STABILITY RESULTS FOR SECTIONS OF CONVEX BODIES

M. STEPHEN AND V. YASKIN

Abstract. It is shown by Makai, Martini, and ´Odor that a convex body K, all of whose maximal sections pass through the origin, must be origin-symmetric. We prove a stability version of this result. We also discuss a theorem of Koldobsky and Shane about determination of convex bodies by fractional derivatives of the parallel section function and establish the corresponding stability result.

1. Introduction

Let K be a convex body in \mathbb{R}^n, i.e. a compact convex set with non-empty interior. Throughout the paper, we assume all convex bodies include the origin as an interior point. Now, we say K is origin-symmetric if $K = -K$. The parallel section function of K in the direction $\xi \in S^{n-1}$ is defined by

$$A_{K,\xi}(t) = \text{vol}_{n-1}(K \cap \{\xi^\perp + t\xi\}), \quad t \in \mathbb{R}. $$

Here, $\xi^\perp = \{x \in \mathbb{R}^n : \langle x, \xi \rangle = 0 \}$ is the hyperplane passing through the origin and orthogonal to the vector ξ.

For the study of central sections it is often more natural to consider a larger class of bodies than the class of convex bodies. For $x \in \mathbb{R}^n$, let $[0, x]$ denote the closed line segment connecting x to the origin. A star body K in \mathbb{R}^n is a compact set such that $[0, x] \subset K$ for every $x \in K$, and whose radial function defined by

$$\rho_K(\xi) = \max\{a \geq 0 : a\xi \in K\}, \quad \xi \in S^{n-1}, $$

is positive and continuous. Geometrically, $\rho_K(\xi)$ is the distance from the origin to the point on the boundary in the direction of ξ. Every convex body (with the origin in its interior) is a star body. The intersection body of a star body K is the star body IK with radial function

$$\rho_{IK}(\xi) = \text{vol}_{n-1}(K \cap \xi^\perp), \quad \xi \in S^{n-1}. $$

Intersection bodies were introduced by Lutwak in [10] and have been actively studied since then. For example, they played a crucial role in the solution of the Busemann-Petty problem (see [8] for details).

The cross-section body of a convex body K is the star body CK with radial function

$$\rho_{CK}(\xi) = \max_{t \in \mathbb{R}} A_{K,\xi}(t), \quad \xi \in S^{n-1}. $$

Received by the editors June 4, 2015 and, in revised form, September 16, 2015.

2010 Mathematics Subject Classification. Primary 52A20; Secondary 42B10.

Key words and phrases. Cross-section body, intersection body, stability.

Both authors were partially supported by NSERC.

©2017 American Mathematical Society
Cross-section bodies were introduced by Martini \cite{12}. For properties of these bodies and related questions see \cite{2}, \cite{4}, \cite{5}, \cite{11}, \cite{13}, \cite{14}.

Brunn’s theorem asserts that the origin-symmetry of a convex body K implies

$$A_{K,\xi}(0) = \max_{t \in \mathbb{R}} A_{K,\xi}(t)$$

for all $\xi \in S^{n-1}$. In other words, $CK = IK$. The converse statement was proved by Makai, Martini and Ondor \cite{11}.

Theorem 1 (Makai, Martini and Ondor). Let K be a convex body in \mathbb{R}^n such that, for every $\xi \in S^{n-1}$, $K \cap \xi^\perp$ has maximal $(n-1)$-dimensional volume amongst all the hyperplane sections of K perpendicular to ξ. Then K is origin-symmetric.

Theorem 1 ensures that when a convex body K is such that $CK = IK$, it is origin-symmetric. The goal of the present paper is to provide a stability version of this theorem. For star bodies K and L in \mathbb{R}^n, the radial metric is defined as

$$\rho(K, L) = \max_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)|.$$

We prove the following result. The notation $B^n_2(r)$ is used for the Euclidean ball in \mathbb{R}^n with radius $r > 0$ centred at the origin.

Theorem 2. Let K be a convex body in \mathbb{R}^n such that

$$B^n_2(r) \subset K \subset B^n_2(R)$$

for some $r, R > 0$. If there exists $0 < \varepsilon < \min \left\{ \left(\frac{\sqrt{3}r}{6\sqrt{3}\pi r + 32\pi} \right)^2, \frac{r^2}{16} \right\}$ so that

$$\rho(CK, IK) \leq \varepsilon,$$

then

$$\rho(K, -K) \leq C(n, r, R) \varepsilon^q \quad \text{where} \quad q = \begin{cases} \frac{1}{2} & \text{if } n = 2, \\ \frac{1}{2(n+1)} & \text{if } n = 3, 4, \\ \frac{1}{(n-2)(n+1)} & \text{if } n \geq 5. \end{cases}$$

Here, $C(n, r, R) > 0$ are constants depending on the dimension, r, and R.

Remark. In the proof of Theorem 2 we give the explicit dependency of $C(n, r, R)$ on r and R.

The following corollary is a straightforward consequence of the Lipschitz property of the parallel section function (Lemma 9) and Theorem 2. Roughly speaking, if for every direction $\xi \in S^{n-1}$, the convex body K has a maximal section perpendicular to ξ that is close to the origin, then K is close to being origin-symmetric.

Corollary 3. Let K be a convex body in \mathbb{R}^n such that

$$B^n_2(r) \subset K \subset B^n_2(R)$$

for some $r, R > 0$. Let $L = L(n)$ be the constant given in Lemma 9. If there exists

$$0 < \varepsilon < \min \left\{ \frac{r}{2}, \frac{3r^3}{LR^{n-1}(6\sqrt{3}\pi r + 32\pi)^2}, \frac{r^3}{16LR^{n-1}} \right\}$$

then

$$\rho(K, -K) \leq C(n, r, R) \varepsilon^q \quad \text{where} \quad q = \begin{cases} \frac{1}{2} & \text{if } n = 2, \\ \frac{1}{2(n+1)} & \text{if } n = 3, 4, \\ \frac{1}{(n-2)(n+1)} & \text{if } n \geq 5. \end{cases}$$

Here, $C(n, r, R) > 0$ are constants depending on the dimension, r, and R.\[\]
so that, for each direction \(\xi \in S^{n-1} \), \(A_{K,\xi} \) attains its maximum at some \(t = t(\xi) \) with \(|t(\xi)| \leq \varepsilon \), then

\[
\rho(K, -K) \leq \tilde{C}(n,r,R) \varepsilon^q.
\]

Here, \(\tilde{C}(n,r,R) > 0 \) are constants depending on the dimension, \(r \), and \(R \), and \(q = q(n) \) is the same as in Theorem 2.

