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EXISTENCE, UNIQUENESS AND THE STRONG MARKOV

PROPERTY OF SOLUTIONS TO KIMURA DIFFUSIONS

WITH SINGULAR DRIFT

CAMELIA A. POP

Abstract. Motivated by applications to proving regularity of solutions to

degenerate parabolic equations arising in population genetics, we study ex-
istence, uniqueness, and the strong Markov property of weak solutions to a
class of degenerate stochastic differential equations. The stochastic differen-
tial equations considered in our article admit solutions supported in the set
[0,∞)n × R

m, and they are degenerate in the sense that the diffusion matrix
is not strictly elliptic, as the smallest eigenvalue converges to zero at a rate
proportional to the distance to the boundary of the domain, and the drift
coefficients are allowed to have power-type singularities in a neighborhood of
the boundary of the domain. Under suitable regularity assumptions on the
coefficients, we establish existence of solutions that satisfy the strong Markov
property, and uniqueness in law in the class of Markov processes.
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1. Introduction

The stochastic differential equations considered in our article are motivated by
their applications to population genetics, in the study of gene frequencies. One of
the earliest random models for gene frequencies was proposed by Wright [36] and
Fisher [21,22], and it is a discrete Markov chain. Because many quantities of interest
in biology are difficult to compute in the framework of the Wright-Fisher discrete
Markov chain, there has been extensive research [16, 17, 20, 26, 27, 32–34] to make
precise in which sense and in which scaling regime does the discrete Markov chain
converge to a continuous diffusion process. In our article we are concerned with the
study of continuous stochastic processes, which arise as limits and generalize the
Wright-Fisher discrete Markov chain.
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A concise description of the continuous limit of the Wright-Fisher model, which
we will call the Wright-Fisher process from now on, is as follows. Assume that there
are d+1 alleles, and we denote by xi the frequency of the i-th allele, for all 1 ≤ i ≤
d+1. We see that 0 ≤ xi ≤ 1, for all 1 ≤ i ≤ d+1, and x1+ . . .+xd+1 = 1. Fixing
an allele, say the (d + 1)-th allele, the remaining gene frequencies, (x1, . . . , xd),
follow a diffusion supported in the d-dimensional simplex,

Σd := {x ∈ R
d : xi ≥ 0, for all i = 1, . . . , d, and x1 + . . .+ xd ≤ 1}.

The Wright-Fisher model for gene frequencies is a (strong) Markov process sup-
ported in Σd with infinitesimal generator,

(1.1) L̂WFu :=
1

2

d∑
i,j=1

xi(δi,j−xj)uxixj
+

d∑
i=1

⎛⎝bi − xi

d+1∑
j=1

bj

⎞⎠uxi
, ∀u ∈ C2(Σd),

where bi are nonnegative constants, for all 1 ≤ i ≤ d+ 1; see [34, Equation (3.4)].
Above we denote by δi,j the Kronecker delta symbol.

In our article, we study a more general class of second order differential operators,
which we call generalized Kimura operators, and which extend the Wright-Fisher
operators, (1.1). Such operators have been introduced in the work of C. Epstein
and R. Mazzeo, [13], and versions of these operators have been studied previously
in the literature in connection with superprocesses; see [2, 4]. Generalized Kimura
operators are defined on compact manifolds with corners, of which simplices and
polyhedra are particular examples, and they have the property that in an adapted
local system of coordinates the generalized Kimura operators take the form:

(1.2)

L̂u =

n∑
i=1

(xidi,i(z)uxixi
+ bi(z)uxi

) +

n∑
i,j=1

xixjdi,j(z)uxixj

+

n∑
i=1

m∑
l=1

xici,l(z)uxiyl
+

m∑
k,l=1

dn+k,n+l(z)uykyl
+

m∑
l=1

el(z)uyl
,

where n,m are nonnegative integers, and we denote Sn,m := R
n
+ ×R

m, and R+ :=
(0,∞); see [13, Proposition 2.2.3]. The main difficulties in studying second order

operators of the form L̂, and the Markov processes associated to them, arise from
the following considerations:

1. The coefficients corresponding to the second order derivatives of L̂ form
a degenerate nonnegative definite matrix because the smallest eigenvalue
converges to zero at a rate linearly proportional to the distance to the
boundary, ∂Sn,m.

2. The first order terms, bi(z)∂xi
, are not lower order terms, as it is the case

for strictly elliptic operators, because the second and first order terms in

the operator L̂ scale identically. For this reason, the sign of the coefficient
bi(z) on the portion of the boundary ∂Sn,m ∩ {xi = 0}, for all 1 ≤ i ≤ n,
plays a crucial role in the analysis. We always assume that bi(z) ≥ 0 on
∂Sn,m ∩ {xi = 0}, which ensures that the Markov processes associated to

the operator L̂ is supported in S̄n,m.
3. The domain Sn,m is nonsmooth, it has corners and edges, which makes the

analysis of the regularity of solutions to the parabolic equation defined by

the operator L̂ nonstandard.
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One of our main tasks is to prove that there is a unique Markov process associated

to the operator L̂. For this purpose, we consider the stochastic differential equation

(1.3)

dX̂i(t) = bi(Ẑ(t)) dt+

√
X̂i(t)

n+m∑
k=1

σi,k(Ẑ(t)) dŴk(t),

dŶl(t) = el(Ẑ(t)) dt+

n+m∑
k=1

σn+l,k(Ẑ(t)) dŴk(t),

where 1 ≤ i ≤ n, 1 ≤ l ≤ m, {Ŵ (t)}t≥0 is an (n + m)-dimensional Brownian

motion, and we denote Ẑ(t) := (X̂(t), Ŷ (t)), for all t ≥ 0. Under suitable structural
and regularity conditions on the coefficients of (1.3), described in Assumptions 2.1
and 2.6, we prove that the generalized Kimura equation (1.3) has a unique weak
solution, and that it satisfies the strong Markov property; see Propositions 2.2 and
2.4, and Corollary 2.5.

We then extend our results to operators, L = L̂ + V , where V is a first order
vector field, which can include logarithmically divergent coefficients,

(1.4)
√
xi lnxjη(z)∂xi

, lnxjη(z)∂yl
, ∀ i, j = 1, . . . , n, ∀ l = 1, . . . ,m,

where η : S̄n,m → [0, 1] is a smooth function with compact support, or V can
include power-type coefficients,

(1.5)
√
xi|xj |−q∂xi

, |xj |−q∂yl
, ∀ i, j = 1, . . . , n, ∀ l = 1, . . . ,m,

when the positive power, q, is suitably chosen. Specifically, we consider stochastic
differential equations of the form

(1.6)

dXi(t) =

⎛⎝bi(Z(t)) +
√
Xi(t)

n∑
j=1

fi,j(Z(t))hi,j(Xj(t))

⎞⎠ dt

+
√
Xi(t)

n+m∑
k=1

σi,k(Z(t)) dWk(t),

dYl(t) =

⎛⎝el(Z(t)) +
n∑

j=1

fn+l,j(Z(t))hn+l,j(Xj(t))

⎞⎠ dt

+
n+m∑
k=1

σn+l,k(Z(t)) dWk(t),

where 1 ≤ i ≤ n, 1 ≤ l ≤ m, {W (t)}t≥0 is an (n + m)-dimensional Brownian
motion, and we denote Z(t) = (X(t), Y (t)), for all t ≥ 0. The functions hi,j(xj) are
required to satisfy condition (3.5), which implies that the infinitesimal generator
of any Markov solution to the singular Kimura equation (1.6) has the structure

L = L̂ + V , where the vector field V can contain singular terms such as (1.4) and
(1.5). In Theorems 3.1 and 3.7, we establish existence of strong Markov solutions
to the generalized Kimura stochastic differential equation with singular drift (1.6),
and uniqueness in law in the class of Markov processes.

Our motivation to include logarithmic singularities in the drift coefficient of
generalized Kimura stochastic differential equations is two-fold. On one hand, in our
proof of the Harnack inequality of nonnegative solutions to the parabolic equation
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defined by the Kimura operator L̂, [14, Theorem 1.2], we were led to the study

of perturbed operators L = L̂ + V , where the vector field V contains logarithmic
singular terms such as (1.4). An essential ingredient in the proof of [14, Theorem
1.2] is that the singular Kimura stochastic differential equation (1.6) has a unique
weak solution that satisfies the strong Markov property. A second motivation to
study (1.6) comes from the fact that the adjoint operator of the unbounded operator

L̂, with domain of definition included in the weighted Sobolev space L2(Sn,m; dμb),
where the weight dμb(z) is defined by

dμb(z) :=

n∏
i=1

x
bi(z)−1
i dxi

m∏
l=1

dyl, ∀ z = (x, y) ∈ Sn,m,

is an operator L = L̂ + V , where V contains logarithmically divergent singular-
ities (1.4). This observation is extensively used in our ongoing joint work with
C. Epstein on the regularity and the structure of the transition probabilities of gen-
eralized Kimura processes, [15]. For more details regarding the functional analytic
framework for generalized Kimura operators defined on the weighted Sobolev space
L2(S̄n,m; dμb), we refer the reader to [11], and [14, Equation (1.3) and §2]. We do
not elaborate on this topic because it will not play a direct role in our article.

1.1. Main results and outline of the article. We begin in §2 with the anal-
ysis of the generalized Kimura stochastic differential equation, (1.3). Existence of
solutions (Proposition 2.2) is an immediate consequence of classical results, and
for this purpose the conditions imposed on the coefficients are more general, as
outlined in Assumption 2.1. We establish uniqueness in law of solutions to the
generalized Kimura stochastic differential equation in Proposition 2.4, under the
more restrictive Assumption 2.6. We defer the exact technical statements of As-
sumptions 2.1 and 2.6 to §2.1 and §2.2.1, respectively, but we highlight here the
main points. The drift coefficients b(z) are only assumed to be nonnegative on the
boundary of the domain Sn,m, and the coefficient functions b(z), e(z), and a suit-
able combination of the coefficients of the diffusion matrix are assumed to belong
to the anisotropic Hölder spaces introduced in §2.2.1. This condition arises because
our method of the proof is based on the existence, uniqueness, and regularity of
solutions in anisotropic Hölder spaces to the homogeneous initial-value problem

(1.7)
ut − L̂u = 0 on (0, T )× Sn,m,

u(0, ·) = ϕ on Sn,m,

where the operator L̂ is the generator of generalized Kimura diffusions. Regu-
larity of solutions to parabolic equations defined by the infinitesimal generator of
generalized Kimura diffusions are established in [12, 13, 29]. Our definition of the
anisotropic Hölder spaces is an adaptation to our framework of the Hölder spaces
introduced in [13, Chapter 5].

In §3, we prove our main results (Theorems 3.1 and 3.7) concerning the existence
and uniqueness in law of weak solutions to the singular Kimura stochastic differ-
ential equation, (1.6). Our method of the proof consists in applying Girsanov’s
Theorem [23, Theorem 3.5.1] to the weak solutions of the generalized Kimura sto-
chastic differential equation, (1.3), to change the probability distribution so that,
under the new measure, the solutions solve the singular Kimura stochastic differen-
tial equation, (1.6). We justify the application of Girsanov’s Theorem by proving
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that Novikov’s condition [23, Corollary 3.5.13] holds, a fact that uses the Markov
property of the processes we consider. Because Girsanov’s Theorem is also used in
the proof of uniqueness in law of weak solutions, our uniqueness result is established
in the class of Markov processes. While this result is sufficient for the application
to the proof of the Harnack inequality for nonnegative solutions to the parabolic
Kimura equation, [14, Theorem 1.2], employing ideas used to prove [35, Theorem
12.2.4], it may be possible to prove that uniqueness in the class of Markov processes
implies weak uniqueness. Notice though that [35, Theorem 12.2.4] does not apply
directly to our framework because our drift coefficients are not necessarily bounded
(see condition (3.5)). When the drift coefficients are bounded, that is, we consider
the generalized Kimura stochastic differential equation (1.3), then we establish the
weak uniqueness of solutions in Proposition 2.4.

The existence and uniqueness results for the singular Kimura equation (1.6) are
established provided that Assumption 3.2 holds. We do not give the exact technical
statement of Assumption 3.2 here, but we highlight the main aspects. The drift
coefficient functions b(z) are bounded from below on ∂Sn,m by a positive constant
b0 (see condition (3.2)). This is a crucial ingredient in the verification of Novikov’s
condition in Lemmas 3.5 and 3.8. Also, the singular coefficients hi,j(xj) are assumed
to satisfy the growth assumption (3.5), where q ∈ (0, q0), and the positive constant
q0 depends on b0, by identity (3.1).

1.2. Comparison with previous research. Similar processes were previously
analyzed in the literature in connection with superprocesses, [2, 4], and Fleming-
Viot processes arising in the dynamics of populations, [6–9]. The main applications
of our results are to the study of diffusions arising in population genetics, [26,27,34],
[18, §10.1], [24, §15.2.F], and to the study of regularity of solutions to degenerate
parabolic equations, [11, 14, 15].

Our work is more closely related to [2,4], and so we give a more detailed descrip-
tion of the similarities and differences between our results and the aforementioned
articles. The main difference between the Kimura stochastic differential equations
(1.3), and those considered in [2, 4] consist in the fact that we allow coordinates,
{Y (t)}t≥0, of the weak solutions whose dispersion coefficients are nonzero on the
boundary of the domain Sn,m, and we do not require the drift coefficients to be
bounded; instead we allow singularities in the drift component of the form |xi|−q,
for i = 1, . . . , n, where the exponent q satisfies a suitable restriction given by in-
equality (3.5). In the sequel, we explain in more detail the differences between the
work done in [2, 4] and our results.

