, DOI 10.1007/BF00960866
- Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91–114. MR 885778, DOI 10.1215/S0012-7094-87-05408-1
- Jesse Kass, Good Completions of Neron models, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Harvard University. MR 2717699
- Jesse Leo Kass, An explicit non-smoothable component of the compactified Jacobian, J. Algebra 370 (2012), 326–343. MR 2966842, DOI 10.1016/j.jalgebra.2012.07.033
- Jesse Leo Kass, Two ways to degenerate the Jacobian are the same, Algebra Number Theory 7 (2013), no. 2, 379–404. MR 3123643, DOI 10.2140/ant.2013.7.379
- Jesse Leo Kass, The compactified jacobian can be nonreduced, Bull. Lond. Math. Soc. 47 (2015), no. 4, 686–692. MR 3375936, DOI 10.1112/blms/bdv036
- Yujiro Kawamata, $D$-equivalence and $K$-equivalence, J. Differential Geom. 61 (2002), no. 1, 147–171. MR 1949787
- Hans Kleppe and Steven L. Kleiman, Reducibility of the compactified Jacobian, Compositio Math. 43 (1981), no. 2, 277–280. MR 622452
- Hans Kleppe, THE PICARD SCHEME OF A CURVE AND ITS COMPACTIFICATION, ProQuest LLC, Ann Arbor, MI, 1981. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2940994
- Ana Cristina López-Martín, Simpson Jacobians of reducible curves, J. Reine Angew. Math. 582 (2005), 1–39. MR 2139709, DOI 10.1515/crll.2005.2005.582.1
- Ana Cristina López-Martín, Relative Jacobians of elliptic fibrations with reducible fibers, J. Geom. Phys. 56 (2006), no. 3, 375–385. MR 2171891, DOI 10.1016/j.geomphys.2005.02.007
- Daniel Hernández Ruipérez, Ana Cristina López Martín, Darío Sánchez Gómez, and Carlos Tejero Prieto, Moduli spaces of semistable sheaves on singular genus 1 curves, Int. Math. Res. Not. IMRN 23 (2009), 4428–4462. MR 2558337, DOI 10.1093/imrn/rnp094
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- M. Melo, A. Rapagnetta, and F. Viviani, Fourier-Mukai and autoduality for compactified Jacobians. I. to appear in Crelle, arXiv:1207.7233v2.
- M. Melo, A. Rapagnetta, and F. Viviani, Fourier-Mukai and autoduality for compactified Jacobians. II. Preprint, arXiv:1308.0564v1.
- Margarida Melo and Filippo Viviani, Fine compactified Jacobians, Math. Nachr. 285 (2012), no. 8-9, 997–1031. MR 2928396, DOI 10.1002/mana.201100021
- L. Migliorini, V. Schende, and F. Viviani, A support theorem for Hilbert schemes of planar curves II, Preprint, arXiv:1508.07602.
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285
- Nitin Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275–300. MR 1085642, DOI 10.1112/plms/s3-62.2.275
- Bao Châu Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), no. 2, 399–453 (French, with English summary). MR 2218781, DOI 10.1007/s00222-005-0483-7
- Bao Châu Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169 (French). MR 2653248, DOI 10.1007/s10240-010-0026-7
- Tadao Oda and C. S. Seshadri, Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 1–90. MR 536936, DOI 10.1090/S0002-9947-1979-0536936-4
- M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76 (French). MR 282993
- C. J. Rego, The compactified Jacobian, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 211–223. MR 584085
- Daniel Schaub, Courbes spectrales et compactifications de jacobiennes, Math. Z. 227 (1998), no. 2, 295–312 (French). MR 1609069, DOI 10.1007/PL00004377
- Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297
- Stacks Project, http://stacks.math.columbia.edu
- A. Vistoli, The deformation theory of local complete intersections, preprint, arXiv:alg-geom/9703008.
Additional Information
- Margarida Melo
- Affiliation: Departamento de Matemática, Universidade de Coimbra, Largo D. Dinis, Apartado 3008, 3001 Coimbra, Portugal – and – Dipartimento di Matematica, Università Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
- MR Author ID: 803065
- Email: mmelo@mat.uc.pt
- Antonio Rapagnetta
- Affiliation: Dipartimento di Matematica, Università di Roma II - Tor Vergata, 00133 Roma, Italy
- Email: rapagnet@mat.uniroma2.it
- Filippo Viviani
- Affiliation: Dipartimento di Matematica, Università Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
- MR Author ID: 761968
- Email: viviani@mat.uniroma3.it
- Received by editor(s): June 15, 2014
- Received by editor(s) in revised form: May 8, 2015, and August 24, 2015
- Published electronically: March 6, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 5341-5402
- MSC (2010): Primary 14D20, 14H40, 14H60; Secondary 14H20, 14F05, 14K30, 14B07
- DOI: https://doi.org/10.1090/tran/6823
- MathSciNet review: 3646765