The proof of Theorem 2 is given in Section 4 and consists of a sequence of lemmas from Section 3. The main idea is the following. If \(K \) is of class \(C^\infty \), then we use Brunn’s theorem and an integral formula from [3] to show that \(\rho(CK, IK) \) being small implies that \(\int_{S^{n-1}} |A'_{K,\xi}(0)|^2 d\xi \) is also small. (Recall that \(K \) is called \(m \)-smooth or \(C^m \) if \(\rho_K \in C^m(S^{n-1}) \).) If \(K \) is not smooth, we approximate it by smooth bodies, for which the above integral is small. Then we use the Fourier transform techniques from [15] and the tools of spherical harmonics similar to those from [6] to finish the proof.

As we will see below, the same methods can be used to obtain a stability version of a result of Koldobsky and Shane [9]. It is well known that the knowledge of \(A_{K,\xi}(0) \) for all \(\xi \in S^{n-1} \) is not sufficient for determining the body \(K \) uniquely, unless \(K \) is origin-symmetric. However, Koldobsky and Shane have shown that if \(A_{K,\xi}(0) \) is replaced by a fractional derivative of non-integer order of the function \(A_{K,\xi}(t) \) at \(t = 0 \), then this information does determine the body uniquely.

Theorem 4 (Koldobsky and Shane). Let \(K \) and \(L \) be convex bodies in \(\mathbb{R}^n \). Let \(-1 < p < n - 1\) be a non-integer, and let \(m \) be an integer greater than \(p \). If \(K \) and \(L \) are \(m \)-smooth and

\[
A_{K,\xi}^{(p)}(0) = A_{L,\xi}^{(p)}(0)
\]

for all \(\xi \in S^{n-1} \), then

\[
K = L.
\]

The following is our stability result.

Theorem 5. Let \(K \) and \(L \) be convex bodies in \(\mathbb{R}^n \) such that

\[
B^n_2(r) \subset K \subset B^n_2(R) \quad \text{and} \quad B^n_2(r) \subset L \subset B^n_2(R)
\]

for some \(r, R > 0 \). Let \(-1 < p < n - 1\) be a non-integer, and let \(m \) be an integer greater than \(p \). If \(K \) and \(L \) are \(m \)-smooth and

\[
\sup_{\xi \in S^{n-1}} \left| A_{K,\xi}^{(p)}(0) - A_{L,\xi}^{(p)}(0) \right| \leq \varepsilon
\]

for some \(0 < \varepsilon < 1 \), then

\[
\rho(K, L) \leq C(n,p,r,R) \varepsilon^q \quad \text{where} \quad q = \begin{cases}
\frac{2}{n+1} & \text{if } n \leq 2p + 2, \\
\frac{4}{(n-2p)(n+1)} & \text{if } n > 2p + 2.
\end{cases}
\]

Here, \(C(n,p,r,R) > 0 \) are constants depending on the dimension, \(p \), \(r \), and \(R \).

Remark. In the proof of Theorem 5 we give the explicit dependency of \(C(n,p,r,R) \) on \(r \) and \(R \). Furthermore, our second result remains true when \(p \) is a non-integer greater than \(n - 1 \). However, considering such values for \(p \) would make our arguments less clear.
2. Preliminaries

Throughout our paper, the constants
\[\kappa_n := \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2} + 1\right)} \quad \text{and} \quad \omega_n := n \cdot \kappa_n \]
give the volume and surface area of the unit Euclidean ball in \(\mathbb{R}^n \), where \(\Gamma \) denotes the Gamma function. Whenever we integrate over Borel subsets of the sphere \(S^{n-1} \), we are using non-normalized spherical measure; that is, the \((n-1)\)-dimensional Hausdorff measure on \(\mathbb{R}^n \), scaled so that the measure of \(S^{n-1} \) is \(\omega_n \).

Let \(K \) be a convex body in \(\mathbb{R}^n \) containing the origin in its interior. The maximal section function of \(K \) is defined by
\[m_K(\xi) = \max_{t \in \mathbb{R}} \text{vol}_{n-1}(K \cap \{\xi^\perp + t\xi\}) = \max_{t \in \mathbb{R}} A_{K,\xi}(t), \quad \xi \in S^{n-1}. \]

Note that \(m_K \) is simply the radial function for the cross-section body \(CK \). For each \(\xi \in S^{n-1} \), let \(t_K(\xi) \in \mathbb{R} \) be the closest to zero number such that \(A_{K,\xi}(t_K(\xi)) = m_K(\xi) \).

Towards the proof of our first stability result, we use the formula
\[f_K(t) := \frac{1}{\omega_n} \int_{S^{n-1}} A_{K,\xi}(t) \, d\xi \]
\[= \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \int_{K \cap \{|x| \geq |t|\}} \frac{1}{|x|} \left(1 - \frac{t^2}{|x|^2}\right)^{\frac{n-3}{2}} \, dx; \]
(1)

refer to Lemma 1.2 in [3] or Lemma 1 in [1] for the proof.

The Minkowski functional of \(K \) is defined by
\[\|x\|_K = \min\{a \geq 0 : x \in aK\}, \quad x \in \mathbb{R}^n. \]

It easy to see that \(\rho_K(\xi) = \|\xi\|_K^{-1} \) for \(\xi \in S^{n-1} \). The latter also allows us to consider \(\rho_K \) as a homogeneous degree \(-1\) function on \(\mathbb{R}^n \setminus \{0\} \). The support function of \(K \) is defined by
\[h_K(x) = \sup_{y \in K} \langle x, y \rangle, \quad x \in \mathbb{R}^n. \]

The function \(h_K \) is the Minkowski functional for the polar body \(K^o \) associated with \(K \). Given another convex body \(L \) in \(\mathbb{R}^n \), define
\[\delta_2(K, L) = \left(\int_{S^{n-1}} |h_K(\xi) - h_L(\xi)|^2 \, d\xi\right)^{\frac{1}{2}} \]
and
\[\delta_\infty(K, L) = \sup_{\xi \in S^{n-1}} |h_K(\xi) - h_L(\xi)|. \]

These functions are, respectively, the \(L^2 \) and Hausdorff metrics for convex bodies in \(\mathbb{R}^n \). The following theorem, due to Vitale [17], relates these metrics; refer to Proposition 2.3.1 in [7] for the proof.

Theorem 6. Let \(K \) and \(L \) be convex bodies in \(\mathbb{R}^n \), and let \(D \) denote the diameter of \(K \cup L \). Then
\[\frac{2\kappa_{n-1} D^{1-n}}{n(n + 1)} \delta_\infty(K, L)^{n+1} \leq \delta_2(K, L)^2 \leq \omega_n \delta_\infty(K, L)^2. \]
Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be any n-tuple of non-negative integers. We will use the notation
\[[\alpha] := \sum_{j=1}^{n} \alpha_j \]
to define the differential operator
\[\frac{\partial^{[\alpha]}}{\partial x^{\alpha}} := \frac{\partial^{[\alpha]}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}. \]

We let $S(\mathbb{R}^n)$ denote the space of Schwartz test functions; that is, functions in $C^\infty(\mathbb{R}^n)$ for which all derivatives decay faster than any rational function. The Fourier transform of $\phi \in S(\mathbb{R}^n)$ is a test function $\mathcal{F}\phi$ defined by
\[\mathcal{F}\phi(x) = \hat{\phi}(x) = \int_{\mathbb{R}^n} \phi(y) e^{-i(x,y)} \, dy, \quad x \in \mathbb{R}^n. \]
The continuous dual of $S(\mathbb{R}^n)$ is denoted as $S'(\mathbb{R}^n)$, and elements of $S'(\mathbb{R}^n)$ are referred to as distributions. The action of $f \in S'(\mathbb{R}^n)$ on a test function ϕ is denoted as $\langle f, \phi \rangle$. The Fourier transform of f is a distribution \hat{f} defined by
\[\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle, \quad \phi \in S(\mathbb{R}^n); \]
\hat{f} is well-defined as a distribution because $\mathcal{F} : S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ is a continuous and linear bijection.