In [2], the authors consider diffusions corresponding to the generator

Lu =

n∑
i=1

(xiγi(x)uxixi
+ bi(x)uxi

) ,

where x ∈ R
n
+, and u ∈ C2(Rn

+). Under the assumption that the coefficients of

the operator L are continuous functions on R̄
n
+, and that the drift coefficients are

positive on ∂Rn
+, it is proved in [2] that the martingale problem associated to the

operator L has a unique solution. The method of the proof consists in proving L2-
estimates for the resolvent operators, employing a method of Krylov and Safonov to
establish continuity of the resolvent operators [3, §V.7], and a localizing procedure
due to Stroock and Varadhan [35, Theorem 6.6.1] to reduce the existence and
uniqueness of solutions to a local problem. In §2, we recover and extend the results
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on existence and uniqueness in law of weak solutions obtained in [2], under the
assumption that the coefficients of the operator L belong to the anisotropic Hölder
spaces introduced in §2.2.1, and we allow the drift coefficient to be zero along the
boundary of Rn

+. Moreover, our method of the proof appears to be simpler, as
we rely on existence and uniqueness of solutions in anisotropic Hölder spaces to
homogeneous initial-value parabolic equations defined by the operator L. These
results were established in [10, 12, 13, 29].

In [4], the authors consider a more general class of generators of the form:

Lu =

n∑
i,j=1

√
xixjγi,j(x)uxixj

+

n∑
i=1

bi(x)uxi
,

where x ∈ R
n
+, and u ∈ C2(Rn

+). In this work, the coefficient functions (γ(z))
and b(z) are assumed to belong to suitable weighted Hölder spaces, as opposed to
the anisotropic Hölder spaces introduced in §2.2.1, and the drift coefficient b(z)
is assumed nonnegative on the boundary of the domain R

n
+. The main difference

between the weighted Hölder spaces used in [4, §2], and the anisotropic Hölder
spaces used in [13, Equation (5.42)], and in our work, consists in the distance
function used to define the Hölder seminorm. The weighted Hölder spaces defined
in [4, §2], Cα

w(R̄
n
+), use the Euclidean distance function, while the anisotropic Hölder

spaces defined in §2.2.1, Cα
WF(S̄n,m), use a distance function that is equivalent to the

Riemannian metric with respect to which the second order terms of the generalized
Kimura operator agree with the Laplace operator for a suitable Riemannian metric
tensor. Another difference is that the weighted Hölder spaces in [4, §2] use a weight

function to account for the degeneracy of the operator L̂, while we do not use
a weight function in the definition of Cα

WF(S̄n,m), because the degeneracy of the
operator is already encoded in the distance function.

The method of the proof of the results in [4] is based on establishing suitable
estimates of the semigroup associated to the operator L, and of the resolvent oper-
ators the weighted Hölder space Cα

w(R̄
n
+). These are combined with the localizing

procedure of Stroock and Varadhan, [35, Theorem 6.6.1], to prove existence and
uniqueness of solutions to the martingale problem associated to L. Our results are
both more general and more restrictive in certain ways, than the ones obtained
in [4]. The smallness condition [4, Inequality (1.4)] on the cross-terms γi,j(z), for
i 
= j, of the operator L is less restrictive than our analogous condition (2.17) of
the matrix (a(z)), defined in (2.11). On the other hand, we allow nondegenerate
directions, {Y (t)}t≥0, and singular, unbounded drift coefficients in our stochastic
differential equation (1.6).

1.3. Notation and conventions. Let N,M ∈ N, and U be a subset of RN . We
let Cloc(U ;RM ) denote the space of functions, u : U → R

M , that are continuous on
U , but are not necessarily bounded. If a function u ∈ Cloc(U ;RM ) is bounded, i.e.,

‖u‖C(U ;RM ) := sup
x∈U

|u(x)| < ∞,

then we say that u belongs to C(U ;RM ). WhenM = 1, we simply denote Cloc(U ;R)
by Cloc(U), and C(U ;R) by C(U).

Let U ⊆ R
N be an open set, and u : U → R be a function that admits first order

derivatives on U . We denote the first order derivative of the function u(x) in the
i-th coordinate by uxi

, and we denote the first order derivative operator in the i-th
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coordinate by ∂xi
, for all 1 ≤ i ≤ N . For a positive integer k, the space Ck(U)

consists of functions u : U → R that admit continuous and bounded derivatives on
U up to and including order k, and C∞(U) :=

⋂
k≥1C

k(U).

Let now U ⊆ R
N be a closed set, such that U is the closure of int(U), where

int(U) denotes the interior of U . The space C∞(U) consists of functions u : U → R,
such that the restriction u �int(U) has continuous derivatives of any order on int(U),

and every partial derivative can be extended by continuity up to the boundary of
the set U , and the extension is bounded. The space C∞

c (U) consists of functions
u ∈ C∞(U) with the property that there is a compact set K ⊆ U , such that the
support of the function u is contained in K.

For a Borel measurable set U , we denote by B(U) the collection of Borel mea-
surable subsets of U . For all r > 0 and z ∈ R

N , we denote by Br(z) the Euclidean
ball of radius r centered at z. For a, b ∈ R, we denote by a ∧ b := min{a, b}.

2. Generalized Kimura diffusions

To establish existence, uniqueness, and the strong Markov property of weak so-
lutions to the Kimura stochastic differential equation with singular drift (1.6), we
first prove these results for the generalized Kimura diffusions, (1.3). We organize
this section into three parts. In §2.1, we prove under suitable hypotheses (Assump-
tion 2.1) that the generalized Kimura stochastic differential equation (1.3) admits

weak solutions, {Ẑ(t)}t≥0, supported in S̄n,m, when the initial condition is assumed

to satisfy Ẑ(0) ∈ S̄n,m. In §2.2, we prove under more restrictive hypotheses (As-
sumption 2.6), that the weak solutions to the Kimura equation (1.3) are unique in
law, and satisfy the strong Markov property.

2.1. Existence of weak solutions. Existence of solutions to the generalized
Kimura stochastic differential equation (1.3) can be established for a more gen-
eral form of the diffusion matrix than the one implied by equations (1.3). For this
reason, we consider the stochastic differential equation

(2.1)

dX̂i(t) = bi(Ẑ(t)) dt+

n+m∑
k=1

ςi,k(Ẑ(t)) dŴk(t), ∀ t > 0,

dŶl(t) = el(Ẑ(t)) dt+
n+m∑
k=1

ςn+l,k(Ẑ(t)) dŴk(t), ∀ t > 0,

where i = 1, . . . , n, l = 1, . . . ,m, and {Ŵ (t)}t≥0 is an (n+m)-dimensional Brownian
motion.

Assumption 2.1 (Properties of the coefficients in (2.1)). The coefficient functions
of the stochastic differential equation (2.1) satisfy the properties:

1. We assume that b ∈ Cloc(S̄n,m;Rn), e ∈ Cloc(S̄n,m;Rm), and ς ∈
Cloc(S̄n,m;R(n+m)×(n+m)).

2. The coefficients b(z), e(z) and (ς(z)) have at most linear growth in |z|.
3. We assume that

(2.2) (ςς∗)i,i(z) = 0, ∀z ∈ ∂Sn,m ∩ {xi = 0}, ∀ i = 1, . . . , n,

where ς∗ denotes the transpose matrix of ς.
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4. The drift coefficients satisfy

(2.3) bi(z) ≥ 0, ∀z ∈ ∂Sn,m ∩ {xi = 0}, ∀ i = 1, . . . , n.

We begin with

Proposition 2.2 (Existence of weak solutions to generalized Kimura diffusions).
Suppose that Assumption 2.1 holds. Then, for all z ∈ S̄n,m, there is a weak solu-

tion, (Ẑ = (X̂, Ŷ ), Ŵ ), on a filtered probability space satisfying the usual conditions,

(Ω, {F(t)}t≥0,F , P̂z), to the stochastic differential equation (2.1), with initial con-

dition Ẑ(0) = z. Moreover, the weak solution, Ẑ = (X̂, Ŷ ), is supported in S̄n,m.

Proof. The method of the proof is similar to that of [19, Proposition 3.1 and The-
orem 3.3]. We divide the proof into two steps. In Step 1, we continuously extend
the coefficients of the stochastic differential equation (2.1) from S̄n,m to R

n+m,
and we prove that the stochastic differential equation associated to the extended
coefficients, (2.4), has a weak solution. In Step 2, we prove that any weak solution
to equation (2.4) is supported in S̄n,m, when the support of the initial condition
is contained in S̄n,m. Combining Steps 1 and 2, we obtain the existence of weak
solutions supported in S̄n,m, to the stochastic differential equation (2.1).

Step 1 (Extension of the coefficients). By Assumption 2.1, we can extend the co-
efficients of the stochastic differential equation (2.1) by continuity from S̄n,m to
R

n+m. We consider the function ϕ : Rn+m → S̄n,m defined by

ϕ(z) = z′, such that z′ ∈ S̄n,m, and |z − z′| = dist(z, S̄n,m).

Because S̄n,m is a closed, convex set, the point z′ ∈ S̄n,m is uniquely determined
for all z ∈ R

n+m. Moreover ϕ is a continuous function and ϕ(z) = z, for all

z ∈ S̄n,m. We define the coefficient functions b̃ := b ◦ ϕ, d̃ := d ◦ ϕ and ς̃ := ς ◦ ϕ,
which are continuous extensions to R

n+m of the coefficient functions b, d and σ,
respectively. By Assumption 2.1, the extended coefficients are continuous functions
on R

n+m, and have at most linear growth in the spatial variable. We can thus
apply [18, Theorem 5.3.10] to obtain that the stochastic differential equation

(2.4)

dX̃i(t) = b̃i(Z̃(t)) dt+
n+m∑
k=1

ς̃i,k(Z̃(t)) dW̃k(t), ∀ t > 0, ∀ i = 1, . . . , n,

dỸl(t) = ẽl(Z̃(t)) dt+
n+m∑
k=1

ς̃n+l;k(Z̃(t)) dW̃k(t), ∀ t > 0, ∀ l = 1, . . . ,m,

has a weak solution, {Z̃(t) = (X̃(t), Ỹ (t)), W̃ (t)}t≥0, on a filtered probability space

satisfying the usual conditions, (Ω, {F(t)}t≥0,F , P̃), for any initial condition, Z̃(0).

The process {W̃ (t)}t≥0 is an (n+m)-dimensional Brownian motion.

Step 2 (Support of weak solutions). Let z ∈ S̄n,m, and let {Z̃(t) = (X̃(t), Ỹ (t))}t≥0

be a weak solution to the stochastic differential equation (2.4), with initial condition

Z̃(0) = z. Our goal is to show that

(2.5) P̃
z
(
Z̃(t) ∈ S̄n,m

)
= 1, ∀ t ≥ 0,
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where P̃
z denotes the probability distribution of the process {Z̃(t)}t≥0, with initial

condition Z̃(0) = z. To prove identity (2.5), it is sufficient to show that

(2.6) P̃
z
(
X̃i(t) ≥ 0

)
= 1, ∀ t ≥ 0, ∀ i = 1, . . . , n.

For ε > 0, let ηε : R → [0, 1] be a smooth function such that ηε(s) = 1 for s ≤ −ε,
ηε(s) = 0 for s ≥ 0, and η′ε ≤ 0 on R. We see that identity (2.6) holds, if we show
that for all ε > 0, we have that

(2.7) P̃
z
(
ηε

(
X̃i(t)

)
= 0
)
= 1, ∀ t ≥ 0, ∀ i = 1, . . . , n.

Applying Itô’s rule [23, Theorem 3.3.6] to the process {ηε(X̃i(t))}t≥0, we obtain

dηε(X̃i(t)) =

(
b̃i(Z̃(t))η′ε

(
X̃i(t)

)
+

1

2
(ς̃ ς̃∗)i,i(Z̃(t))η′′ε

(
X̃i(t)

))
dt

+ η′ε(X̃i(t))
n+m∑
k=1

ζ̃i,k(Z̃(t)) dW̃k(t),

and integrating and taking expectation, it follows that
(2.8)

E
P̃z

[
ηε

(
X̃i(t)

)]
= ηε(z) + E

P̃z

[∫ t

0

(
b̃i(Z̃(s))η′ε

(
X̃i(s)

)
+

1

2
(ς̃ ς̃∗)i,i(Z̃(s))η′′ε

(
X̃i(s)

))
ds

]
.

To justify the preceding formula, we note that because the coefficients b̃i and ζ̃i,k(z)
have at most linear growth in the spatial variable, and the derivatives η′ε and η′′ε
are bounded functions, there is a positive constant, C, such that∫ t

0

(
|̃bi(Z̃(s))||η′ε

(
X̃i(s)

)
|+ 1

2
|(ς̃ ς̃∗)i,i(Z̃(s))||η′′ε

(
X̃i(s)

)
|
)

ds

≤ C

∫ t

0

(
1 + |Z̃(s)|2

)
ds,∫ t

0

|η′ε(X̃i(s))|2|ζ̃i,k(Z̃(s))|2 ds ≤ C

∫ t

0

(
1 + |Z̃(s)|2

)
ds.

Using again the linear growth of the coefficients, we can apply [23, Problem 5.3.15]
to obtain that

E
P̃z

[∫ t

0

|Z̃(s)|2 ds
]
< ∞.

