## Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries

HTML articles powered by AMS MathViewer

- by Murat Akman, Matthew Badger, Steve Hofmann and José María Martell PDF
- Trans. Amer. Math. Soc.
**369**(2017), 5711-5745 Request permission

## Abstract:

Let $\Omega \subset \mathbb {R}^{n+1}$, $n\geq 2$, be a 1-sided NTA domain (also known as a uniform domain), i.e., a domain which satisfies interior corkscrew and Harnack chain conditions, and assume that $\partial \Omega$ is $n$-dimensional Ahlfors-David regular. We characterize the rectifiability of $\partial \Omega$ in terms of the absolute continuity of surface measure with respect to harmonic measure. We also show that these are equivalent to the fact that $\partial \Omega$ can be covered $\mathcal {H}^n$-a.e. by a countable union of portions of boundaries of bounded chord-arc subdomains of $\Omega$ and to the fact that $\partial \Omega$ possesses exterior corkscrew points in a qualitative way $\mathcal {H}^n$-a.e. Our methods apply to harmonic measure and also to elliptic measures associated with real symmetric second order divergence form elliptic operators with locally Lipschitz coefficients whose derivatives satisfy a natural qualitative Carleson condition.## References

- David R. Adams and Lars Inge Hedberg,
*Function spaces and potential theory*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR**1411441**, DOI 10.1007/978-3-662-03282-4 - Hiroaki Aikawa and Kentaro Hirata,
*Doubling conditions for harmonic measure in John domains*, Ann. Inst. Fourier (Grenoble)**58**(2008), no. 2, 429–445 (English, with English and French summaries). MR**2410379** - Jonas Azzam, Steve Hofmann, José María Martell, Svitlana Mayboroda, Mihalis Mourgoglou, Xavier Tolsa, and Alexander Volberg,
*Rectifiability of harmonic measure*, Geom. Funct. Anal.**26**(2016), no. 3, 703–728. MR**3540451**, DOI 10.1007/s00039-016-0371-x - Jonas Azzam, Steve Hofmann, José María Martell, Kaj Nyström, and Tatiana Toro,
*A new characterization of chord-arc domains*, J. Eur. Math. Soc. (JEMS)**19**(2017), no. 4, 967–981. MR**3626548**, DOI 10.4171/JEMS/685 - J. Azzam, M. Mourgoglou, and X. Tolsa,
*Singular sets for harmonic measure on locally flat domains with locally finite surface measure*, to appear in Int. Math. Res. Not., arXiv:1501.07585. - J. Azzam, M. Mourgoglou, and X. Tolsa,
*Rectifiability of harmonic measure in domains with porous boundaries*, preprint, arXiv:1505.06088. - Matthew Badger,
*Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited*, Math. Z.**270**(2012), no. 1-2, 241–262. MR**2875832**, DOI 10.1007/s00209-010-0795-1 - Christopher J. Bishop and Peter W. Jones,
*Harmonic measure and arclength*, Ann. of Math. (2)**132**(1990), no. 3, 511–547. MR**1078268**, DOI 10.2307/1971428 - Simon Bortz and Steve Hofmann,
*Harmonic measure and approximation of uniformly rectifiable sets*, Rev. Mat. Iberoam.**33**(2017), no. 1, 351–373. MR**3615455**, DOI 10.4171/RMI/940 - J. Bourgain,
*On the Hausdorff dimension of harmonic measure in higher dimension*, Invent. Math.**87**(1987), no. 3, 477–483. MR**874032**, DOI 10.1007/BF01389238 - Michael Christ,
*A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral*, Colloq. Math.**60/61**(1990), no. 2, 601–628. MR**1096400**, DOI 10.4064/cm-60-61-2-601-628 - Björn E. J. Dahlberg,
*On the absolute continuity of elliptic measures*, Amer. J. Math.**108**(1986), no. 5, 1119–1138. MR**859772**, DOI 10.2307/2374598 - Björn E. J. Dahlberg, David S. Jerison, and Carlos E. Kenig,
*Area integral estimates for elliptic differential operators with nonsmooth coefficients*, Ark. Mat.**22**(1984), no. 1, 97–108. MR**735881**, DOI 10.1007/BF02384374 - G. David and D. Jerison,
*Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals*, Indiana Univ. Math. J.**39**(1990), no. 3, 831–845. MR**1078740**, DOI 10.1512/iumj.1990.39.39040 - G. David and S. Semmes,
*Singular integrals and rectifiable sets in $\textbf {R}^n$: Beyond Lipschitz graphs*, Astérisque**193**(1991), 152 (English, with French summary). MR**1113517** - Guy David and Stephen Semmes,
*Analysis of and on uniformly rectifiable sets*, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993. MR**1251061**, DOI 10.1090/surv/038 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - Michael Grüter and Kjell-Ove Widman,
*The Green function for uniformly elliptic equations*, Manuscripta Math.**37**(1982), no. 3, 303–342. MR**657523**, DOI 10.1007/BF01166225 - Juha Heinonen, Tero Kilpeläinen, and Olli Martio,
*Nonlinear potential theory of degenerate elliptic equations*, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR**2305115** - S. Hofmann. P. Le, J. M. Martell, and K. Nyström,
*The weak-$A_\infty$ property of harmonic and $p$-harmonic measures implies uniform rectifiability*, to appear in Anal. PDE, arXiv:1511.09270. - Steve Hofmann and José María Martell,
*Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$*, Ann. Sci. Éc. Norm. Supér. (4)**47**(2014), no. 3, 577–654 (English, with English and French summaries). MR**3239100**, DOI 10.24033/asens.2223 - S. Hofmann and J. M. Martell,
*Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in $L^p$ implies uniform rectifiability*, preprint, arXiv:1505.06499. - S. Hofmann, J. M. Martell, S. Mayboroda, X. Tolsa, and A. Volberg,
*Absolute continuity between the surface measure and harmonic measure implies rectifiability*, preprint, arXiv:1507.04409. - S. Hofmann, J. M. Martell, and T. Toro,
*$A_\infty$ implies NTA for a class of variable coefficient elliptic operators*, preprint, arXiv:1611.09561. - S. Hofmann, J. M. Martell, and T. Toro,
*General divergence form elliptic operators on domains with ADR boundaries, and on $1$-sided NTA domains*, in preparation. - Steve Hofmann, José María Martell, and Ignacio Uriarte-Tuero,
*Uniform rectifiability and harmonic measure, II: Poisson kernels in $L^p$ imply uniform rectifiability*, Duke Math. J.**163**(2014), no. 8, 1601–1654. MR**3210969**, DOI 10.1215/00127094-2713809 - Steve Hofmann, Dorina Mitrea, Marius Mitrea, and Andrew J. Morris,
*$L^p$-square function estimates on spaces of homogeneous type and on uniformly rectifiable sets*, Mem. Amer. Math. Soc.**245**(2017), no. 1159, v+108. MR**3589162**, DOI 10.1090/memo/1159 - David S. Jerison and Carlos E. Kenig,
*Boundary behavior of harmonic functions in nontangentially accessible domains*, Adv. in Math.**46**(1982), no. 1, 80–147. MR**676988**, DOI 10.1016/0001-8708(82)90055-X - Carlos E. Kenig and Jill Pipher,
*The Dirichlet problem for elliptic equations with drift terms*, Publ. Mat.**45**(2001), no. 1, 199–217. MR**1829584**, DOI 10.5565/PUBLMAT_{4}5101_{0}9 - M. Lavrent′ev,
*Boundary problems in the theory of univalent functions*, Amer. Math. Soc. Transl. (2)**32**(1963), 1–35. MR**0155970** - John L. Lewis and Kaj Nyström,
*Regularity and free boundary regularity for the $p$-Laplace operator in Reifenberg flat and Ahlfors regular domains*, J. Amer. Math. Soc.**25**(2012), no. 3, 827–862. MR**2904575**, DOI 10.1090/S0894-0347-2011-00726-1 - Pertti Mattila,
*Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR**1333890**, DOI 10.1017/CBO9780511623813 - M. Mourgoglou,
*Uniform domains with rectifiable boundaries and harmonic measure*, preprint, arXiv:1505.06167. - Fedor Nazarov, Xavier Tolsa, and Alexander Volberg,
*On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1*, Acta Math.**213**(2014), no. 2, 237–321. MR**3286036**, DOI 10.1007/s11511-014-0120-7 - Fedor Nazarov, Xavier Tolsa, and Alexander Volberg,
*The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions*, Publ. Mat.**58**(2014), no. 2, 517–532. MR**3264510** - Stephen Semmes,
*Analysis vs. geometry on a class of rectifiable hypersurfaces in $\textbf {R}^n$*, Indiana Univ. Math. J.**39**(1990), no. 4, 1005–1035. MR**1087183**, DOI 10.1512/iumj.1990.39.39048 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Jang-Mei Wu,
*On singularity of harmonic measure in space*, Pacific J. Math.**121**(1986), no. 2, 485–496. MR**819202** - William P. Ziemer,
*Some remarks on harmonic measure in space*, Pacific J. Math.**55**(1974), 629–637. MR**427657**