For any $f \in C(S^{n-1})$ and $p \in \mathbb{C}$, the $-n+p$ homogeneous extension of f is given by
\[f_p(x) = |x|^{-n+p} f \left(\frac{x}{|x|} \right), \quad x \in \mathbb{R}^n \setminus \{0\}. \]
When $Rp > 0$, f_p is locally integrable on \mathbb{R}^n with at most polynomial growth at infinity. In this case, f_p is a distribution on $S(\mathbb{R}^n)$ acting by integration, and we may consider its Fourier transform. Goodey, Yaskin, and Yaskina show in [6] that, for $f \in C^\infty(S^{n-1})$, the additional restriction $Rp < n$ ensures that the action of \hat{f}_p is also by integration, with $\hat{f}_p \in C^\infty(\mathbb{R}^n \setminus \{0\})$.

We make extensive use of the mapping $I_p : C^\infty(S^{n-1}) \to C^\infty(S^{n-1})$ defined in [6], which sends a function f to the restriction of \hat{f}_p to S^{n-1}. For $0 < Rp < n$ and $m \in \mathbb{Z}^{\geq 0}$, Goodey, Yaskin and Yaskina show I_p has an eigenvalue $\lambda_m(n, p)$ whose eigenspace includes all spherical harmonics of degree m and dimension n. These eigenvalues are given explicitly in the following lemma; refer to [6] for the proof.

Lemma 7. If $0 < Rp < n$, then the eigenvalues $\lambda_m(n, p)$ are given by
\[\lambda_m(n, p) = \frac{2^p \pi^{\frac{n}{2}} (-1)^{\frac{n-1}{2}} \Gamma \left(\frac{m+p}{2} \right)}{\Gamma \left(\frac{m+n-2}{2} \right)} \] if m is even,
and
\[\lambda_m(n, p) = i \frac{2^p \pi^{\frac{n}{2}} (-1)^{\frac{n-1}{2}} \Gamma \left(\frac{m+p}{2} \right)}{\Gamma \left(\frac{m+n-2}{2} \right)} \] if m is odd.

The spherical gradient of $f \in C(S^{n-1})$ is the restriction of $\nabla f \left(\frac{x}{|x|} \right)$ to S^{n-1}. It is denoted by $\nabla_0 f$.

An extensive discussion on spherical harmonics is given in \[7\]. A spherical harmonic \(Q \) of dimension \(n \) is a harmonic and homogeneous polynomial in \(n \) variables whose domain is restricted to \(S^{n-1} \). We say \(Q \) is of degree \(m \) if the corresponding polynomial has degree \(m \). The collection \(\mathcal{H}_m^n \) of all spherical harmonics with dimension \(n \) and degree \(m \) is a finite dimensional Hilbert space with respect to the inner product for \(L^2(S^{n-1}) \). If, for each \(m \in \mathbb{Z}\geq 0 \), \(B_m \) is an orthonormal basis for \(\mathcal{H}_m^n \), then the union of all \(B_m \) is an orthonormal basis for \(L^2(S^{n-1}) \). Given \(f \in L^2(S^{n-1}) \), and defining

\[
\sum_{Q \in B_m} \langle f, Q \rangle Q =: Q_m \in \mathcal{H}_m^n,
\]

we call \(\sum_{m=0}^{\infty} Q_m \) the condensed harmonic expansion for \(f \). The condensed harmonic expansion does not depend on the particular orthonormal bases chosen for each \(\mathcal{H}_m^n \).

Let \(m \in \mathbb{N} \cup \{0\} \), and let \(h : \mathbb{R} \rightarrow \mathbb{C} \) be an integrable function which is \(m \)-smooth in a neighbourhood of the origin. For \(p \in \mathbb{C} \setminus \mathbb{Z} \) such that \(-1 < \Re p < m\), we define the fractional derivative of the order \(p \) of \(h \) at zero as

\[
h^{(p)}(0) = \frac{1}{\Gamma(-p)} \int_0^1 t^{-1-p} \left(h(-t) - \sum_{k=0}^{m-1} \frac{(-1)^k h^{(k)}(0)}{k!} t^k \right) dt + \frac{1}{\Gamma(-p)} \int_1^\infty t^{-1-p} h(-t) dt + \frac{1}{\Gamma(-p)} \sum_{k=0}^{m-1} \frac{(-1)^k h^{(k)}(0)}{k! (k-p)}.
\]

Given the simple poles of the Gamma function, the fractional derivatives of \(h \) at zero may be analytically extended to the integer values \(0, \ldots, m-1 \), and they will agree with the classical derivatives.

Let \(K \) be an infinitely smooth convex body. By Lemma 2.4 in \[8\], \(A_{K,\xi} \) is infinitely smooth in a neighbourhood of \(t = 0 \) which is uniform with respect to \(\xi \in S^{n-1} \). With the exception of a sign difference, the equality

\[
A_{K,\xi}^{(p)}(0) = \frac{\cos \left(\frac{\pi p}{2} \right)}{2\pi(n-1-p)} \left(\|x\|_K^{-n+1+p} + \|x\|_K^{-n+1+p} \right)^\wedge (\xi)
+ \frac{\sin \left(\frac{\pi p}{2} \right)}{2\pi(n-1-p)} \left(\|x\|_K^{-n+1+p} - \|x\|_K^{-n+1+p} \right)^\wedge (\xi)
\]

was proven by Ryabogin and Yaskin in \[15\] for all \(\xi \in S^{n-1} \) and \(p \in \mathbb{C} \) such that \(-1 < \Re(p) < n-1 \). The sign difference results from their use of \(h(x) \) rather than \(h(-x) \) in the definition of fractional derivatives.

3. Auxiliary results

We first prove some auxiliary lemmas.