The preceding three inequalities yield that the process∫ t

0

η′ε(X̃i(s))ζ̃i,k(Z̃(s)) dW̃k(s), t ≥ 0,

is a martingale, for all k = 1, . . . , n+m, and the integral on the right-hand side of
equality (2.8) is finite. This completes the justification of formula (2.8).

From condition (2.3), and the construction of the extended coefficient b̃i, it

follows that b̃i(z) is nonnegative on the support of the function η′ε. Using the fact
that η′ε ≤ 0, we obtain

b̃i(Z̃(s))η′ε

(
X̃i(s)

)
≤ 0, ∀ s ∈ [0, t].



5552 C. A. POP

From condition (2.2), and the construction of the extended matrix coefficient ς̃, it
follows that (ς̃ ς̃∗)i,i = 0 on the support of η′′ε . Thus we have

(ς̃ ς̃∗)i,i(Z̃(s))η′′ε

(
X̃i(s)

)
= 0, ∀ s ∈ [0, t].

Using now the fact that ηε(z) = 0, when z ∈ S̄n,m, since ηε ≡ 0 on R+, it follows
from identity (2.8) that

E
P̃z

[
ηε

(
X̃i(t)

)]
≤ 0,

and, because ηε is a nonnegative function, the preceding expression holds with
equality. Because ε > 0 was arbitrarily chosen, the preceding identity implies (2.6),
for all i = 1, . . . , n, and so, we conclude that (2.5) holds.

Identity (2.5) proves that, when started at points in S̄n,m, the weak solutions to
the stochastic differential equation (2.4) remain in S̄n,m. Because the coefficients of
the stochastic differential equations (1.3) and (2.4) agree on S̄n,m, we obtain that
the weak solutions to (2.4) also solve equation (1.3). This completes the proof of
Proposition 2.2. �

Remark 2.3 (Existence of weak solutions to the generalized Kimura equation). We
now consider a Borel measurable matrix coefficient, σ : S̄n,m → R

n+m × R
n+m,

such that by letting

(2.9)
ςi,j(z) :=

√
xiσi,j(z), ∀ i = 1, . . . , n, ∀ j = 1, . . . , n+m,

ςi,j(z) := σi,j(z), ∀ i = n+ l, . . . ,m, ∀ j = 1, . . . , n+m,

the matrix (ς(z)) verifies Assumption 2.1. Then Proposition 2.2 implies that there

is a weak solution, {Ẑ(t)}t≥0, to the generalized Kimura stochastic differential equa-

tion (1.3), for any initial condition Ẑ(0) supported in S̄n,m, and that the solution
remains supported in S̄n,m at all subsequent times.

2.2. Uniqueness and the strong Markov property. In this section, we prove
uniqueness in law, and the strong Markov property of weak solutions to the gener-
alized Kimura stochastic differential equation (1.3). The main result of this section
is

Proposition 2.4 (Uniqueness in law of weak solutions to (1.3)). Suppose that
the coefficients of the generalized Kimura stochastic differential equation (1.3) sat-
isfy Assumption 2.6. Then, for all z ∈ S̄n,m, there is a unique weak solution,

(Ẑ = (X̂, Ŷ ), Ŵ ), (Ω, {F(t)}t≥0,F , P̂z), to the stochastic differential equation (1.3),

satisfying the initial condition Ẑ(0) = z.

The exact statement of Assumption 2.6 is given in §2.2.1, where we also motivate
in more detail the conditions we impose on the coefficients of the generalized Kimura
stochastic differential equation (1.3).

From [23, Theorem 5.4.20], we obtain that uniqueness in law of weak solutions to
the Kimura stochastic differential equation (1.3) implies that the solutions satisfy
the strong Markov property. Thus we have the following corollary to Proposition
2.4.

Corollary 2.5 (The strong Markov property). Suppose that the coefficients of the
generalized Kimura stochastic differential equation (1.3) satisfy Assumption 2.6.

For z ∈ S̄n,m, let {Ẑ(t)}t≥0 be the unique weak solution to the stochastic differential
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equation (1.3), with initial condition Ẑ(0) = z. Then the process {Ẑ(t)}t≥0 satisfies
the strong Markov property.

According to [23, Proposition 5.4.27], to prove uniqueness in law of weak solu-
tions to the Kimura stochastic differential equation (1.3), it is sufficient to establish

that for all z ∈ S̄n,m, any two weak solutions, {Ẑi(t)}t≥0, satisfying the property

that Ẑi(0) = z, for i = 1, 2, have the same one-dimensional marginal distributions.
That is, for all functions, ϕ ∈ C∞

c (S̄n,m), and T > 0, we have that

(2.10) E
P̂
z
1

[
ϕ(Ẑ1(T ))

]
= E

P̂
z
2

[
ϕ(Ẑ2(T ))

]
,

where P̂z
i denotes the probability distribution of the process {Ẑi(t)}t≥0, with initial

condition Ẑi(0) = z, for i = 1, 2. Property (2.10) follows if we prove that the
initial-value problem (1.7) has a solution u with suitable regularity properties. We
prove such a result in [29, Theorem 1.5], under the hypotheses that the generalized

Kimura operator L̂ satisfies Assumption 2.6.
We organize this section as follows. In §2.2.1, we describe the Assumption 2.6,

which we impose on the coefficients of the generalized Kimura operator L̂ to ensure
that we can apply [29, Theorem 1.5]. In §2.2.2, we give the proof of Proposition
2.4.

2.2.1. Assumptions on the coefficients of the Kimura operator L̂. We begin by in-

troducing the differential operator L̂, which will be the infinitesimal generator of
the Markov solutions to the Kimura stochastic differential equation. We let

(2.11) a(z) :=
1

2
σ(z)σ∗(z), ∀ z ∈ S̄n,m,

and we define
(2.12)

L̂u =

n∑
i,j=1

√
xixjai,j(z)uxixj

+ 2

n∑
i=1

m∑
l=1

√
xiai,n+l(z)uxiyl

+

m∑
l,k=1

an+l,n+k(z)uylyk

+
n∑

i=1

bi(z)uxi
+

m∑
l=1

el(z)uyl
,

for all z ∈ Sn,m, and all u ∈ C2(Sn,m). Our goal is to impose conditions on the

coefficients of the operator L̂ to ensure that it has the structure of the generalized
Kimura operator defined in (1.2), and that the coefficients are regular enough to
be able to apply [29, Theorem 1.5]. For this purpose, we first need to introduce
a class of anisotropic Hölder spaces adapted to the degeneracy of the diffusion
matrix. The following Hölder spaces are a slight modification of the Hölder spaces
introduced by C. Epstein and R. Mazzeo in their study of the existence, uniqueness
and regularity of solutions to the parabolic problem defined by Kimura operators,
[12, 13]. Following [13, Chapter 5], we first introduce the distance function

(2.13) ρ((t0, z0), (t, z)) := ρ0(z
0, z) +

√
|t0 − t|, ∀ (t0, z0), (t, z) ∈ [0,∞)× S̄n,m,

where ρ0 is a distance function in the spatial variables z0 and z. Because our domain
Sn,m is unbounded, as opposed to the compact manifolds with corners considered
in [13], the properties of the distance function ρ0(z

0, z) depend on whether the
points z0 and z are in a neighborhood of the boundary of Sn,m, or far away from
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M∅ n = 2

m = 0

Figure 1. Sets MI when n = 2 and m = 0.

the boundary of Sn,m. In a neighborhood of the boundary, for concreteness, when
z0 and z are in a neighborhood of the origin, the distance function ρ0(z

0, z) is
equivalent to the Riemannian metric such that the model operator,

L̃u :=

n∑
i=1

xiuxixi
+

m∑
l=1

uylyl
,

agrees with the Laplacian for a suitable Riemannian metric tensor; see [13, §2.2] for
a detailed explanation. In other words, in a neighborhood of the origin the distance

function ρ0(z
0, z) is adapted to the degeneracy of the Kimura operator L̂. When z0

and z are away from the boundary of the domain Sn,m, the operator L̂ is strictly
elliptic, and we choose the distance function ρ0(z

0, z) such that it is equivalent to
the Euclidean distance. To be more specific, we introduce the following notation:
For any set of indices, I ⊆ {1, . . . , n}, we let

MI := {z = (x, y) ∈ Sn,m : xi ∈ (0, 1) for all i ∈ I, and xj ∈ (1,∞) for all j ∈ Ic} ,
(2.14)

where we denote Ic := {1, . . . , n}\I; see Figure 1.
We choose the distance function ρ0 with the property that there is a positive

constant, c = c(n,m), such that for all subsets I, J ⊆ {1, . . . , n}, and all points
z0 ∈ M̄I and z ∈ M̄J , we have that

(2.15)

c

(
max
i∈I∩J

∣∣∣∣√x0
i −

√
xi

∣∣∣∣+ max
j∈(I∩J)c

|x0
j − xj |+ max

1≤l≤m
|y0l − yl|

)
≤ ρ0(z

0, z)

≤ c−1

(
max
i∈I∩J

∣∣∣∣√x0
i −

√
xi

∣∣∣∣+ max
j∈(I∩J)c

|x0
j − xj |+ max

1≤l≤m
|y0l − yl|

)
.

We can construct the distance function ρ0(z
0, z) in the following way. We start

with the particular case when n = 1 and m = 0, we denote z0 = x0 ∈ [0,∞) and
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z = x ∈ [0,∞), and we set

ρ0(x
0, x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣∣√x0 −
√
x
∣∣∣ , if x0, x ∈ [0, 1),

|x0 − x|, if x0, x ∈ [1,∞),∣∣∣√x0 − 1
∣∣∣+ |1− x|, if x0 ∈ [0, 1) and x ∈ [1,∞),

|
√
x− 1|+ |1− x0|, if x ∈ [0, 1) and x0 ∈ [1,∞).

It is an easy exercise to check that ρ0, defined as above on [0,∞), is a distance
function, and that the following inequalities hold:
(2.16)∣∣∣√x0 −

√
x
∣∣∣ ≤ ρ0(x

0, x) ≤
∣∣∣√x0 −

√
x
∣∣∣ , if x0, x ∈ [0, 1),

|x0 − x| ≤ ρ0(x
0, x) ≤ |x0 − x|, if x0, x ∈ [1,∞),

1
2 |x0 − x| ≤ ρ0(x

0, x) ≤ |x0 − x|, if x0 ∈ [0, 1) and x ∈ [1,∞).

We now turn to the more general case, when n and m are nonnegative integers,
and for all subsets I, J ⊆ {1, . . . , n}, and all points z0 ∈ M̄I and z ∈ M̄J , we set

ρ0(z
0, z) := max

1≤i≤n
ρ0(x

0
i , xi) + max

1≤l≤m
|y0l − yl|.

Because ρ0(x
0, x) is a distance function for all x0, x ∈ [0,∞) which satisfies prop-

erties (2.16), we conclude that ρ0(z
0, z) is a distance function for all z0, z ∈ S̄n,m,

and satisfies inequalities (2.15), with c = 1/2.
Let α ∈ (0, 1). Following [13, §5.2.4], we let Cα

WF([0, T ] × S̄n,m) be the Hölder
space consisting of continuous functions, u : [0, T ] × S̄n,m → R, such that the
following norm is finite:

‖u‖Cα
WF

([0,T ]×S̄n,m) := sup
(t,z)∈[0,T ]×S̄n,m

|u(t, z)|

+ sup
(t0,z0),(t,z)∈[0,T ]×S̄n,m

(t0,z0) 	=(t,z)

|u(t0, z0)− u(t, z)|
ρα((t0, z0), (t, z))

.

For a set U ⊂ S̄n,m, we denote by Cα
WF(U) the anisotropic Hölder space consisting

of functions u : U → R, such that

‖u‖Cα
WF

(U) := sup
z∈U

|u(z)|+ sup
z0,z∈U

z0 	=z

|u(z0)− u(z)|
ρα0 (z

0, z)
< ∞.

We use the subscript “WF” in the definition of the anisotropic Hölder spaces
Cα

WF([0, T ] × S̄n,m) and Cα
WF(U), to distinguish them from the classical Hölder

spaces, as defined in [28, Chapter 8], and to indicate their relation to the Wright-
Fisher operator, (1.1), and, more generally, to the generalized Kimura operators,
(1.2).

We can now introduce the assumptions on the coefficients of the Kimura sto-
chastic differential equation (1.6).

Assumption 2.6 (Properties of the coefficients in (1.3)). The coefficient functions
of the stochastic differential equation (1.6) satisfy the properties: Let α ∈ (0, 1),
and assume that

1. The coefficient functions bi(z) satisfy the nonnegativity condition (2.3), for
all i = 1, . . . , n.
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2. For all i, j = 1, . . . , n such that i 
= j, and all l = 1, . . . ,m, there are
functions, αi,i, α̃i,j , ci,l : S̄n,m → R, such that

(2.17)

ai,j(z) = δi,jαi,i(z) +
√
xixjα̃i,j(z), ∀ z = (x, y) ∈ S̄n,m,

ai,n+l(z) = an+l,i(z) =
1

2

√
xici,l(z), ∀ z = (x, y) ∈ S̄n,m,

where we recall that δi,j denotes the Kronecker delta symbol.
3. The strict ellipticity condition holds: there is a positive constant, λ, such

that for all sets of indices, I ⊆ {1, . . . , n}, for all z ∈ M̄I , ξ ∈ R
n and

η ∈ R
m, we have

(2.18)

∑
i∈I

αi,i(z)ξ
2
i +

∑
i∈Ic

xiαi,i(z)ξ
2
i +

∑
i,j∈I

α̃i,j(z)ξiξj

+
∑
i∈I

∑
j∈Ic

xj(α̃i,j(z) + α̃j,i(z))ξiξj +
∑

i,j∈Ic

xixjα̃i,j(z)ξiξj

+
∑
i∈I

m∑
l=1

ci,l(z)ξiηl +
∑
i∈Ic

m∑
l=1

xici,l(z)ξiηl +

m∑
k,l=1

an+k,n+l(z)ηkηl

≥ λ
(
|ξ|2 + |η|2

)
.

