On the Sato-Tate conjecture for non-generic abelian surfaces
HTML articles powered by AMS MathViewer
- by Christian Johansson; with an appendix by Francesc Fité PDF
- Trans. Amer. Math. Soc. 369 (2017), 6303-6325
Abstract:
We prove many non-generic cases of the Sato-Tate conjecture for abelian surfaces as formulated by Fité, Kedlaya, Rotger and Sutherland, using the potential automorphy theorems of Barnet-Lamb, Gee, Geraghty and Taylor.References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- Emil Artin and John Tate, Class field theory, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. MR 1043169
- Grzegorz Banaszak and Kiran S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana Univ. Math. J. 64 (2015), no. 1, 245–274. MR 3320526, DOI 10.1512/iumj.2015.64.5438
- Thomas Barnet-Lamb, Toby Gee, and David Geraghty, The Sato-Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), no. 2, 411–469. MR 2748398, DOI 10.1090/S0894-0347-2010-00689-3
- Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. MR 3152941, DOI 10.4007/annals.2014.179.2.3
- Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29–98. MR 2827723, DOI 10.2977/PRIMS/31
- Gabriel Cardona, $\Bbb Q$-curves and abelian varieties of $\rm GL_2$-type from dihedral genus 2 curves, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 45–52. MR 2058641
- Gabriel Cardona and Jordi Quer, Curves of genus 2 with group of automorphisms isomorphic to $D_8$ or $D_{12}$, Trans. Amer. Math. Soc. 359 (2007), no. 6, 2831–2849. MR 2286059, DOI 10.1090/S0002-9947-07-04111-6
- L. Fargues, Motives and automorphic forms: The (potentially) abelian case, available at http://www.math.jussieu.fr/~fargues/Motifs_abeliens.pdf.
- Francesc Fité, Kiran S. Kedlaya, Víctor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390–1442. MR 2982436, DOI 10.1112/S0010437X12000279
- Francesc Fité and Andrew Sutherland, Sato-Tate distributions of twists of $y^2=x^5-x$ and $y^2=x^6+1$, preprint, available at http://arxiv.org/abs/1203.1476.
- Michael Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 1–21. MR 2641185, DOI 10.1007/978-0-8176-4747-6_{1}
- Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813. MR 2630056, DOI 10.4007/annals.2010.171.779
- Kiran S. Kedlaya and Andrew V. Sutherland, Computing $L$-series of hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 312–326. MR 2467855, DOI 10.1007/978-3-540-79456-1_{2}1
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Kenneth A. Ribet, Abelian varieties over $\textbf {Q}$ and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79. MR 1212980
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823
- Jean-Pierre Serre, Lectures on $N_X (p)$, Chapman & Hall/CRC Research Notes in Mathematics, vol. 11, CRC Press, Boca Raton, FL, 2012. MR 2920749
- J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
- Walter Tautz, Jaap Top, and Alain Verberkmoes, Explicit hyperelliptic curves with real multiplication and permutation polynomials, Canad. J. Math. 43 (1991), no. 5, 1055–1064. MR 1138583, DOI 10.4153/CJM-1991-061-x
- Richard Taylor, Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu 1 (2002), no. 1, 125–143. MR 1954941, DOI 10.1017/S1474748002000038
- André Weil, Sur la théorie du corps de classes, J. Math. Soc. Japan 3 (1951), 1–35 (French). MR 44569, DOI 10.2969/jmsj/00310001
Additional Information
- Christian Johansson
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- Address at time of publication: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 1031168
- Email: hcj24@cam.ac.uk
- Francesc Fité
- Affiliation: Universitat Politecnica de Catalunya, Edifici Omega, C/Jordi-Girona 1-3, E-08034 Barcelona, Spain
- MR Author ID: 995332
- Email: francesc.fite@gmail.com
- Received by editor(s): May 19, 2014
- Received by editor(s) in revised form: September 22, 2015
- Published electronically: January 9, 2017
- © Copyright 2017 by Christian Johansson and Francesc Fité
- Journal: Trans. Amer. Math. Soc. 369 (2017), 6303-6325
- MSC (2010): Primary 11F80, 11G10
- DOI: https://doi.org/10.1090/tran/6847
- MathSciNet review: 3660222