Lemma 8. Let \(m \) be a non-negative integer. Let \(K \) be an \(m \)-smooth convex body in \(\mathbb{R}^n \) such that

\[
B_2^n(r) \subset K \subset B_2^n(R)
\]

for some \(r, R > 0 \). There exists a family \(\{K_\delta\}_{0 < \delta < 1} \) of infinitely smooth convex bodies in \(\mathbb{R}^n \) which approximate \(K \) in the radial metric as \(\delta \) approaches zero, with

\[
B_2^n((1+\delta)^{-1}r) \subset K_\delta \subset B_2^n((1-\delta)^{-1}R).
\]
Furthermore,

\[
\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \sup_{|t| \leq \frac{1}{4}} |A_{K,\xi}(t) - A_{K,\xi}(t)| = 0,
\]

and

\[
\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \left| A_{K,\xi}^{(p)}(0) - A_{K,\xi}^{(p)}(0) \right| = 0
\]

for every \(p \in \mathbb{R}, -1 < p \leq m \).

Proof. For each \(0 < \delta < 1 \), let \(\phi_{\delta} : [0, \infty) \to [0, \infty) \) be a \(C^\infty \) function with support contained in \([\delta/2, \delta]\), and

\[
\int_{\mathbb{R}^n} \phi_{\delta}(|z|) \, dz = 1.
\]

It follows from Theorem 3.3.1 in [10] that there is a family \(\{K_{\delta}\}_{0 < \delta < 1} \) of \(C^\infty \) convex bodies in \(\mathbb{R}^n \) such that

\[
\|x\|_{K_{\delta}} = \int_{\mathbb{R}^n} \|x + |x|z\|_{K} \phi_{\delta}(|z|) \, dz
\]

and

\[
\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \left| \|\xi\|_{K_{\delta}} - \|\xi\|_{K} \right| = 0.
\]

For each \(\xi \in S^{n-1} \) and \(z \in \mathbb{R}^n \) with \(|z| \leq \delta \), we have

\[
\|\xi + |\xi|z\|_{K} = \|\xi + z\|_{K_\lambda} = \lambda \eta \|\xi\|_{K}
\]

for some \(\eta \in S^{n-1} \) and \(0 < 1 - \delta \leq \lambda \leq 1 + \delta \). It then follows from the support of \(\phi_{\delta} \) and the inequality \(R^{-1} \leq \|\eta\|_K \leq r^{-1} \) that

\[
\|\xi\|_{K_{\delta}} = \int_{\mathbb{R}^n} \|\xi + z\|_{K} \phi_{\delta}(|z|) \, dz \leq (1 + \delta)r^{-1}
\]

and

\[
\|\xi\|_{K_{\delta}} = \int_{\mathbb{R}^n} \|\xi + z\|_{K} \phi_{\delta}(|z|) \, dz \geq (1 - \delta)R^{-1},
\]

which gives

\[
B_2^2((1 + \delta)^{-1}r) \subset K_{\delta} \subset B_2^2((1 - \delta)^{-1}R).
\]

This containment, with the limit of the difference of Minkowski functionals above, implies

(3) \[
\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \left| \rho_{K_{\delta}}(\xi) - \rho_{K}(\xi) \right| = 0.
\]

Therefore, \(\{K_{\delta}\}_{0 < \delta < 1} \) approximate \(K \) with respect to the radial metric.

Furthermore, the radial functions \(\{\rho_{K_{\delta}}\}_{0 < \delta < 1} \) approximate \(\rho_{K} \) in \(C^m(S^{n-1}) \). Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \) be any \(n \)-tuple of non-negative integers such that \(1 \leq ||\alpha|| \leq m \), and consider the function

\[
f(y, z) := \frac{\partial^{[\alpha]} \|x + |x|z\|_{K}}{\partial x^{\alpha}} \bigg|_{x=y}.
\]

Observe that \(f \) is uniformly continuous on

\[
\{y \in \mathbb{R}^n, 2^{-1} \leq |y| \leq 2\} \times \{z \in \mathbb{R}^n, |z| \leq 2^{-1}\}
\]
since K is m-smooth. Therefore, we have
\[
\frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}(\|x\|_K - \|x\|_K) \bigg|_{x = \xi} = \int_{\mathbb{R}^n} \frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}(\|x + z\|_K - \|x\|_K) \bigg|_{x = \xi} \phi_\delta(|z|) \, dz
\]
for all $\xi \in S^{n-1}$ and $\delta < 1/2$, which implies
\[
\sup_{\xi \in S^{n-1}} \left| \frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}(\|x\|_K - \|x\|_K) \bigg|_{x = \xi} \right| \leq \sup_{\xi \in S^{n-1}} \sup_{|z| < \delta} \left| f(\xi, z) - f(\xi, 0) \right|.
\]
Noting that $|(\xi, z) - (\xi, 0)| = |z| < \delta$, the uniform continuity of f then implies
\[
(4) \quad \lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \left| \frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}(\|x\|_K - \|x\|_K) \bigg|_{x = \xi} \right| = 0.
\]
It follows from the relation $\rho_K(x) = \|x\|_K^{-1}$ that $\frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}\rho_K \bigg|_{x = \xi}$ may be expressed as a finite linear combination of terms of the form
\[
\rho^{d+1}_K(\xi) \prod_{j=0}^d \frac{\partial^{[\beta_j]}_{\partial x^{[\beta_j]}}}{{\partial x^{[\beta_j]}}} \|x\|_K \bigg|_{x = \xi},
\]
where $d \in \mathbb{Z}^{\geq 0}$, and each β_j is an n-tuple of non-negative integers such that $[\beta_j] \geq 1$ and $[\alpha] = \sum_{j=0}^d [\beta_j]$. Of course, $\frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}\rho_K \bigg|_{x = \xi}$ may be expressed similarly. Equations (3) and (4) then imply
\[
(5) \quad \lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \left| \frac{\partial^{[\alpha]}_{\partial x\alpha}}{\partial x^\alpha}(\rho_K - \rho_K) \bigg|_{x = \xi} \right| = 0,
\]
once we note that ρ_K and the partial derivatives of $\|x\|_K$, up to order m, are bounded on S^{n-1}.

Our next step is to uniformly approximate the parallel section function $A_{K,\xi}$. Fix $\xi \in S^{n-1}$, and define the hyperplane
\[
H_t = \xi^\perp + t\xi
\]
for any $t \in \mathbb{R}$ such that $|t| < r$. Let S^{n-2} denote the Euclidean sphere in H_t centred at $t\xi$, and let $\rho_{K \cap H_t}$ denote the radial function for $K \cap H_t$ with respect to $t\xi$ on S^{n-2}. Then, for $|t| < r$,
\[
(6) \quad A_{K,\xi}(t) = \frac{1}{n-1} \int_{S^{n-2}} \rho_{K \cap H_t}^{n-1}(\theta) \, d\theta.
\]
For $|t| < r/2$ and $0 < \delta < 1$, $A_{K,\xi}(t)$ may be expressed similarly. Fixing $\theta \in S^{n-2}$, and with angles α and β as in Figure [1] we have
\[
|\rho_{K \cap H_t}(\theta) - \rho_{K \cap H_t}(\theta)| \leq \frac{\sin \beta}{\sin \alpha} |\rho_K(\eta_1) - \rho_K(\eta_1)|.
\]
By restricting to $|t| \leq r/4$, α may be bounded away from zero and π. Indeed, if $\alpha < \pi/2$, then
\[
\tan \alpha \geq \frac{r/2 - |t|}{R} \geq \frac{r}{4R},
\]
and if $\alpha > \pi/2$, then
\[
\tan(\pi - \alpha) \geq \frac{r/2 + |t|}{R} \geq \frac{r}{2R}.
\]
Figure 1. The diagrams represent two extremes: when the angle \(\alpha \) is small (\(\alpha < \pi / 2 \)), and when it is large (\(\alpha > \pi / 2 \)). The point \(O \) represents the origin in \(\mathbb{R}^n \), and \(|OT| = t \) where \(0 \leq t \leq r/4 \). The points \(A \) and \(C \) are the boundary points for \(K \) and \(K_\delta \) in the direction \(\theta \), with two obvious possibilities: either \(|TA| = \rho_{K \cap H_t}(\theta) \) and \(|TC| = \rho_{K_\delta \cap H_t}(\theta) \), or the opposite. The point \(B \) is a boundary point for the same convex body as \(A \), but in the direction \(\eta_1 \). The point \(D \) lies outside the convex body for which \(A \) and \(B \) are boundary points.