4. The coefficient functions are Hölder continuous: for all sets of indices,
I ⊆ {1, . . . , n}, and for all i, i′ ∈ I, j, j′ ∈ Ic, and l, k = 1, . . . ,m, we have
that

(2.19)
αi,i, xjαj,j , α̃i,i′ , xjα̃i,j , xjα̃j,i, xjxj′ α̃j,j′ ∈ Cα

WF(M̄I),

an+k,n+l, bi, bj , ci,l, xjcj,l, el ∈ Cα
WF(M̄I).

Remark 2.7 (Structure of the operator L̂). Condition (2.17) implies that the dif-

ferential operator L̂ takes the form:

L̂u =
n∑

i=1

(xiαi,i(z)uxixi
+ bi(z)uxi

) +
n∑

i,j=1

xixjα̃i,j(z)uxixj

+

n∑
i=1

m∑
l=1

xici,l(z)uxiyl
+

m∑
k,l=1

an+k,n+l(z)uykyl
+

m∑
l=1

el(z)uyl
,

that is, it has the same structure as the generalized Kimura operator defined in (1.2).

Assumption 2.6 ensures that the operator L̂ satisfies the hypotheses of [29, Theorem
1.4], which allows us to establish (2.10), and which in turn implies the conclusion
of Proposition 2.4. See the proof of Proposition 2.4.

Assumption 2.6 yields some immediate boundedness conditions on the coeffi-
cients of the Kimura stochastic differential equation (1.3), which we often use in
the sequel.

Lemma 2.8 (Boundedness of the coefficient functions b(z) and (σ(z))). Suppose
that Assumption 2.6 holds. Then there is a positive constant, K, such that for all
i = 1, . . . , n, and all j, l = 1, . . . , n+m, we have that

(2.20) |bi(z)|+ |σj,l(z)| ≤ K, ∀ z ∈ S̄n,m.

Proof. The boundedness of the coefficients b(z) is obvious from (2.19), and the
definition of the anisotropic Hölder space Cα

WF(S̄n,m). The boundedness of the
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coefficients of the matrix (σ(z)) follows from identity (2.11), and the fact that the
matrix a(z) is bounded, as it is implied by identity (2.17), and condition (2.19). �

Lemma 2.9 (Boundedness of the matrix coefficient (ς(z))). Suppose that Assump-
tion 2.6 holds. Then the coefficients of the matrix (ς(z)), defined in (2.9), are
bounded.

Proof. Let

(2.21) D(z) := ς(z)ς∗(z), ∀ z ∈ S̄n,m,

be the diffusion matrix of the Kimura stochastic differential equation (1.3). Using
(2.9), (2.11), and (2.17), it follows that, for all i, j = 1, . . . , n, and all k, l = 1, . . . ,m,
we have that

(2.22)

Di,j(z) = 2 (δi,jxiαi,i(z) + xixjα̃i,j(z)) ,

Di,n+k(z) = Dn+k,i(z) = xici,k(z),

Dn+k,n+l(z) = 2an+k,n+l(z).

By the boundedness of the coefficients implied by condition (2.19), it follows that
the coefficient matrix (D(z)) is bounded, and so, identity (2.21) implies that the
coefficient matrix (ς(z)) is also bounded. �

2.2.2. Proof of Proposition 2.4. In the proof of the uniqueness in law of weak solu-
tions to the Kimura stochastic differential equation, we make use of the following
version of Itô’s rule, which is more general in that the function does not have to be
C1,2 on the support of the process.

Proposition 2.10 (Itô’s rule for generalized Kimura diffusions). Suppose that the
coefficients b(z), e(z), and (ς(z)), appearing in (1.3) and (2.9), are Borel measurable
functions, with at most linear growth in the spatial variable. Assume that the matrix
coefficient (a(z)), defined in (2.11), is bounded on compact sets in S̄n,m. Let u ∈
Cloc([0,∞)× S̄n,m) be such that for all i, j = 1, . . . , n, and l, k = 1, . . . ,m, we have
that

ut, uxi
, uyl

,
√
xixjuxixj

,
√
xiuxiyl

, uyl,yk
∈ Cloc([0,∞)× S̄n,m).(2.23)

Let z ∈ S̄n,m, and let (Ẑ, Ŵ ) be a weak solution to the generalized Kimura stochastic

differential equation (1.3), with initial condition Ẑ(0) = z, defined on a filtered

probability space, (Ω, {F(t)}t≥0,F , P̂z). Then, the following holds P̂
z-a.s., for all

t ≥ 0:

(2.24)

u(t, Ẑ(t)) =

∫ t

0

(us + L̂u)(s, Ẑ(s)) ds

+

∫ t

0

n∑
j=1

n+m∑
k=1

ςj,k(Ẑ(s))uxj
(s, Ẑ(s)) dŴk(s)

+

∫ t

0

m∑
l=1

n+m∑
k=1

ςn+l,k(Ẑ(s))uyl
(s, Ẑ(s)) dŴk(s),

where we recall that the matrix coefficient (ς(z)) is defined in (2.9).
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Remark 2.11 (Condition (2.23)). In Proposition 2.10, we assume that the function
u belongs to Cloc([0,∞)× S̄n,m), and so the distributional derivatives of any order
of the function u are well defined on (0,∞)×Sn,m. In condition (2.23), we assume
that the restrictions of the distributions ut, uxi

, uyl
,
√
xixjuxixj

,
√
xiuxiyl

, uyl,yk
to

the set (0,∞) × Sn,m are continuous functions, and that they admit continuous
extensions up to the boundary of the domain (0,∞)× Sn,m.

In the proof of Proposition 2.10, we need the following.

Lemma 2.12 (Property of the weighted derivatives). Suppose that u ∈ Cloc(S̄n,m)
is such that for all i, j = 1, . . . , n, and l = 1, . . . ,m,

uxi
,
√
xixjuxixj

,
√
xiuxiyl

∈ Cloc(S̄n,m).(2.25)

Then the function u has the property that
√
xixjuxixj

= 0 on ∂Sn,m ∩ {xi = 0 or xj = 0},(2.26)
√
xiuxiyl

= 0 on ∂Sn,m ∩ {xi = 0}.(2.27)

Before we give the proof of Lemma 2.12, we explain condition (2.25), and equal-
ities (2.26), and (2.27).

Remark 2.13 (Conditions (2.25), (2.26), and (2.27)). Similarly to Remark 2.11,
because we assume that the function u belongs to Cloc(S̄n,m), the distributional
derivatives of any order of the function u are well defined on Sn,m. In condition
(2.25), we assume that the restrictions of the distributions uxi

,
√
xixjuxixj

,
√
xiuxiyl

to the set Sn,m are continuous functions, and that they admit continuous extensions
up to the boundary of the domain Sn,m. Equality (2.26) should be understood as

lim
z→z0

z∈Sn,m

√
xixjuxixj

(z) = 0,

for all z0 ∈ ∂Sn,m ∩ {xi = 0 or xj = 0}, and equality (2.27) should be understood
as

lim
z→z0

z∈Sn,m

√
xiuxiyl

(z) = 0,

for all z0 ∈ ∂Sn,m ∩ {xi = 0}.

Proof of Lemma 2.12. We prove assertions (2.26) and (2.27) by contradiction. We
consider the following cases.

Case 1 (Derivatives xiuxixi
). Assuming that the weighted derivative xiuxixi

does
not satisfy property (2.26), using the continuity of xiuxixi

on S̄n,m by (2.25), we
can assume without loss of generality that there is a point, z0 ∈ ∂Sn,m ∩ {xi = 0},
and there are positive constants, a and ε, such that xiuxixi

(z) ≥ a, for all points
z ∈ Bε(z

0) ∩ Sn,m =: Uε. Choosing points zk ∈ Uε, k = 1, 2, such that all
coordinates are identical to those of z0, except for the i-th coordinate, which is
xk
i , k = 1, 2, and integrating in the xi-variable the inequality uxixi

(z) ≥ a/xi, we
obtain that uxi

(z1)− uxi
(z2) ≥ a ln(x1

i /x
2
i ). Letting x2

i converge to 0, we see that
the right-hand side of the preceding inequality diverges to +∞, while the left-hand
side is finite by assumption (2.25). This contradiction implies that property (2.26)
holds for the weighted derivative xiuxixi

.
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Case 2 (Derivatives
√
xixjuxixj

, with i 
= j). We proceed similarly to Case 1.

Using property (2.25), we assume without loss of generality that there is z0 ∈
∂Sn,m ∩ {xi = 0 or xj = 0}, and there are positive constants, a and ε, such that√
xixjuxixj

(z) ≥ a, for all points z ∈ Bε(z
0) ∩ Sn,m =: Uε, where i 
= j, and

i, j = 1, . . . , n. To fix ideas we assume that the j-th coordinate of the point z0 is 0.
Choosing points zk ∈ Uε, k = 1, 2, such that all coordinates are identical to those
of z0, except for the i-th coordinate, which is xk

i , k = 1, 2, and integrating in the
xi-variable the inequality uxixj

(z) ≥ a/
√
xixj , we obtain that

(2.28) uxj
(z1)− uxj

(z2) ≥ 2a
√
xj

(√
x1
i −

√
x2
i

)
.

We can choose the points z1, z2 ∈ Uε, such that there is a positive constant, c, with
the property that

(2.29)
√
x1
i −

√
x2
i ≥ c.

Letting xj converge to 0 in inequality (2.28), while the lower bound (2.29) is satis-
fied, we see that the right-hand side of (2.28) diverges to +∞, while the left-hand
side is finite by assumption (2.25). This contradiction implies that property (2.26)
holds for the weighted derivative

√
xixjuxixj

, where i 
= j.

Case 3 (Derivatives
√
xiuxiyl

). The proof of property (2.27) can be done using
the argument of Case 2 to prove (2.26) for the weighted derivative

√
xixjuxixj

,
where i 
= j, with the observation that instead of integrating in the xi-variable, we
integrate in the yl-variable.

Combining Cases 1, 2 and 3, we obtain the conclusion of the lemma. �

Proof of Proposition 2.10. The method of the proof of (2.24) is very similar to that
of [19, Proposition 3.5], but we include it for completeness. We choose ε ≥ 0, and
let

zε := (x1 + ε, . . . , xn + ε, y), ∀ z = (x, y) ∈ S̄n,m,

Ẑε(t) :=
(
X̂1(t) + ε, . . . , X̂n(t) + ε, Ŷ (t)

)
, ∀ t ≥ 0.

The proof follows by applying the standard Itô’s formula, [23, Theorem 3.3.6], to

the processes {Ẑε(t)}t≥0, and taking limit as ε tends to zero. This will require the

use of condition (2.23). For all N ∈ N, let τN be the first time the process {Ẑ(t)}t≥0

exits the Euclidean ball of radius N centered at the origin. Because the coefficients
b(z), e(z), and (ς(z)) appearing in (1.3) and (2.9) have at most linear growth in the
spatial variable, we obtain by [23, Problem 5.3.15], that for all M ≥ 1 and t ≥ 0,
there is a positive constant, C = C(M, t), such that

E
P̂z

[
max
s∈[0,t]

|Ẑ(s)|2M
]
≤ C

(
1 + |z|2M

)
.(2.30)

Then it follows by (2.30) that the nondecreasing sequence of stopping times {τN}N≥1

satisfies

(2.31) lim
N→∞

τN = +∞ P̂
z-a.s.

If this were not the case, then there would be a deterministic time t > 0 such that

(2.32) lim
N→∞

P̂
z (τN ≤ t) > 0.
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But, P̂z (τN ≤ t) = P̂
z
(
sups∈[0,t] |Ẑ(s)| ≥ N

)
, and we have

P̂
z

(
sup

s∈[0,t]

|Ẑ(s)| ≥ N

)
≤ 1

N2
E
P̂z

[
max
s∈[0,t]

|Ẑ(s)|2
]

≤ C(1 + |z|2)
N2

(by (2.30)).

Since the preceding expression converges to zero, as N goes to ∞, we obtain a
contradiction in (2.32), and so (2.31) holds. By (2.31), it suffices to prove (2.24)
for the stopped process, that is,

(2.33)

u(t ∧ τN , Ẑ(t ∧ τN )) =

∫ t∧τN

0

(us + L̂u)(s, Ẑ(s)) ds

+

∫ t∧τN

0

n∑
j=1

n+m∑
k=1

ςj,k(Ẑ(s))uxj
(s, Ẑ(s)) dŴk(s)

+

∫ t∧τN

0

m∑
l=1

n+m∑
k=1

ςn+l,k(Ẑ(s))uyl
(s, Ẑ(s)) dŴk(s).