## Additional Information

**Murat Akman**- Affiliation: Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, E-28049 Madrid, Spain
- Address at time of publication: Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720
- MR Author ID: 970717
- Email: makman@msri.org
**Matthew Badger**- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
- MR Author ID: 962755
- Email: matthew.badger@uconn.edu
**Steve Hofmann**- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- MR Author ID: 251819
- ORCID: 0000-0003-1110-6970
- Email: hofmanns@missouri.edu
**José María Martell**- Affiliation: Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, E-28049 Madrid, Spain
- MR Author ID: 671782
- ORCID: 0000-0001-6788-4769
- Email: chema.martell@icmat.es
- Received by editor(s): July 9, 2015
- Received by editor(s) in revised form: January 7, 2016
- Published electronically: April 24, 2017
- Additional Notes: The first and last authors have been supported in part by the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” (SEV-2015-0554), and they acknowledge that the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC agreement no. 615112 HAPDEGMT. The second author was partially supported by an NSF postdoctoral fellowship, DMS 1203497, and by NSF grant DMS 1500382. The third author was partially supported by NSF grant DMS 1361701.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 5711-5745 - MSC (2010): Primary 28A75, 28A78, 31A15, 31B05, 35J25, 42B37, 49Q15
- DOI: https://doi.org/10.1090/tran/6927
- MathSciNet review: 3646776