Therefore

\[
0 < \arctan \left(\frac{r}{4R} \right) \leq \alpha \leq \pi - \arctan \left(\frac{r}{4R} \right) < \pi.
\]

We now have

\[
(7) \quad |\rho_{K \cap H_t}(\theta) - \rho_{K_\delta \cap H_t}(\theta)| \leq \frac{1}{\sin \left(\arctan \left(\frac{r}{4R} \right) \right)} \sup_{\eta \in S^{n-1}} |\rho_K(\eta) - \rho_{K_\delta}(\eta)|,
\]

where the upper bound is independent of \(\xi \in S^{n-1} \), \(t \) with \(|t| \leq r/4 \), and \(\theta \in S^{n-2} \). This inequality, the integral expression (6), and equation (3) imply

\[
\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}, |t| \leq \frac{r}{4}} \sup_{\text{all } \theta} |A_{K,\xi}(t) - A_{K_\delta,\xi}(t)| = 0.
\]

Lemma 2.4 in [8] establishes the existence of a small neighbourhood of \(t = 0 \), independent of \(\xi \in S^{n-1} \), on which \(A_{K,\xi} \) is \(m \)-smooth. The following is an elaboration of Koldobsky’s proof, so that we may uniformly approximate the derivatives of \(A_{K,\xi} \). Again fix \(\xi \in S^{n-1} \), and fix \(\theta \in S^{n-2} \subset H_t \). Let \(\rho_{K,\theta} \) denote the \(m \)-smooth restriction of \(\rho_K \) to the two dimensional plane spanned by \(\xi \) and \(\theta \), and consider \(\rho_{K,\theta} \) as a function on \([0, 2\pi] \), where the angle is measured from the positive \(\theta \)-axis.
A right triangle then gives the equation
\[\rho_{K \cap H_t}(\theta) + t^2 = \rho_{K,\theta}^2 \left(\arctan \left(\frac{t}{\rho_{K \cap H_t}(\theta)} \right) \right), \]
which we can use to implicitly differentiate \(y(t) := \rho_{K \cap H_t}(\theta) \) as a function of \(t \).
Indeed,
\[
F(t, y) := y^2 + t^2 - \rho_{K,\theta}^2 \left(\arctan \left(\frac{t}{y} \right) \right)
\]
is differentiable away from \(y = 0 \), with
\[
F_y(t, y) = 2y + \frac{2t}{y^2 + t^2} \rho_{K,\theta} \left(\arctan \left(\frac{t}{y} \right) \right) \rho'_{K,\theta} \left(\arctan \left(\frac{t}{y} \right) \right).
\]
The containment \(B_{\mathbb{R}}^n(r) \subset K \subset B_{\mathbb{R}}^n(R) \) implies \(\rho_{K,\theta} \) is bounded above on \(S^{n-1} \) by \(R \), and
\[
\rho_{K \cap H_t}(\theta) \geq \frac{\sqrt{15}r}{4}
\]
for \(|t| \leq r/4\). If
\[
M = 1 + \sup_{\xi \in S^{n-1}} \left| \nabla_o \rho_K(\xi) \right| < \infty
\]
and \(\lambda \in \mathbb{R} \) is a constant such that
\[
0 < \lambda < \min \left\{ \frac{15\sqrt{15}r^3}{128RM}, \frac{r}{4} \right\},
\]
then
\[
\left| F_y(t, \rho_{K \cap H_t}(\theta)) \right| > \frac{\sqrt{15}r}{4}
\]
for \(|t| \leq \lambda \). Therefore, by the Implicit Function Theorem, \(y(t) = \rho_{K \cap H_t}(\theta) \) is differentiable on \((-\lambda, \lambda)\), with
\[
y'(t) = \frac{\rho_{K,\theta} \left(\arctan \left(\frac{t}{y} \right) \right) \rho'_{K,\theta} \left(\arctan \left(\frac{t}{y} \right) \right) (y^2 + t^2)^{-1} y - t}{y + t\rho_{K,\theta} \left(\arctan \left(\frac{t}{y} \right) \right) \rho'_{K,\theta} \left(\arctan \left(\frac{t}{y} \right) \right) (y^2 + t^2)^{-1}}.
\]
Recursion shows that \(\rho_{K \cap H_t}(\theta) \) is \(m \)-smooth on \((-\lambda, \lambda)\), independent of \(\xi \in S^{n-1} \) and \(\theta \in S^{n-2} \). It follows from the integral expression \([5]\) that \(A_{K,\xi} \) is \(m \)-smooth on \((-\lambda, \lambda)\) for every \(\xi \in S^{n-1} \). This argument also shows that \(A_{K,\delta,\xi} \) is \(m \)-smooth on the same interval, for \(\delta > 0 \) small enough. Using the resulting expressions for the derivatives of \(A_{K,\xi} \) and \(A_{K,\delta,\xi} \), and applying equations \([3]\), \([5]\), and the inequality \([7]\), we have
\[
\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \sup_{|t| \leq \lambda} \left| A_{K,\xi}^{(k)}(t) - A_{K,\delta,\xi}^{(k)}(t) \right| = 0
\]
for \(k = 1, \ldots, m \).
Finally, for any $p \in \mathbb{R}$ such that $-1 < p < m$ and $p \neq 0, 1, \ldots, m - 1$, we will uniformly approximate $A_{K, \xi}^{(p)}(0)$. With $\lambda > 0$ as chosen above, we have

$$A_{K, \xi}^{(p)}(0) = \frac{1}{\Gamma(-p)} \int_0^\lambda t^{-1-p} \left(A_{K, \xi}(t) - \sum_{k=0}^{m-1} \frac{(-1)^k A_{K, \xi}^{(k)}(0)}{k!} t^k \right) dt + \frac{1}{\Gamma(-p)} \int_\lambda^\infty t^{-1-p} A_{K, \xi}(t) dt + \frac{1}{\Gamma(-p)} \sum_{k=0}^{m-1} \frac{(-1)^k \lambda^{k-p} A_{K, \xi}^{(k)}(0)}{k! (k - p)}.$$