Because the process {Ẑε(t)}t≥0 is supported in [ε,∞)n × R
m ⊂ Sn,m, and the

function u belongs to C1,2([0,∞)×Sn,m), we can apply the standard Itô’s formula,
[23, Theorem 3.3.6], to obtain
(2.34)

u(t ∧ τN , Ẑε(t ∧ τN )) = u(0, Ẑε(0))

+

∫ t∧τN

0

n+m∑
k=1

n∑
j=1

ςj,k(Ẑ(s))uxj
(s, Ẑε(s)) dŴk(s)

+

∫ t∧τN

0

m∑
l=1

n+m∑
k=1

ςn+l,k(Ẑ(s))uyl
(s, Ẑε(s)) dŴk(s)

+

∫ t∧τN

0

(
us(s, Ẑ

ε(s)) +

n∑
i=1

bi(Ẑ(s))uxi
(s, Ẑε(s)) +

m∑
l=1

el(Ẑ(s))uyl
(s, Ẑε(s))

+
1

2

n∑
i,j=1

√
X̂i(s)X̂j(s)ai,j(Ẑ(s))uxixj

(s, Ẑε(s))

+

n∑
i=1

m∑
l=1

√
X̂i(s)ai,n+l(Ẑ(s))uxiyl

(s, Ẑε(s))

+
1

2

m∑
l,k=1

an+l,n+k(Ẑ(s))uylyk
(s, Ẑε(s))

⎞⎠ ds.

Our goal is to show that, by taking the limit as ε ↓ 0, the left-hand and the
right-hand side in (2.34) converge in probability to the corresponding expressions
in (2.33).

Because the function u belongs to Cloc([0,∞)× S̄n,m), we have for all s ∈ [0, t],

(2.35) u(s ∧ τn, Ẑ
ε(s ∧ τN )) → u(s ∧ τN , Ẑ(s ∧ τN )) P̂

z-a.s. when ε ↓ 0.
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The terms in (2.34) containing the pure Itô integrals can be evaluated in the fol-
lowing way. We describe the details for the terms involving the derivatives in the
xi-variable, as the terms containing the derivatives in the yl-variable can be treated
similarly. We define, for all i = 1 . . . , n, k = 1, . . . , n+m, and ε ≥ 0,

Hε
i,k(s) := ςi,k(Ẑ(s))uxi

(s, Ẑε(s))1{|Ẑ(s)|≤N}.

Because we assume that the derivative uxi
is continuous on [0,∞)× S̄n,m, and the

coefficient (ς(z)) has at most linear growth in the spatial variable, we see that the

sequence {Hε
i,k}ε≥0 is uniformly bounded on [0, t], and converges P̂

z-a.s. to H0
i,k,

for all s ∈ [0, t]. Then [31, Theorem IV.2.32] implies that∫ t

0

Hε
i,k(s) dŴk(s) −→

∫ t

0

H0
i,k(s) dŴk(s), as ε ↓ 0,

where the convergence takes place in probability. Using the fact that∫ t∧τN

0

ςi,k(s, Ẑ(s))uxi
(s, Ẑε(s)) dŴk(s) =

∫ t

0

Hε
i,k(s) dŴk(s), ∀ ε ≥ 0,

we see that
(2.36)∫ t∧τN

0

ςi,k(s, Ẑ(s))uxi
(s, Ẑε(s)) dŴk(s)−→

∫ t∧τN

0

ςi,k(s, Ẑ(s))uxi
(s, Ẑ(s)) dŴk(s),

where the convergence takes place in probability, as ε tends to zero. Analogously
to Hε

i,k(s), we define Gε(s) to be equal to the integrand of the ds-term on the

right-hand side of (2.34), multiplied by the indicator of the set {|Ẑ(s)| ≤ N}, for
all s ∈ [0, t], and all ε ≥ 0. Using the fact that the derivatives us, uxi

, uyl
, and

uylyk
are continuous on [0,∞)× S̄n,m, and the fact that the process {Ẑ(t)}t≥0 has

continuous paths, we have the P̂
z-a.s. convergence, as ε ↓ 0,

us(s, Ẑ
ε(s)) +

n∑
i=1

bi(Ẑ(s))uxi
(s, Ẑε(s))

+

m∑
l=1

el(Ẑ(s))uyl
(s, Ẑε(s)) +

1

2

m∑
l,k=1

an+l,n+k(Ẑ(s))uylyk
(s, Ẑε(s))

−→ us(s, Ẑ(s)) +
n∑

i=1

bi(Ẑ(s))uxi
(s, Ẑ(s))

+
m∑
l=1

el(Ẑ(s))uyl
(s, Ẑ(s)) +

1

2

m∑
l,k=1

an+l,n+k(Ẑ(s))uylyk
(s, Ẑ(s)),

for all s ∈ [0, t]. Recall from Lemma 2.12 that the weighted derivatives
√
xixjuxixj

and
√
xiuxiyl

satisfy properties (2.26) and (2.27). Using these properties together
with the continuity of

√
xixjuxixj

and
√
xiuxiyl

on [0,∞)× S̄n,m, and the fact that
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{Ẑ(t)}t≥0 has continuous paths, by writing√
X̂i(s)X̂j(s)ai,j(Ẑ(s))uxixj

(s, Ẑε(s))

=

√
X̂i(s)X̂j(s)√
X̂ε

i (s)X̂
ε
j (s)

ai,j(Ẑ(s))
√
X̂ε

i (s)X̂
ε
j (s)uxixj

(s, Ẑε(s)),

√
X̂i(s)ai,n+l(Ẑ(s))uxiyl

(s, Ẑε(s))

=

√
X̂i(s)√
X̂ε

i (s)
ai,n+l(Ẑ(s))

√
X̂ε

i (s)uxiyl
(s, Ẑε(s)),

we see that, as ε ↓ 0,√
X̂i(s)X̂j(s)ai,j(Ẑ(s))uxixj

(s, Ẑε(s)) −→
√
X̂i(s)X̂j(s)ai,j(Ẑ(s))uxixj

(s, Ẑ(s)),√
X̂i(s)ai,n+l(Ẑ(s))uxiyl

(s, Ẑε(s)) −→
√
X̂i(s)ai,n+l(Ẑ(s))uxiyl

(s, Ẑ(s)),

where the convergence takes place P̂
z-a.s., for all s ∈ [0, t]. Combining this with

the fact that the coefficients b(z), e(z), and (a(z)) are bounded on compact sets
in S̄n,m, we see that the sequence {Gε}ε≥0 is uniformly bounded on [0, t], and

converges P̂z-a.s. to G0, for all s ∈ [0, t]. Then [31, Theorem IV.2.32] implies that∫ t

0

Gε(s) ds −→
∫ t

0

G0(s) ds, in probability as ε ↓ 0.

The preceding convergence property is equivalent to the fact that the ds-term on
the right-hand side of (2.34) converges in probability to the ds-term on the right-
hand side of (2.33). By combining the latter convergence in probability with (2.35)
and (2.36), we find that the right-hand side of (2.34) converges in probability to
the right-hand side in (2.33), as ε tends to zero. This concludes the proof. �

We recall from [29, §2] that the anisotropic Hölder space C2+α
WF ([0, T ] × S̄n,m)

consists of functions, u : [0, T ] × S̄n,m → R, that belong to C([0, T ] × S̄n,m),
such that the distributional derivatives ut, uxi

, uyl
, uxixj

, uxiyl
, uylyk

are continuous
functions on (0, T ) × Sn,m, for all 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ m. Moreover, the
following functions have continuous extensions up to the boundary of the domain
(0, T )× Sn,m, and they belong to the corresponding anisotropic Hölder space: For
all subsets I ⊆ {1, . . . , n}, we assume that
(2.37)

u, ut, uxi
, uyl

, uylyk
∈ Cα

WF([0, T ]× S̄n,m), ∀ i, j = 1, . . . , n, ∀ l, k = 1, . . . ,m,
√
xixjuxixj

,
√
xiuxiyl

∈ Cα
WF([0, T ]× M̄I), ∀ i, j ∈ I, ∀ l, k = 1, . . . ,m,

√
xiuxixj

, uxjxk
∈ Cα

WF([0, T ]× M̄I), ∀ i ∈ I, ∀ j, k ∈ Ic,

where we recall the definition of the sets MI in (2.14). We can now give the

Proof of Proposition 2.4. The method of the proof is similar to that of [19, Theorem
1.3 and Proposition 3.6]. As stated in §2.2, it suffices to show that for all ϕ ∈
C∞

c (S̄n,m), z ∈ S̄n,m, and T > 0, if (Ẑi, Ŵ i), for i = 1, 2, are two weak solutions

to the stochastic differential equation (1.3) with initial condition Ẑi(0) = z, then
identity (2.10) holds. Assumption 2.6 guarantees that we can apply [29, Theorem
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1.4] to the operator L̂, to conclude that the homogeneous initial-value problem
(1.7) has a unique solution, u ∈ C2+α

WF ([0, T ] × S̄n,m). By (2.37), the function
(t, z) �→ u(T − t, z) satisfies the hypotheses of Proposition 2.10, and property (2.24)
yields
(2.38)

du(T − t, Ẑi(t)) = −(ut + L̂u)(T − t, Ẑi(t)) dt

+

n∑
j=1

n+m∑
k=1

ςj,k(Ẑ
i(t))uxj

(T − t, Ẑi(t)) dŴk(t)

+
m∑
l=1

n+m∑
k=1

ςn+l,k(Ẑ
i(t))uyl

(T − t, Ẑi(t)) dŴk(t), ∀ i = 1, 2,

where we recall that the coefficient matrix (ς(z)) is defined by (2.9). The dŴk(t)-
terms in the preceding identity define martingales because the coefficient matrix
(ς(z)) is bounded, by Lemma 2.9, and the derivatives uxj

and uyl
are bounded

functions on [0, T ] × S̄n,m, by (2.37). Combining the preceding observation with
the fact that u is a solution to the initial-value problem (1.7), we obtain from
identity (2.38) that

u(0, z) = EP
z
i

[
ϕ(Zi(T ))

]
, ∀ z ∈ S̄n,m, ∀ i = 1, 2.

In particular, identity (2.10) holds, which implies by [23, Proposition 5.4.27], that
uniqueness in law holds for solutions to the Kimura stochastic differential equation
(1.3). This completes the proof. �

3. Kimura diffusions with singular drift

In this section we prove existence, uniqueness in law, and the strong Markov
property of weak solutions to Kimura stochastic differential equations with singular
drift, (1.6). Our strategy of the proof is to apply Girsanov’s Theorem [23, Theorem
3.5.1] to build a new probability measure so that solutions to the generalized Kimura
stochastic differential equation (1.3) become solutions to the equation with singular
drift (1.6), under the new probability measure. The weak solutions obtained by this
method satisfy the strong Markov property. Girsanov’s Theorem also allows us to
prove that uniqueness in law of weak solutions to equation (1.6) holds, in the class
of Markov processes.

3.1. Existence of weak solutions. In this section we prove the existence of weak
solutions to the singular Kimura equation (1.6). The solutions that we build in
Theorem 3.1 satisfy the strong Markov property.

Theorem 3.1 (Existence of weak solutions to the Kimura equation with singu-
lar drift (1.6)). Suppose that the coefficients of the Kimura stochastic differential
equation with singular drift (1.6) satisfy Assumption 3.2. Then, for all z ∈ S̄n,m,
there is a weak solution (Z = (X,Y ),W ), (Ω, {Ft}t≥0,F ,Pz), to equation (1.6),
with initial condition Z(0) = z. Moreover, the solution satisfies the strong Markov
property.

To prove existence of weak solutions to the Kimura stochastic differential equa-
tion with singular drift (1.6), we assume that the coefficients satisfy the following
conditions.
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Assumption 3.2 (Properties of the coefficients in (1.6)). Let q ∈ (0, q0), where q0
is given by

(3.1) q0 := min

{
1

4
,

b0
(n+m)K2

}
,

and K is the positive constant appearing in Lemma 2.8, and b0 satisfies condition
(3.2) below. We assume that:

1. The functions b(z), e(z), and (σ(z)) satisfy Assumption 2.6.
2. The drift coefficients satisfy the positivity condition: there is a positive

constant, b0, such that for all i = 1, . . . , n, we have that

(3.2) bi(z) ≥ b0 > 0, ∀ z ∈ ∂Sn,m ∩ {xi = 0}.

3. The coefficients fi,j : S̄n,m → R, and hi,j : [0,∞) → R are Borel measurable
functions, for all i, k = 1, . . . , n + m, and all j = 1, . . . , n, and there is a
positive constant, K0, such that

|fi,j(z)| ≤ K0, ∀ z ∈ S̄n,m,(3.3)

|(σ−1)k,i(z)fi,j(z)| ≤ K0, ∀ z ∈ S̄n,m,(3.4)

|hi,j(s)| ≤ K0s
−q, ∀ s ∈ (0,∞).(3.5)

Condition (3.4) uses the fact that the matrix coefficient (σ(z)) is invertible on
S̄n,m. We next prove that this property is a consequence of conditions (2.17) and
(2.18).

Lemma 3.3 (Invertibility of the matrix coefficient (σ(z))). Suppose that the matrix
(a(z)), defined in (2.11), satisfies properties (2.17) and (2.18). Then (σ(z)) is
invertible on S̄n,m, and (σ−1(z)) has bounded coefficients on compact sets in S̄n,m.

