From Aztec diamonds to pyramids: Steep tilings
HTML articles powered by AMS MathViewer
- by Jérémie Bouttier, Guillaume Chapuy and Sylvie Corteel PDF
- Trans. Amer. Math. Soc. 369 (2017), 5921-5959 Request permission
Abstract:
We introduce a family of domino tilings that includes tilings of the Aztec diamond and pyramid partitions as special cases. These tilings live in a strip of $\mathbb {Z}^2$ of the form $1\leq x-y\leq 2\ell$ for some integer $\ell \geq 1$, and are parametrized by a binary word $w\in \{+,-\}^{2\ell }$ that encodes some periodicity conditions at infinity. Aztec diamond and pyramid partitions correspond respectively to $w=(+-)^\ell$ and to the limit case $w=+^\infty -^\infty$. For each word $w$ and for different types of boundary conditions, we obtain a nice product formula for the generating function of the associated tilings with respect to the number of flips, that admits a natural multivariate generalization. The main tools are a bijective correspondence with sequences of interlaced partitions and the vertex operator formalism (which we slightly extend in order to handle Littlewood-type identities). In probabilistic terms our tilings map to Schur processes of different types (standard, Pfaffian and periodic). We also introduce a more general model that interpolates between domino tilings and plane partitions.References
- Mark Adler, Sunil Chhita, Kurt Johansson, and Pierre van Moerbeke, Tacnode GUE-minor processes and double Aztec diamonds, Probab. Theory Related Fields 162 (2015), no. 1-2, 275–325. MR 3350046, DOI 10.1007/s00440-014-0573-9
- Mark Adler, Kurt Johansson, and Pierre van Moerbeke, Double Aztec diamonds and the tacnode process, Adv. Math. 252 (2014), 518–571. MR 3144240, DOI 10.1016/j.aim.2013.10.012
- Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, and Mirjana Vuletić, Perfect sampling algorithm for Schur processes, 2014, arXiv:1407.3764 [math.PR].
- Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, and Sanjay Ramassamy, Dimers on rail yard graphs, Ann. Inst. Henri Poincaré D, to appear, 2017, arXiv:1504.05176 [math-ph].
- Alexei Borodin and Ivan Corwin, Macdonald processes, Probab. Theory Related Fields 158 (2014), no. 1-2, 225–400. MR 3152785, DOI 10.1007/s00440-013-0482-3
- Alexei Borodin and Patrik L. Ferrari, Anisotropic growth of random surfaces in $2+1$ dimensions, Comm. Math. Phys. 325 (2014), no. 2, 603–684. MR 3148098, DOI 10.1007/s00220-013-1823-x
- Alexei Borodin, Periodic Schur process and cylindric partitions, Duke Math. J. 140 (2007), no. 3, 391–468. MR 2362241, DOI 10.1215/S0012-7094-07-14031-6
- Alexei Borodin, Schur dynamics of the Schur processes, Adv. Math. 228 (2011), no. 4, 2268–2291. MR 2836121, DOI 10.1016/j.aim.2011.06.038
- Alexei Borodin and Eric M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys. 121 (2005), no. 3-4, 291–317. MR 2185331, DOI 10.1007/s10955-005-7583-z
- Henry Cohn, Noam Elkies, and James Propp, Local statistics for random domino tilings of the Aztec diamond, Duke Math. J. 85 (1996), no. 1, 117–166. MR 1412441, DOI 10.1215/S0012-7094-96-08506-3
- Sylvie Corteel, Cyrille Savelief, and Mirjana Vuletić, Plane overpartitions and cylindric partitions, J. Combin. Theory Ser. A 118 (2011), no. 4, 1239–1269. MR 2755080, DOI 10.1016/j.jcta.2010.12.001
- Sunil Chhita and Benjamin Young, Coupling functions for domino tilings of Aztec diamonds, Adv. Math. 259 (2014), 173–251. MR 3197656, DOI 10.1016/j.aim.2014.01.023
- Philippe Di Francesco and Rodrigo Soto-Garrido, Arctic curves of the octahedron equation, J. Phys. A 47 (2014), no. 28, 285204, 34. MR 3228361, DOI 10.1088/1751-8113/47/28/285204
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating-sign matrices and domino tilings. I, J. Algebraic Combin. 1 (1992), no. 2, 111–132. MR 1226347, DOI 10.1023/A:1022420103267
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating-sign matrices and domino tilings. II, J. Algebraic Combin. 1 (1992), no. 3, 219–234. MR 1194076, DOI 10.1023/A:1022483817303
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- R. Kenyon, Talk given at the workshop on Random partitions and Calabi-Yau crystals, Amsterdam, 2005. Slides available at http://www.math.brown.edu/~rkenyon/talks/pyramids.pdf.