The first integral in this equation can be rewritten as

$$\int_0^\lambda t^{-1-p} \int_0^t A_{K, \xi}^{(m)}(z) \frac{1}{(m-1)!} (t-z)^{m-1} \, dz \, dt,$$

using the integral form of the remainder in Taylor’s Theorem. We also have

$$\int_\lambda^\infty t^{-1-p} A_{K, \xi}(t) dt = \int_{K \cap \{x, -\xi\geq \lambda\}} \langle x, -\xi \rangle^{-1-p} \, dx$$

$$= \int_{B_K(\xi)} \langle \eta, -\xi \rangle^{-1-p} \int_{\lambda(\eta, -\xi)^{-1}} \rho_K^{-2-p} \, dr \, d\eta$$

$$= \frac{1}{n-1-p} \int_{B_K(\xi)} \left(\langle \eta, -\xi \rangle^{-1-p} \rho_K^{n-1-p}(\eta) - \lambda^{n-1-p}(\eta, -\xi)^{-n} \right) \, d\eta,$$

where

$$B_K(\xi) = \left\{ \eta \in S^{n-1} \mid \langle \eta, \xi \rangle < 0 \text{ and } \rho_K(\eta) \geq \lambda \langle \eta, -\xi \rangle^{-1} \right\}.$$

Therefore, with the set $B_{K, \delta}(\xi)$ defined similarly, we have

$$\left| A_{K, \xi}^{(p)}(0) - A_{K, \delta, \xi}^{(p)}(0) \right| \cdot |\Gamma(-p)| \leq \frac{1}{(m-1)!} \left(\sup_{|z| \leq \lambda} \left| A_{K, \xi}^{(m)}(z) - A_{K, \delta, \xi}^{(m)}(z) \right| \right) \int_0^\lambda \int_0^t t^{-1-p} (t-z)^{m-1} \, dz \, dt$$

$$+ \left(\sup_{\eta \in S^{n-1}} \left| \rho_K^{n-1-p}(\eta) - \rho_{K, \delta}^{n-1-p}(\eta) \right| \right) \int_{B_K(\xi) \cap B_{K, \delta}(\xi)} \frac{\langle \eta, -\xi \rangle^{-1-p}}{|\eta - \xi|^{n-1-p}} \, d\eta$$

$$+ \left(\frac{\langle \eta, -\xi \rangle^{-1-p} \rho_{K, \delta}^{n-1-p}(\eta) - \lambda^{n-1-p}(\eta, -\xi)^{-n}}{n-1-p} \right) \int_{B_{K, \delta}(\xi) \setminus B_K(\xi)} \, d\eta$$

$$+ \sum_{k=0}^{m-1} \frac{\lambda^{k-p}}{k! (k-p)} \left| A_{K, \xi}^{(k)}(0) - A_{K, \delta, \xi}^{(k)}(0) \right|,$$

for $\delta > 0$ small enough. The integrals in expressions (8) and (9) are finite, with

$$\int_0^\lambda \int_0^t t^{-1-p} (t-z)^{m-1} \, dz \, dt = \frac{\lambda^{m-p}}{m (m-p)},$$
Lemma 9. Let K be a convex body in \mathbb{R}^n such that

$$B_2^n(r) \subset K \subset B_2^n(R)$$

for some $r, R > 0$. If

$$L(n) = 8(n-1)^{n-1} \pi^{\frac{n-1}{2}} \left[\Gamma \left(\frac{n+1}{2} \right) \right]^{-1},$$

since p is a non-integer less than m, and

$$\int_{B_K(\xi) \cap B_{K_\delta}(\xi)} \langle \eta, -\xi \rangle^{-1-p} d\eta \leq \left(\frac{R}{\lambda} \right)^{1+p} \omega_n.$$

Furthermore, the integrands in expression (10) and (11) are bounded above by

$$\left(\frac{2R}{\lambda} \right)^{1+p} (2R)^{n-1-p} + \lambda^{n-1-p} \left(\frac{2R}{\lambda} \right)^n \quad \text{if } p < n - 1,$$

and

$$\left(\frac{2R}{\lambda} \right)^{1+p} \left(\frac{r}{2} \right)^{n-1-p} + \lambda^{n-1-p} \left(\frac{2R}{\lambda} \right)^n \quad \text{if } p > n - 1,$$

noting that $B_2^n(r/2) \subset K_\delta \subset B_2^n(2R)$ for $\delta < 1/2$.

It is now sufficient to prove

$$\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \int_{S^{n-1}} \chi_{B(\xi, \delta)} d\eta = 0,$$

where

$$B(\xi, \delta) = B_K(\xi) \Delta B_{K_\delta}(\xi)$$

$$= \left\{ \eta \in S^{n-1} \mid \rho_K(\eta) \geq \lambda \langle \eta, -\xi \rangle > \rho_{K_\delta}(\eta) \text{ or } \rho_{K_\delta}(\eta) \geq \lambda \langle \eta, -\xi \rangle > \rho_K(\eta) \right\}.$$

We will prove the equivalent statement

$$\lim_{\delta \to 0} \sup_{\xi \in S^{n-1}} \int_{S^{n-1}} \chi_{B(-\xi, \delta)} d\eta = 0,$$

where the sign of ξ has changed, so that we may use Figure 1.

Towards this end, fix any $\theta \in S^{n-2}$, and consider Figure 1 specifically when $t = \lambda$. In this case,

$$\|OA\| = \rho_K(\eta_2) = \lambda \langle \eta_2, \xi \rangle^{-1} \text{ and } \|OC\| = \rho_{K_\delta}(\eta_1) = \lambda \langle \eta_1, \xi \rangle^{-1}$$

or

$$\|OC\| = \rho_K(\eta_2) = \lambda \langle \eta_2, \xi \rangle^{-1} \text{ and } \|OA\| = \rho_{K_\delta}(\eta_1) = \lambda \langle \eta_1, \xi \rangle^{-1}.$$

Any $\eta \in B(-\xi, \delta)$ lying in the right half-plane spanned by ξ and θ will lie between η_1 and η_2. Furthermore, the angle ω converges to zero as δ approaches zero, uniformly with respect to $\xi \in S^{n-1}$ and $\theta \in S^{n-2}$. Indeed, we have

$$0 \leq \sin \omega \leq \frac{2 \sin \beta \sin \gamma}{r \sin \alpha} \left| \rho_K(\eta_1) - \rho_{K_\delta}(\eta_1) \right|,$$

using the fact that both K and K_δ contain a ball of radius $r/2$, and with $\sin \alpha$ uniformly bounded away from zero as before. It follows that the spherical measure of $B(-\xi, \delta)$ converges to zero as δ approaches zero, uniformly with respect to $\xi \in S^{n-1}$.

\[\square\]

Lemma 9. Let K be a convex body in \mathbb{R}^n such that

$$B_2^n(r) \subset K \subset B_2^n(R)$$

for some $r, R > 0$. If

$$L(n) = 8(n-1)^{n-1} \pi^{\frac{n-1}{2}} \left[\Gamma \left(\frac{n+1}{2} \right) \right]^{-1},$$
then
\[|A_{K,\xi}(t) - A_{K,\xi}(s)| \leq L(n) R^{n-1} r^{-1} |t - s| \]
for all \(s, t \in [-r/2, r/2] \) and \(\xi \in S^{n-1} \).