Proof. Let r ∈ (0, 1), and for z = (x, y) ∈ S̄n,m, let I denote the set of indices
i ∈ {1, . . . , n} such that xi ∈ [0, r], and Ic denoted the set of indices j ∈ {1, . . . , n}
such that xj > r. Let R > 0 be such that xj ≤ R, for all j ∈ Ic. Using identities
(2.17), for all ζ ∈ R

n and η ∈ R
m, we have that

n∑
i,j=1

ai,j(z)ζiζj +
n∑

i=1

m∑
l=1

(ai,n+l(z) + an+l,i(z)) ζiηl +
m∑

l,k=1

an+l,n+k(z)ηlηk

=

n∑
i=1

αi,i(z)ζ
2
i +

n∑
i,j=1

√
xixjα̃i,j(z)ζiζj

+

n∑
i=1

m∑
l=1

√
xici,l(z)ζiηl +

m∑
k,l=1

an+k,n+l(z)ηkηl

=
∑
i∈I

xiαi,i(z)ζ
2
i +

∑
i∈Ic

αi,i(z)ζ
2
i +

n∑
i,j=1

√
xixjα̃i,j(z)ζiζj

+

n∑
i=1

m∑
l=1

√
xici,l(z)ζiηl +

m∑
k,l=1

an+k,n+l(z)ηkηl +
∑
i∈I

(1− xi)αi,i(z)ζ
2
i .

The last inequality, and the strict ellipticity condition (2.18), applied with the
vector ξ ∈ R

n chosen such that ξi =
√
xiζi, for all i ∈ I, and ξj = 1√

xj
ζj , for all
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j ∈ Ic, yield

n∑
i,j=1

ai,j(z)ζiζj +
n∑

i=1

m∑
l=1

(ai,n+l(z) + an+l,i(z)) ζiηl +
m∑

l,k=1

an+l,n+k(z)ηlηk

≥ λ

⎛⎝∑
i∈I

xi|ζi|2 +
∑
j∈Ic

1

xj
|ζj |2 + |η|2

⎞⎠+ (1− r)λ
∑
i∈I

|ζi|2

≥ λmin

{
1

R
, 1− r

}(
|ζ|2 + |η|2

)
,(3.6)

where we used the fact that r ∈ (0, 1), 1− xi ≥ 1− r, for all i ∈ I, and xj ≤ R, for
all j ∈ Ic. Thus, indeed the matrix (a(z)) is strictly positive definite, and so, the
matrix (σ(z)) is invertible, for all z ∈ S̄n,m. Inequality (3.6), and identity (2.11)
gives us that the coefficients of (σ−1(z)) are bounded on compact sets in S̄n,m. This
completes the proof. �

Remark 3.4 (Condition (3.4)). In general, the boundedness condition (3.4) is not a
consequence of Assumption 2.6. Our main motivation to study the singular Kimura
stochastic differential equation (1.6) is for its application to the proof of the Harnack
inequality for nonnegative solutions to the generalized Kimura parabolic equation
(1.7); see [14, Theorems 1.2 and 1.3]. For such applications, it is sufficient to assume
that the coefficients fi,j : Sn,m → R are bounded, Borel measurable functions, for
all i = 1, . . . , n + m, and all j = 1, . . . , n, and that they have compact support
in S̄n,m. Under such assumptions, Lemma 3.3 gives us that condition (3.4) is a
consequence of (2.17), (2.18), and the upper bound (3.3).

The proof of Theorem 3.1 is based on an application of Girsanov’s Theorem.
We change the probability distributions of the weak solutions of the generalized
Kimura equation (1.3) obtained in Proposition 2.2, so that we add a singular drift
as in equation (1.6). In order to justify the application of Girsanov’s Theorem,
we prove that Novikov’s condition, [23, Corollary 3.5.13], for generalized Kimura
diffusions holds.

Lemma 3.5 (Novikov’s condition for generalized Kimura diffusions). Suppose that
the coefficients of the Kimura stochastic differential equation (1.3) satisfy Assump-
tion 2.6, and condition (3.2). Let q ∈ (0, q0), where the positive constant q0 is given
by (3.1). Then, for all Λ > 0 and T > 0, we have

(3.7) sup
z∈S̄n,m

E
P̂z

[
exp

(
Λ

∫ T

0

n∑
i=1

|X̂i(t)|−2q dt

)]
< ∞,

where {Ẑ(t) = (X̂(t), Ŷ (t))}t≥0 is the unique weak solution to the Kimura stochastic

equation (1.3), with initial condition Ẑ(0) = z.

An elementary method to guarantee that condition (3.7) holds is to prove that
the hypotheses of Khas’minskii’s Lemma [5, 25, 30] are satisfied. A statement of
Khas’minskii’s Lemma when the underlying process is Brownian motion can be
found in [1, Theorem 1.2], which states that if {W (t)}t≥0 is a d-dimensional Brow-
nian motion, and g : Rd → [0,∞) is a (nonnegative) Borel measurable function
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such that there is a constant, δ ∈ (0, 1), with the property that

sup
x∈Rd

Ex

[∫ t

0

g(W (s)) ds

]
= δ,

then we have that

sup
x∈Rd

Ex

[
exp

(∫ t

0

g(W (s)) ds

)]
≤ 1

1− δ
.

Lemma 3.6 (Verification of the hypotheses of Khas’minskii’s Lemma). Suppose
that the coefficients of the Kimura stochastic differential equation (1.3) satisfy As-
sumption 2.6, and condition (3.2). Let Λ be a positive constant and q ∈ (0, q0),
where the positive constant q0 is given by (3.1). Then for all δ ∈ (0, 1), there is a
positive constant, T = T (b0, ‖b‖Cα

WF
(S̄n,m), δ,K,Λ,m, n, q), such that

(3.8) sup
z∈S̄n,m

E
P̂z

[∫ T

0

Λ
n∑

i=1

|X̂i(t)|−2q dt

]
< δ,

where {Ẑ(t) = (X̂(t), Ŷ (t))}t≥0 is the unique weak solution to the Kimura stochastic

equation (1.3), with initial condition Ẑ(0) = z.

Proof. Without loss of generality, we may assume that Λ = 1. Using condition (3.2)
and the uniform continuity of the coefficient bi(z) implied by (2.19), we obtain that
for all ρ ∈ (0, 1), there is a positive constant, r, such that

(3.9) bi(z) ≥
b0

1 + ρ
on {z = (x, y) ∈ Sn,m : xi ∈ [0, r]} , ∀ i = 1, . . . , n.

Let ϕ : [0,∞) → [0, 1] be a smooth cut-off function, such that ϕ(s) = 1 for s ≤ r/2,
and ϕ(s) = 0 for s ≥ r, and such that there is a positive constant, c, with the
property that

(3.10) |ϕ′(s)| ≤ cr−1, and |ϕ′′(s)| ≤ cr−2, ∀ s ≥ 0.

For all ε ∈ (0, 1), we let X̂ε
i (t) := X̂i(t) + ε, and xε

i := xi + ε. By Itô’s rule
[23, Theorem 3.3.6] applied to the process ϕ(Xε

i (t))(X
ε
i (t))

1−2q, we obtain

dϕ(X̂ε
i (t))(X̂

ε
i (t))

1−2q

= (1− 2q)ϕ(X̂ε
i (t))(X̂

ε
i (t))

−2q

(
bi(Ẑ(t))− q|σi(Ẑ(t))|2 X̂i(t)

X̂ε
i (t)

)
dt

+ bi(Ẑ(t))ϕ′(X̂ε
i (t))(X̂

ε
i (t))

1−2q dt

+
|σi(Ẑ(t))|2

2
X̂i(t)(X̂

ε
i (t))

−2q
(
X̂ε

i (t)ϕ
′′(X̂ε

i (t)) + 2(1− 2q)ϕ′(X̂ε
i (t))

)
dt

+ (X̂ε
i (t))

−2q
(
X̂ε

i (t)ϕ
′(X̂ε

i (t))

+(1− 2q)ϕ(X̂ε
i (t))

)√
X̂i(t)

n+m∑
k=1

σi,k(Ẑ(t)) dŴk(t),

where we denote by σi(z) the i-th row of the matrix (σ(z)). From Lemma 2.9
and identity (2.9), we see that the coefficients (

√
xiσi(z)) are bounded, and so, the
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dŴk(t)-terms in the preceding equality define martingales. We obtain

E
P̂z

[
ϕ(X̂ε

i (T ))(X̂
ε
i (T ))

1−2q
]
= ϕ(xε

i )(x
ε)1−2q

+ (1− 2q)E
P̂z

[∫ T

0

ϕ(X̂ε
i (t))(X̂

ε
i (t))

−2q

(
bi(Ẑ(t))− q|σi(Ẑ(t))|2 X̂i(t)

X̂ε
i (t)

)
dt

]

+ E
P̂z

[∫ T

0

bi(Ẑ(t))ϕ
′(X̂ε

i (t))(X̂
ε
i (t))

1−2q dt

]

+ E
P̂z

[∫ T

0

|σi(Ẑ(t))|2
2

X̂i(t)(X̂
ε
i (t))

−2q
(
X̂ε

i (t)ϕ
′′(X̂ε

i (t))

+ 2(1− 2q)ϕ′(X̂ε
i (t))

)
dt

]
,

for all z = (x, y) ∈ S̄n,m. The preceding identity together with the boundedness of
the coefficients b(z) and (σ(z)) (see inequality (2.20)), and the choice of the cut-off
function ϕ, and (3.10), give us that there is a positive constant, C = C(K,m, n),
such that

(1− 2q)E
P̂z

[∫ T

0

ϕ(X̂ε
i (t))(X̂

ε
i (t))

−2q

(
bi(Ẑ(t))− q|σi(Ẑ(t))|2 X̂i(t)

X̂ε
i (t)

)
dt

]
≤ Cr−2qT.

Using inequalities (3.9) and (2.20), we see that
(3.11)

(1− 2q)E
P̂z

[∫ T

0

ϕ(X̂ε
i (t))(X̂

ε
i (t))

−2q

(
bi(Ẑ(t))− q|σi(Ẑ(t))|2 X̂i(t)

X̂ε
i (t)

)
dt

]

≥ (1− 2q)

(
b0

1 + ρ
− q(n+m)K2

)
E
P̂z

[∫ T

0

(X̂ε
i (t))

−2q1{X̂i(t)∈[0,r/2]} dt

]
.

Combining the preceding two inequalities, and letting ε tend to 0, we obtain that
there is a positive constant, C = C(K,m, n), such that

E
P̂z

[∫ T

0

(X̂i(t))
−2q dt

]
≤ Cr−2qT

(1− 2q)
(

b0
1+ρ − q(n+m)K2

) .(3.12)

Note that by choosing q ∈ (0, q0), where the positive constant q0 is given by (3.1),
we can find a positive constant, ρ0 = ρ0(K,m, n), such that

b0
1 + ρ0

− q(n+m)K2 > 0.

Then we choose r0 = r0(‖b‖Cα
WF

(S̄n,m),K,m, n), such that inequality (3.9) holds

with ρ replaced by ρ0, for all r ∈ (0, r0). For all δ ∈ (0, 1), let

r = r(‖b‖Cα
WF

(S̄n,m), δ,K,m, n, q)

and

T = T (b0, ‖b‖Cα
WF

(S̄n,m), δ,K,m, n, q)
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be chosen small enough such that using inequality (3.12), we obtain that estimate
(3.8) holds. This completes the proof. �

Using Lemma 3.6, we can now give the proof of

Proof of Lemma 3.5. By Corollary 2.5, the solutions to generalized Kimura sto-
chastic differential equations (1.3) satisfy the Markov property. Thus, the proof of
[1, Theorem 1.2] applies equally well to generalized Kimura diffusions in place of
standard Brownian motion, and using Lemma 3.6, we obtain that for all δ > 0,
there is Tδ > 0, such that

(3.13) sup
z∈S̄n,m

E
P̂z

[
exp

(∫ Tδ

0

ϕ(X̂(t)) dt

)]
<

1

1− δ
,

where we denote for brevity, ϕ(x) := Λ
∑n

i=1 |xi|−2q, for all x ∈ R
n
+. Let T > 0 and

set k := �T/Tδ�. We consider the sequence Ti := T − (k− i)Tδ, for all i = 1, . . . , k,
and T0 = 0. We have, for all z ∈ S̄n,m,

E
P̂z

[
exp

(∫ T

0

ϕ(X̂(t)) dt

)]
= E

P̂z

[
e
∫ Tk−1
0 ϕ(X̂(t)) dte

∫ Tk
Tk−1

ϕ(X̂(t)) dt
]

= E
P̂z

[
E
P̂z

[
e
∫ Tk−1
0 ϕ(X̂(t)) dte

∫ Tk
Tk−1

ϕ(X̂(t)) dt
∣∣∣FTk−1

]]
= E

P̂z

[
e
∫ Tk−1
0 ϕ(X̂(t)) dt

E
P̂
Ẑ(Tk−1)

[
e
∫ Tδ
0 ϕ(X̂(t)) dt

]]
.

Inequality (3.13) gives us

E
P̂z

[
exp

(∫ T

0

ϕ(X̂(t)) dt

)]
≤ 1

1− δ
E
P̂z

[
e
∫ Tk−1
0 ϕ(X̂(t)) dt

]
,

and iterating the preceding argument k times, we obtain

E
P̂z

[
exp

(∫ T

0

ϕ(X̂(t)) dt

)]
≤ 1

(1− δ)k
, ∀z ∈ S̄n,m,

from where inequality (3.7) now follows. �

Lemma 3.5 allows us to establish the

Proof of Theorem 3.1. We divide the proof into two steps. In Step 1, we prove
existence of weak solutions to the Kimura stochastic differential equation with sin-
gular drift (1.6), via Girsanov’s Theorem, and in Step 2, we show that the solution
constructed in Step 1 satisfies the strong Markov property.