- C. Krattenthaler, A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin, Electron. J. Combin. 3 (1996), no. 2, Research Paper 14, approx. 24. The Foata Festschrift. MR 1392499
- C. Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes, Adv. in Appl. Math. 37 (2006), no. 3, 404–431. MR 2261181, DOI 10.1016/j.aam.2005.12.006
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- T. Miwa, M. Jimbo, and E. Date, Solitons, Cambridge Tracts in Mathematics, vol. 135, Cambridge University Press, Cambridge, 2000. Differential equations, symmetries and infinite-dimensional algebras; Translated from the 1993 Japanese original by Miles Reid. MR 1736222
- Andrei Okounkov, Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), no. 1, 57–81. MR 1856553, DOI 10.1007/PL00001398
- Andrei Okounkov and Nikolai Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003), no. 3, 581–603. MR 1969205, DOI 10.1090/S0894-0347-03-00425-9
- Igor Pak and Alexander Postnikov, Oscillating tableaux, $S_p \times S_q$-modules, and Robinson-Schensted-Knuth correspondence, 8th International Conference on Formal Power Series and Algebraic Combinatorics, University of Minnesota, 1996. Paper available at http://www-igm.univ-mlv.fr/~fpsac/FPSAC96/articles.html.
- James Propp, Lattice structure for orientations of graphs, manuscript available at http://faculty.uml.edu/jpropp/orient.html, 1993.
- James Propp, Talk given at the American Mathematical Society Meeting in San Diego, January 1997. Slides available at http://jamespropp.org/san_diego.pdf.
- Jeffrey B. Remmel, The combinatorics of $(k,l)$-hook Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 253–287. MR 777704, DOI 10.1090/conm/034/777704
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Balázs Szendrői, Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol. 12 (2008), no. 2, 1171–1202. MR 2403807, DOI 10.2140/gt.2008.12.1171
- William P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), no. 8, 757–773. MR 1072815, DOI 10.2307/2324578
- Mirjana Vuletić, A generalization of MacMahon’s formula, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2789–2804. MR 2471939, DOI 10.1090/S0002-9947-08-04753-3
- Mirjana Vuletic, The pfaffian schur process, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–California Institute of Technology. MR 3054919
- Bo-Yin Yang, Two enumeration problems about the Aztec diamonds, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2716343
- Ben Young, Computing a pyramid partition generating function with dimer shuffling, J. Combin. Theory Ser. A 116 (2009), no. 2, 334–350. MR 2475021, DOI 10.1016/j.jcta.2008.06.006
- Benjamin Young, Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds, Duke Math. J. 152 (2010), no. 1, 115–153. With an appendix by Jim Bryan. MR 2643058, DOI 10.1215/00127094-2010-009
- Paul Zinn-Justin, Schur functions and Littlewood-Richardson rule from exactly solvable tiling models, Chern-Simons Research Lectures, Berkeley, 2012. Slides available at http://www.lpthe.jussieu.fr/~pzinn/semi/berkeley.pdf.
Additional Information
- Jérémie Bouttier
- Affiliation: Institut de Physique Théorique, CEA, IPhT, 91191 Gif-sur-Yvette, France – and – CNRS URA 2306 and Département de Mathématiques et Applications, École normale supérieure, 45 rue d’Ulm, F-75231 Paris Cedex 05, France
- MR Author ID: 696858
- Email: jeremie.bouttier@cea.fr
- Guillaume Chapuy
- Affiliation: LIAFA, CNRS et Université Paris Diderot, Case 7014, F-75205 Paris Cedex 13, France
- Email: guillaume.chapuy@liafa.univ-paris-diderot.fr
- Sylvie Corteel
- Affiliation: LIAFA, CNRS et Université Paris Diderot, Case 7014, F-75205 Paris Cedex 13, France
- MR Author ID: 633477
- Email: corteel@liafa.univ-paris-diderot.fr
- Received by editor(s): July 16, 2014
- Received by editor(s) in revised form: July 29, 2016
- Published electronically: April 24, 2017
- Additional Notes: All authors were partially funded by the Ville de Paris, projet Émergences Combinatoire à Paris
The first and second authors acknowledge partial support from Agence Nationale de la Recherche, grant number ANR 12-JS02-001-01 (Cartaplus)
The third author acknowledges support from Agence Nationale de la Recherche, grant number ANR-08-JCJC-0011 (ICOMB) - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 5921-5959
- MSC (2010): Primary 05A17, 05A19, 05E05, 82B20
- DOI: https://doi.org/10.1090/tran/7169
- MathSciNet review: 3646784