Proof. For \(\xi \in S^{n-1} \), Brunn’s Theorem implies \(f := A_{K,\xi}^{-1} \) is concave on its support, which includes the interval \([-r, r]\). Let
\[L_0 = \max \left\{ \left| f \left(-\frac{3r}{4} \right) - f(-r) \right|, \left| f(r) - f \left(\frac{3r}{4} \right) \right| \right\}, \]
and suppose \(s, t \in [-r/2, r/2] \) are such that \(s < t \). If
\[\frac{f(t) - f(s)}{t - s} > 0, \]
then
\[f \left(-\frac{3r}{4} \right) - f(-r) \geq f(s) - f \left(-\frac{3r}{4} \right) \geq f(t) - f(s) > 0; \]
otherwise, we will obtain a contradiction of the concavity of \(f \). Similarly, if
\[\frac{f(t) - f(s)}{t - s} < 0, \]
then
\[f(r) - f \left(\frac{3r}{4} \right) \leq f \left(\frac{3r}{4} \right) - f(t) \leq f(t) - f(s) < 0. \]

Therefore,
\[|A_{K,\xi}^{-1}(t) - A_{K,\xi}^{-1}(s)| \leq L_0 |t - s| \]
for all \(s, t \in [-r/2, r/2] \). Now, we have
\[|A_{K,\xi}(t) - A_{K,\xi}(s)| \leq (n - 1) \left(\max_{t_0 \in \mathbb{R}} A_{K,\xi}(t_0) \right)^{\frac{n-1}{2}} \left| A_{K,\xi}^{-1}(t) - A_{K,\xi}^{-1}(s) \right|, \]
by the Mean Value Theorem, and
\[L_0 \leq \frac{4}{r} \cdot 2 \left(\max_{t_0 \in \mathbb{R}} A_{K,\xi}(t_0) \right)^{\frac{1}{n-1}} = \frac{8}{r} A_{K,\xi}^{-1} \left(t_K(\xi) \right). \]
Finally, since \(K \) is contained in a ball of radius \(R \), we have
\[A_{K,\xi}(t_K(\xi)) \leq \frac{\pi^{\frac{n+1}{2}}}{\Gamma \left(\frac{n+1}{2} \right)} R^{n-1}. \]
Combining these inequalities gives
\[|A_{K,\xi}(t) - A_{K,\xi}(s)| \leq L(n) R^{n-1} r^{-1} |t - s| \]
for all \(s, t \in [-r/2, r/2] \) and \(\xi \in S^{n-1} \).

We now prove two lemmas that will be the core of the proof of Theorem 2.
Lemma 10. Let K be a convex body in \mathbb{R}^n such that
\[B^n_2(r) \subset K \subset B^n_2(R) \]
for some $r, R > 0$. Let $\{K_\delta\}_{0 < \delta < 1}$ be as in Lemma 8. If there exists $0 < \varepsilon < \frac{r^2}{16}$ so that
\[\rho(CK, IK) \leq \varepsilon, \]
then, for $\delta > 0$ small enough,
\[\int_{S^1} |A'_{K_\delta, \xi}(0)| \, d\xi \leq \left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \quad \text{when } n = 2, \]
\[\int_{S^{n-1}} |A'_{K_\delta, \xi}(0)|^2 \, d\xi \leq C(n) \left(\varepsilon + \frac{R^{2n-4}}{r} + \frac{R^{3n-3}}{r^{n+2}} \right) \sqrt{\varepsilon} \quad \text{when } n \geq 3. \]
Here, $C(n) > 0$ are constants depending only on the dimension.

Proof. By Lemma 8, we may choose $0 < \alpha < 1/2$ small enough so that for every $0 < \delta < \alpha$,
\[\sup_{\xi \in S^{n-1}} \sup_{|t| \leq r/4} |A_{K_\delta, \xi}(t) - A_{K_\delta, \xi}(t)| \leq \varepsilon. \]
We first show that for each $0 < \delta < \alpha$ and $\xi \in S^{n-1}$, there exists a number $c_\delta(\xi)$ of which \[|A'_{K_\delta, \xi}(c_\delta(\xi))| \leq 3\sqrt{\varepsilon}. \]
Indeed, if $\xi \in S^{n-1}$ is such that $|t_{K_\delta}(\xi)| \leq \sqrt{\varepsilon}$, then
\[A'_{K_\delta, \xi}(t_{K_\delta}(\xi)) = 0, \]
and we may take $c_\delta(\xi) = t_{K_\delta}(\xi)$.
Assume $\xi \in S^{n-1}$ is such that $|t_{K_\delta}(\xi)| > \sqrt{\varepsilon}$. Letting s denote the sign of $t_{K_\delta}(\xi)$, we have
\[
\begin{align*}
|A_{K_\delta, \xi}(s\sqrt{\varepsilon}) - A_{K_\delta, \xi}(0)| &= A_{K_\delta, \xi}(s\sqrt{\varepsilon}) - A_{K_\delta, \xi}(0) \\
&= \left(A_{K_\delta, \xi}(s\sqrt{\varepsilon}) - A_{K_\delta, \xi}(0) \right) + \left(A_{K_\delta, \xi}(s\sqrt{\varepsilon}) - A_{K_\delta, \xi}(s\sqrt{\varepsilon}) \right) \\
&\quad + \left(A_{K_\delta, \xi}(0) - A_{K_\delta, \xi}(0) \right) \\
&\leq \sup_{\xi \in S^{n-1}} \max_{t \in \mathbb{R}} |A_{K_\delta, \xi}(t) - A_{K_\delta, \xi}(0)| + 2 \sup_{\xi \in S^{n-1}} \sup_{|t| \leq r/4} |A_{K_\delta, \xi}(t) - A_{K_\delta, \xi}(t)| \\
&\leq 3\varepsilon.
\end{align*}
\]
It then follows from the Mean Value Theorem that there is a number $c_\delta(\xi)$ with $|c_\delta(\xi)| \leq \sqrt{\varepsilon}$ for which
\[|A'_{K_\delta, \xi}(c_\delta(\xi))| = \left| \frac{A_{K_\delta, \xi}(s\sqrt{\varepsilon}) - A_{K_\delta, \xi}(0)}{s\sqrt{\varepsilon} - 0} \right| \leq 3\sqrt{\varepsilon}. \]
With the numbers $c_\delta(\xi)$ as above, for the case $n = 2$ we have
\[
\int_{S^{n-1}} |A'_{K_\delta,\xi}(0)|^2 \, d\xi \\
\leq \int_{S^{n-1}} \left(|A'_{K_\delta,\xi}(c_\delta(\xi))| + \left| \int_{c_\delta(\xi)}^0 A''_{K_\delta,\xi}(t) \, dt \right| \right) \, d\xi \\
\leq 6\pi\sqrt{\varepsilon} + \int_{S^{n-1}} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} |A''_{K_\delta,\xi}(t)| \, dt \, d\xi.
\]
(12)