Step 1 (Existence of weak solutions to equation (1.6)). Let z ∈ S̄n,m. Because
the coefficient functions b, e, and σ satisfy Assumptions 2.1 and 2.6, Proposi-

tions 2.2 and 2.4 show that there is a unique weak solution, (Ẑ = (X̂, Ŷ ), Ŵ ),

(Ω, {Ft}t≥0,F , P̂z), to the Kimura stochastic differential equation (1.3), with ini-

tial condition Ẑ(0) = z. Let θ : S̄n,m → R
n+m be the Borel measurable vector field

defined by

(3.14) θ := σ−1ξ,
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where the function ξ : S̄n,m → R
n+m is defined by

(3.15) ξi(z) :=
n∑

j=1

fi,j(z)hi,j(xj), ∀ z ∈ S̄n,m, ∀ i = 1, . . . , n+m.

Definitions (3.14) and (3.15) give us that

θk(z) =

n+m∑
i=1

n∑
j=1

(σ−1)k,i(z)fi,j(z)hi,j(xj), ∀ z ∈ S̄n,m, ∀ k = 1, . . . , n+m,

and using conditions (3.4), and (3.5), it follows that there is a positive constant, Λ,
such that

(3.16) |θ(z)| ≤ Λ
n∑

i=1

|xi|−q, ∀ z ∈ S̄n,m.

Let T be a positive constant. Lemma 3.5 and inequality (3.16) show that

E
P̂z

[
exp

(
1

2

∫ T

0

|θ(t)|2 dt
)]

< ∞,

and so, [23, Corollary 3.5.13] implies that the process {M̂(t)}0≤t≤T defined by

M̂(t) := exp

(∫ t

0

n+m∑
i=1

θi(Ẑ(s)) dŴi(s)−
1

2

∫ t

0

|θ(Ẑ(s))|2 ds
)
, ∀ t ∈ [0, T ],

is a P̂
z-martingale. We can apply Girsanov’s Theorem [23, Theorem 3.5.1] to con-

struct a new probability measure, Pz, by letting

(3.17)
dPz

dP̂z
= M̂(T ),

such that the process

(3.18) W (t) := Ŵ (t)−
∫ t

0

θ(Ẑ(s)) ds, ∀ t ∈ [0, T ],

is a P
z-Brownian motion. Using (3.14), we see that by letting Z(t) := Ẑ(t), for all

t ∈ [0, T ], we obtain that the process {Z(t),W (t)}0≤t≤T , (Ω, {Ft}0≤t≤T ,F ,Pz) is
a weak solution to the Kimura stochastic differential equation with singular drift
(1.6), with initial condition Z(0) = z. To see this, using identity (3.18) in (1.3), we
have that

dX̂i(t) =

(
bi(Ẑ(t)) +

√
X̂i(t)

n+m∑
k=1

σi,k(Ẑ(t))θk(Ẑ(t))

)
dt

+

√
X̂i(t)

n+m∑
k=1

σi,k(Ẑ(t)) dWk(t),

dŶl(t) =

(
el(Ẑ(t)) +

n+m∑
k=1

σn+l,k(Ẑ(t))θk(Ẑ(t))

)
dt+

n+m∑
k=1

σn+l,k(Ẑ(t)) dWk(t),

while identities (3.14) and (3.15) give us that

n+m∑
k=1

σi,k(z)θk(z) =
n∑

j=1

fi,j(z)hi,j(xj), ∀ i = 1, . . . , n+m.
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The preceding three identities imply that the process {Z(t) := Ẑ(t),W (t)}{0≤t≤T}
is a weak solution to (1.6). This completes the proof of Step 1.

Step 2 (The strong Markov property). Let z ∈ S̄n,m, and let (Z,W ), (Ω, {Ft}t≥0,
F ,Pz) be the weak solution to the Kimura stochastic differential equation with
singular drift (1.6), with initial condition Z(0) = z, constructed in Step 1. We now
show that the process {Z(t)}t≥0 satisfies the strong Markov property, that is, for
all stopping times, τ , for all t ≥ 0, and B ∈ B(S̄n,m), we have that

(3.19) P
z (Z(τ + t) ∈ B|Fτ ) = P

z (Z(τ + t) ∈ B|Z(τ )) P
z-a.s. on {τ < ∞}.

It is sufficient to prove identity (3.19) for all bounded stopping times in order to
conclude that the strong Markov property (3.19) holds for arbitrary stopping times.
Let T > 0 and let τ be a stopping time such that τ ≤ T , Pz-a.s. Notice that using
(3.17), for all Fτ -measurable and bounded random variables, Y, we have that

E
P̂z [Y ] = EPz

[
M̂(T )−1Y

]
= EPz

[
EPz

[
M̂(T )−1Y

∣∣Fτ

]]
= EPz

[
Y EPz

[
M̂(T )−1

∣∣Fτ

]]
= EPz

[
M̂(τ )−1Y

]
,

(3.20)

where in the last equality we applied the Optional Sampling Theorem [23, Theorem

1.3.22] to the P
z-martingale {M̂(t)−1}0≤t≤T . We use identity (3.20) to prove that

for all t ≥ 0 and all Fτ+t-measurable and bounded random variables, Z, we have
that

(3.21) EPz [Z|Fτ ] =
1

M̂(τ )
E
P̂z

[
M̂(τ + t)Z

∣∣∣Fτ

]
.

The preceding identity gives us the analogue of [23, Lemma 3.5.3] for general stop-
ping times, as opposed to deterministic stopping times. To see the validity of
identity (3.21), it is sufficient to show that, for all sets A ∈ Fτ , we have

(3.22)

∫
Z1A dPz =

∫
1

M̂(τ )
E
P̂z

[
M̂(τ + t)Z

∣∣∣Fτ

]
1A dPz.

Applying identity (3.20) on the right-hand side of the preceding identity, with the

choice Y := E
P̂z [M̂(τ + t)Z|Fτ ], we see that∫

1

M̂(τ )
E
P̂z

[
M̂(τ + t)Z

∣∣∣Fτ

]
1A dPz =

∫
E
P̂z

[
M̂(τ + t)Z

∣∣∣Fτ

]
1A dP̂z,

and using the tower property of conditional expectation on the right-hand side, it
follows that∫

1

M̂(τ )
E
P̂z

[
M̂(τ + t)Z

∣∣∣Fτ

]
1A dPz =

∫
M̂(τ + t)Z1A dP̂z.

Another application of identity (3.20) with Y := M̂(τ + t)Z1A, and τ replaced by
τ + t, gives us that (3.22) holds, which implies identity (3.21).
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We now prove that the strong Markov property (3.19) holds. We have

P
z (Z(t+ τ ) ∈ B|Fτ ) = EPz

[
1{Z(τ+t)∈B}

∣∣Fτ

]
= E

P̂z

[
M̂(τ + t)

M̂(τ )
1{Ẑ(τ+t)∈B}

∣∣∣Fτ

]
(by (3.21))

= E
P̂z

[
M̂(τ + t)

M̂(τ )
1{Ẑ(τ+t)∈B}

∣∣∣Ẑ(τ )

]
(by Corollary 2.5).(3.23)

The last equality holds, if for all measurable sets A ∈ Fτ , the following take place:∫
E
P̂z

[
M̂(τ + t)

M̂(τ )
1{Ẑ(τ+t)∈B}

∣∣∣Ẑ(τ )

]
1{Z(τ)∈A} dP

z =

∫
1{Z(τ+t)∈B}1{Z(τ)∈A} dP

z.

We have that∫
E
P̂z

[
M̂(τ + t)

M̂(τ )
1{Ẑ(τ+t)∈B}

∣∣∣Ẑ(τ )

]
1{Z(τ)∈A} dP

z

=

∫
E
P̂z

[
M̂(τ + t)

M̂(τ )
1{Ẑ(τ+t)∈B}

∣∣∣Ẑ(τ )

]
1{Z(τ)∈A}M̂(τ ) dP̂z (by (3.20))

=

∫
M̂(τ + t)1{Ẑ(τ+t)∈B}1{Ẑ(τ)∈A} dP̂

z

=

∫
1{Z(τ+t)∈B}1{Z(τ)∈A} dP

z (by (3.17)).

Since the preceding identity is true for all measurable sets, A ∈ Fτ , it follows that
(3.23), which in turn implies that (3.19) holds. Thus, the process {Z(t)}t≥0 satisfies
the strong Markov property.

This completes the proof. �

3.2. Uniqueness and the strong Markov property. Using the uniqueness in
law of solutions to the generalized Kimura stochastic differential equation (1.3), we
can establish uniqueness in law of solutions to the Kimura stochastic differential
equation with singular drift (1.6).

Theorem 3.7 (Uniqueness in law of solutions to Kimura equation with singular
drift). Suppose that the coefficients of the Kimura stochastic differential equation
with singular drift (1.6) satisfy Assumption 3.2. Then, for all z ∈ S̄n,m, there is a
unique weak solution to the stochastic differential equation (1.6) that satisfies the
strong Markov property, with initial condition Z(0) = z.

We remark that Theorem 3.7 establishes uniqueness of solutions only in the class
of Markov processes. The reason for this restriction is due to our method of the
proof which consists in applying Girsanov’s Theorem to remove the singular drift
in equation (1.6) and reduce our problem to a generalized Kimura equation (1.3),
for which we know that uniqueness in law of solutions holds by Proposition 2.4.
In applying Girsanov’s Theorem, we need to establish the fact that the process
{M(t)}t≥0 defined in (3.31) is a martingale. As we will see in the proofs of Lemmas
3.8 and 3.9, this requires us to assume that the solution to the singular Kimura
equation (1.6) satisfies the Markov property. This is the reason why our method of
the proof yields uniqueness of solutions only in the class of Markov processes. This
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result suffices for the analytical applications of the Kimura stochastic differential
equation with singular drift, (1.6), to the proof of the Harnack inequality and
stochastic representation formula in [14, Theorems 1.2 and 1.3]. It is very likely
that adapting the ideas to prove [35, Theorem 12.2.4], the existence and uniqueness
of Markov solutions to (1.6) already implies the existence and uniqueness of weak
solutions. The impediment to applying [35, Theorem 12.2.4] to our framework
is due to the fact that the coefficients of the singular Kimura equation (1.6) are
unbounded, and so greater care is needed in establishing certain crucial compactness
arguments in the proof of [35, Theorem 12.2.4].

We begin with the analogue of Lemma 3.5 for Kimura diffusions with singular
drift.

Lemma 3.8 (Novikov’s condition for Kimura diffusions with singular drift). Sup-
pose that the coefficients of the Kimura stochastic differential equation with singular
drift (1.6) satisfy Assumption 3.2. Let q ∈ (0, q0), where the positive constant q0 is
given by (3.1). Then for all Λ > 0 and T > 0, we have

(3.24) sup
z∈S̄n,m

EPz

[
exp

(
Λ

∫ T

0

n∑
i=1

|Xi(t)|−2q dt

)]
< ∞,

where {Z(t) = (X(t), Y (t))}t≥0 is a solution to the singular Kimura stochastic
differential equation (1.6) that satisfies the Markov property, with initial condition
Z(0) = z.

We prove Lemma 3.8 with the aid of the analogue of Lemma 3.6 for the Kimura
stochastic differential equation with singular drift.

Lemma 3.9 (Verification of the hypotheses of Khas’minskii’s Lemma for singular
Kimura diffusions). Suppose that the coefficients of the Kimura stochastic differen-
tial equation with singular drift (1.6) satisfy Assumption 3.2. Let q ∈ (0, q0), where
the positive constant q0 is given by (3.1). Then for all positive constants, δ ∈ (0, 1)
and Λ, there is a positive constant, T = T (b0, ‖b‖Cα

WF
(S̄n,m), δ,K0,K,Λ,m, n, q),

such that

(3.25) sup
z∈S̄n,m

EPz

[
Λ

∫ T

0

n∑
i=1

|Xi(t)|−2q dt

]
< δ,

where {Z(t) = (X(t), Y (t))}t≥0 is a solution to the singular Kimura stochastic
differential equation (1.6), with initial condition Z(0) = z.

Proof. The proof of Lemma 3.9 is similar to that of Lemma 3.6, but we have
to pay closer attention to the singular component of the drift coefficient in the
stochastic differential equation (1.6). We let the positive constants ρ, r, and the
cut-off function ϕ be as in the proof of Lemma 3.6. Without loss of generality, we
may assume that Λ = 1. We consider the auxiliary function

ψ(x) =

n∑
i=1

x1−2q
i ϕ(xi), ∀x ∈ R

n
+.
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For all ε ∈ (0, 1), we recall that we denote Xε
i (t) := Xi(t) + ε, and xε

i := xi + ε.
Applying Itô’s rule to the process {ψ(Xε(t))}t≥0, we obtain, for all T > 0 and
ε > 0,
(3.26)

ψ(Xε(T )) = ψ(xε) +
n∑

i=1

∫ T

0

bi(Z(t))ϕ′(Xε
i (t))(X

ε
i (t))

1−2q dt

+
n∑

i=1

∫ T

0

|σi(Z(t))|2
2

Xi(t)(X
ε
i (t))

−2q (Xε
i (t)ϕ

′′(Xε
i (t)) + 2(1− 2q)ϕ′(Xε

i (t))) dt

+ (1− 2q)

n∑
i=1

∫ T

0

ϕ(Xε
i (t))(X

ε
i (t))

−2q

(
bi(Z(t))− q|σi(Z(t))|2 Xi(t)

Xε
i (t)

)
dt

+ (1− 2q)

n∑
i=1

∫ T

0

ϕ(Xε
i (t))(X

ε
i (t))

−2q
√
Xi(t)

n∑
j=1

fi,j(Z(t))hi,j(Xj(t)) dt

+
n∑

i=1

∫ T

0

(Xε
i (t))

1−2qϕ′(Xε
i (t))

√
Xi(t)

n∑
j=1

fi,j(Z(t))hi,j(Xj(t)) dt

+
n∑

i=1

∫ T

0

(Xε
i (t))

−2q (Xε
i (t)ϕ

′(Xε
i (t)) + (1− 2q)ϕ(Xε

i (t)))

×
√
Xi(t)

n+m∑
k=1

σi,k(Z(t)) dWk(t),

where we recall that σi(z) denotes the i-th row of the matrix (σ(z)). By Lemma
2.8, the coefficient functions b(z) and (σ(z)) are bounded, and using the properties
of the cut-off function ϕ, there is a positive constant, C = C(K,m, n), such that
(3.27)

ψ(xε) +

n∑
i=1

∫ T

0

bi(Z(t))ϕ′(Xε
i (t))(X

ε
i (t))

1−2q dt

+

n∑
i=1

∫ T

0

|σi(Z(t))|2
2

Xi(t)(X
ε
i (t))

−2q (Xε
i (t)ϕ

′′(Xε
i (t)) + 2(1− 2q)ϕ′(Xε

i (t))) dt

≤ nr1−2q + Cr−2qT, ∀ ε > 0.

Inequality (3.11) applied with X̂ε
i (t) replaced by Xε

i (t), together with (3.26), (3.27),
and the fact that the cut-off function ϕ has support in [0, r], yields

(3.28)

C0

n∑
i=1

∫ T

0

|Xε
i (t)|

−q
1{Xi(t)∈[0,r/2]} dt ≤ 2nr1−2q + Cr−2qT

+ r−2q
n∑

i=1

∫ T

0

√
Xi(t)1{Xi(t)∈[0,r]}

∣∣∣∣∣∣
n∑

j=1

fi,j(Z(t))hi,j(Xj(t))

∣∣∣∣∣∣ dt
−

n∑
i=1

∫ T

0

√
Xi(t)(X

ε
i (t))

−2q (Xε
i (t)ϕ

′(Xε
i (t)) + (1− 2q)ϕ(Xε

i (t)))

×
n+m∑
k=1

σi,k(Z(t)) dWk(t),
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for all ε > 0, where we denote for brevity

C0 := (1− 2q)

(
b0

1 + ρ
− q(n+m)K2

)
.

Note that the dt-integral term on the right-hand side of (3.28) is finite, from our
assumption that the process {Z(t)}t≥0 is a weak solution to equation (1.6), which
implies that

∫ T

0

√
Xi(t)

∣∣∣∣∣∣
n∑

j=1

fi,j(Z(t))hi,j(Xj(t))

∣∣∣∣∣∣ dt < ∞, P
z-a.s.

Moreover using the fact that q < 1/4 from (3.1), we see that
√
xi(x

ε
i )

−2q is bounded
as ε ↓ 0. From Lemma 2.8, it follows that the matrix coefficient (σ(z)) is bounded,
and so, the integrand of the dW (t)-term on the right-hand side of inequality (3.28)
is uniformly bounded, for all ε ∈ (0, 1). We can now apply [31, Theorem IV.2.32]
to conclude that the dW (t)-integral on the right-hand side of (3.28) converges in
probability, as ε tends to 0, to the corresponding expression with ε = 0. Inequality
(3.28) becomes, as ε ↓ 0,

C0

n∑
i=1

∫ T

0

|Xi(t)|−2q
1{Xi(t)∈[0,r/2]} dt ≤ 2nr1−2q + Cr−2qT

+ r−2q
n∑

i=1

∫ T

0

√
Xi(t)1{Xi(t)∈[0,r]}

∣∣∣∣∣∣
n∑

j=1

fi,j(Z(t))hi,j(Xj(t))

∣∣∣∣∣∣ dt
−

n∑
i=1

∫ T

0

√
Xi(t)(Xi(t))

−2q (Xi(t)ϕ
′(Xi(t)) + (1− 2q)ϕ(Xi(t)))

×
n+m∑
k=1

σi,k(Z(t)) dWk(t).

This implies that the integral on the left-hand side of the preceding inequality is
finite. We may now use the upper bounds (2.20), (3.3), and (3.5), to conclude that
there is a positive constant, C = C(K0,K,m, n), such that

n∑
i=1

∫ T

0

|Xi(t)|−2q
1{Xi(t)∈[0,r/2]} dt ≤

2nr1−2q + Cr−2qT

C0

+
Cr1/2−2q

C0

n∑
i=1

∫ T

0

|Xi(t)|−q1{Xi(t)∈[0,r/2]} dt

− 1

C0

n∑
i=1

∫ T

0

√
Xi(t)(Xi(t))

−2q (Xi(t)ϕ
′(Xi(t)) + (1− 2q)ϕ(Xi(t)))

×
n+m∑
k=1

σi,k(Z(t)) dWk(t).
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Because we choose q < 1/4 by (3.1), we may choose a positive constant, r1 =

r1(C0, C, q), small enough so that Cr
1/2−2q
1 /C0 ≤ 1/2. The preceding inequality

gives us that

n∑
i=1

∫ T

0

|Xi(t)|−2q 1{Xi(t)∈[0,r/2]} dt ≤
4nr1−2q + 2Cr−2qT

C0

− 2

C0

n∑
i=1

∫ T

0

√
Xi(t)(Xi(t))

−2q (Xi(t)ϕ
′(Xi(t)) + (1− 2q)ϕ(Xi(t)))

×
n+m∑
k=1

σi,k(Z(t)) dWk(t),

for all r ∈ (0, r1). Because the dW (t)-term in the preceding equality defines a
martingale, we obtain, for all T > 0 and r ∈ (0, r1),

EPz

[∫ T

0

n∑
i=1

|Xi(t)|−2q 1{Xi(t)∈[0,r/2]} dt

]
≤ 4nr1−2q + 2Cr−2qT

C0
.

Removing the indicator function in the preceding inequality, we obtain

EPz

[∫ T

0

n∑
i=1

|Xi(t)|−2q dt

]
≤ 4nr1−2q + 2Cr−2qT

C0
+ nr−2qT.

For all δ ∈ (0, 1), we may now choose positive constants

r = r(b0, ‖b‖Cα
WF

(S̄n,m), δ,K0,K,m, n, q)

and

T = T (b0, ‖b‖Cα
WF

(S̄n,m), δ,K0,K,m, n, q)

small enough so that inequality (3.25) holds. This completes the proof. �

We can now give the

Proof of Lemma 3.8. The proof of Lemma 3.8 is identical to that of Lemma 3.5,
only in place of Lemma 3.6 we use Lemma 3.9, and so, we omit the detailed proof.

�

To prove Theorem 3.7, in addition to Lemma 3.8, we need the following result
which proves uniqueness in law of the joint probability distributions of any weak so-

lution {(Ẑ(t), Ŵ (t))}t≥0, to the generalized Kimura stochastic differential equation,
(1.3).

Lemma 3.10 (Uniqueness of the joint law of weak solutions (Ẑ, Ŵ ) to the general-
ized Kimura equation). Suppose that Assumption 2.6 holds. Let z ∈ S̄n,m, and let

(Ẑi, Ŵ i), (Ωi, {F i
t}t≥0,F i, P̂z

i ), for i = 1, 2, be two weak solutions to the generalized

Kimura equation (1.3), with initial condition Ẑ1(0) = Ẑ2(0) = z. Then the joint

probability laws of the processes (Ẑi, Ŵ i), for i = 1, 2, agree.
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Proof. From Proposition 2.4, it follows that the probability laws of the processes

{Ẑi(t)}t≥0, for i = 1, 2, agree. For i = 1, 2, we consider the (n + m)-dimensional
processes defined by

(3.29)

N̂ i
j(t) := X̂i

j(t)− X̂i
j(0)−

∫ t

0

b̂j(Ẑ
i(s)) ds, ∀ j = 1, . . . , n,

N̂ i
n+l(t) := Ŷ i

l (t)− Ŷ i
l (0)−

∫ t

0

el(Ẑ
i(s)) ds, ∀ l = 1, . . . ,m.

Our goal is to prove that the following identity holds:

(3.30) Ŵ i(t) =

∫ t

0

ς−1(Ẑi(s))1{Ẑi(s)∈Sn,m}dN̂
i(s), ∀ t ≥ 0,

P̂
z
i -a.s, for i = 1, 2. Notice that on the right-hand side of the preceding identity we

used the invertibility of the matrix function (ς(z)), for all z ∈ Sn,m. This follows
from identity (2.9), and the fact that the matrix (σ(z)) is invertible, by Lemma
3.3. Properties (3.30) and (3.29), together with the fact that the probability laws

of the processes {Ẑi(t)}t≥0, for i = 1, 2, agree, imply that the joint probability laws

of the processes (Ẑi, Ŵ i), for i = 1, 2, also agree.
We now proceed to the proof of identity (3.30). From definition (2.9) of the

matrix function (ς(z)), the choice of the processes {N̂ i(t)}t≥0, for i = 1, 2, and
from equation (1.3), we see that identity (3.30) is equivalent to

Ŵ i(t) =

∫ t

0

1{Ẑi(s)∈Sn,m}dŴ
i(s) P̂

z
i -a.s., ∀ t ≥ 0, i = 1, 2.

Thus identity (3.30) holds if and only if∫ t

0

1{Ẑi(s)∈∂Sn,m}dŴ
i(s) = 0 P̂

z
i -a.s., ∀ t ≥ 0, i = 1, 2.

The preceding equality is equivalent to proving that

E
P̂
z
i

[∫ t

0

1{Ẑi(s)∈∂Sn,m} ds

]
= 0, ∀ t ≥ 0, i = 1, 2,

but this clearly holds from the fact that the quantity defined in (3.7) is finite. This
completes the proof. �

We can now give the proof of Theorem 3.7 with the aid of Lemmas 3.8 and 3.10.

Proof of Theorem 3.7. Let (Zi,W i), (Ωi, {F i
t}0≤t≤T ,F i,Pz

i ), be two weak solu-
tions to the Kimura stochastic differential equation with singular drift (1.6), satis-
fying the initial condition Zi(0) = z, for i = 1, 2, where we assume that z ∈ S̄n,m.
Assume that the two weak solutions satisfy the Markov property. Our goal is to
show that the laws of the processes {Zi(t)}t∈[0,T ], are the same, for all T > 0, for

i = 1, 2. Let θ : Sn,m → R
n+m be the vector field defined in (3.14), and recall that

the function θ(z) satisfies inequality (3.16). Lemma 3.8 together with inequality
(3.16) shows that condition (3.24) holds, and so, [23, Corollary 3.5.13] yields that
the processes {M i(t)}0≤t≤T defined by
(3.31)

M i(t) := exp

(
−
∫ t

0

n+m∑
k=1

θk(Z
i(s)) dW i

k(s)−
1

2

∫ t

0

|θ(Zi(s))|2 ds
)
, ∀ t ∈ [0, T ],



KIMURA DIFFUSIONS 5577

are P
z
i -martingale, for i = 1, 2. We can apply Girsanov’s Theorem [23, Theorem

3.5.1] to construct new probability measures, P̂z
i , by letting

(3.32)
dP̂z

i

dPz
i

= M i(T ), i = 1, 2.

Then the process

(3.33) Ŵ i(t) := W i(t) +

∫ t

0

θ(Zi(s)) dt, ∀ t ∈ [0, T ],

is an (n+m)-dimensional Brownian motion with respect to the probability measure

P̂
z
i , for i = 1, 2. Using definition (3.14) of the function θ(z), we see that by letting

Ẑi(t) := Zi(t), for all t ∈ [0, T ], we obtain that the processes {Ẑi(t), Ŵ i(t)}0≤t≤T ,

(Ω, {Ft}0≤t≤T ,F , P̂z
i ) are weak solutions to the generalized Kimura stochastic dif-

ferential equation (1.3), with initial condition Ẑi(0) = z, for i = 1, 2. From Lemma

3.10, it follows that the joint law of the processes {Ẑi(t), Ŵ i(t)}0≤t≤T , for i = 1, 2,
agree. From definitions (3.31) and (3.33), we have that

M i(t) := exp

(
−
∫ t

0

θ(Ẑi(s)) · dŴ i(s) +
1

2

∫ t

0

|θ(Ẑi(s))|2 ds
)
, i = 1, 2,

and so, the laws of the processes {M1(t)}0≤t≤T and {M2(t)}0≤t≤T also agree. Thus,
it follows from (3.32), that the probability laws of the processes {Zi(t)}t∈[0,T ] are
the same, for all T > 0, for i = 1, 2. This completes the proof. �
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Hölder continuous coefficients and super-Markov chains, Trans. Amer. Math. Soc. 355
(2003), no. 1, 373–405 (electronic), DOI 10.1090/S0002-9947-02-03120-3. MR1928092

[5] Anne-Marie Berthier and Bernard Gaveau, Critère de convergence des fonctionnelles de Kac
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