When $0 < \delta < 1/2$, K_δ is contained in a ball of radius $2R$ and contains a ball of radius $r/2$. Lemma 9 then implies
\[
\sup_{\xi \in S^{n-1}} \sup_{t \in (-\sqrt{\varepsilon}, \sqrt{\varepsilon})} |A'_{K_\delta,\xi}(t)| \leq \frac{2L(n) (2R)^{n-1}}{r}.
\]

So, when $n \geq 3$,
\[
\int_{S^{n-1}} |A'_{K_\delta,\xi}(0)|^2 \, d\xi \\
\leq \int_{S^{n-1}} \left(|A'_{K_\delta,\xi}(c_\delta(\xi))|^2 + \left| \int_{c_\delta(\xi)}^0 2A''_{K_\delta,\xi}(t)A'_{K_\delta,\xi}(t) \, dt \right| \right) \, d\xi \\
\leq 9 \omega_n \varepsilon + \frac{4L(n) (2R)^{n-1}}{r} \int_{S^{n-1}} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} |A''_{K_\delta,\xi}(t)| \, dt \, d\xi.
\]
(13)

Considering inequalities (12) and (13), we still need to bound
\[
\int_{S^{n-1}} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} |A''_{K_\delta,\xi}(t)| \, dt \, d\xi
\]
for arbitrary n. Rearranging the equation
\[
\frac{d^2}{dt^2} A_{K_\delta,\xi}^{n-1}(t) = \frac{d}{dt} \left(\frac{1}{n-1} A_{K_\delta,\xi}^{2-n}(t) A'_{K_\delta,\xi}(t) \right) \\
= \frac{2-n}{(n-1)^2} A_{K_\delta,\xi}^{3-2n}(t) (A'_{K_\delta,\xi}(t))^2 + \frac{1}{n-1} A_{K_\delta,\xi}^{2-n}(t) A''_{K_\delta,\xi}(t)
\]
gives
\[
A'_{K_\delta,\xi}(t) = (n-1) A_{K_\delta,\xi}^{n-2}(t) \frac{d^2}{dt^2} A_{K_\delta,\xi}^{-1}(t) + \frac{n-2}{n-1} \left(A'_{K_\delta,\xi}(t) \right)^2
\]

Brunn’s Theorem implies that the second derivative of $A_{K_\delta,\xi}^{n-1}$ is non-positive for $|t| < r$, so
\[
|A''_{K_\delta,\xi}(t)| \leq (1-n) A_{K_\delta,\xi}^{n-2}(t) \frac{d^2}{dt^2} A_{K_\delta,\xi}^{-1}(t) + \frac{n-2}{n-1} \left(A'_{K_\delta,\xi}(t) \right)^2 \\
= -A'_{K_\delta,\xi}(t) + 2 \left(\frac{n-2}{n-1} \right) \left(A'_{K_\delta,\xi}(t) \right)^2.
\]
Because K_δ contains a ball of radius $r/2$ centred at the origin, we have

$$A_{K_\delta,\xi}(t) \geq \frac{1}{\Gamma\left(\frac{n+1}{2}\right)} \left(\frac{3\pi r^2}{16}\right)^{\frac{n-1}{2}}$$

for $|t| \leq r/4$, and so

$$\frac{n-2}{n-1} \left(\frac{A'_{K_\delta,\xi}(t)}{A_{K_\delta,\xi}(t)}\right)^2 \leq \frac{n-2}{n-1} \Gamma\left(\frac{n+1}{2}\right) \left(\frac{2L(n)(2R)^{n-1}}{r}\right)^2 \left(\frac{16}{3\pi r^2}\right)^{\frac{n-1}{2}}$$

for all $|t| \leq \sqrt{\varepsilon}$, where $\bar{L}(n)$ is a constant depending only on n. Therefore,

$$\int_{S^{n-1}} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} |A''_{K_\delta,\xi}(t)| \, dt \, d\xi$$

(14)

$$\leq \int_{S^{n-1}} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} \left(-A''_{K_\delta,\xi}(t) \right) dt \, d\xi + \frac{4 \omega_n \bar{L}(n) R^{2n-2}}{r^{n+1}} \sqrt{\varepsilon}.$$

We will bound the first term on the final line above using formula (14). Letting

$$\bar{C}(n) = \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)},$$

formula (14) becomes

$$f_{K_\delta}(t) = \bar{C}(n) \int_{S^{n-1}} \int_{|t|}^{\rho_{K_\delta}(\xi)} \frac{1}{r} \left(1 - \frac{t_2^2}{r^2}\right)^{\frac{n-3}{2}} r^{n-1} \, dr \, d\xi$$

$$= \bar{C}(n) \int_{S^{n-1}} \int_{|t|}^{\rho_{K_\delta}(\xi)} r \left(r^2 - t_2^2\right)^{\frac{n-3}{2}} \, dr \, d\xi$$

$$= \bar{C}(n) \left(\frac{n}{n-1}\right) \int_{S^{n-1}} \left(\rho_{K_\delta}^2(\xi) - t_2^2\right)^{\frac{n-1}{2}} \, d\xi.$$

The derivatives of $A_{K_\delta,\xi}$ and $(\rho_{K_\delta}^2(\xi) - t_2^2)^{\frac{n-1}{2}}$ are bounded on $(-\sqrt{\varepsilon}, \sqrt{\varepsilon})$ uniformly with respect to $\xi \in S^{n-1}$, so

$$f'_{K_\delta}(t) = \frac{1}{\omega_n} \int_{S^{n-1}} A'_{K_\delta,\xi}(t) \, d\xi = -\bar{C}(n) t \int_{S^{n-1}} (\rho_{K_\delta}^2(\xi) - t_2^2)^{\frac{n-3}{2}} \, d\xi.$$

Observing $\bar{C}(2) = \pi^{-1}$ and using that $0 < \varepsilon < r^2/16$ and $r/2 \leq \rho_{K_\delta} \leq 2R$ for $\delta < 1/2$, we have

$$\int_{S^{n-1}} A'_{K_\delta,\xi}(\pm \sqrt{\varepsilon}) \, d\xi$$

$$= \omega_n |f'_{K_\delta}(\pm \sqrt{\varepsilon})| = \bar{C}(n) \omega_n \sqrt{\varepsilon} \int_{S^{n-1}} (\rho_{K_\delta}^2(\xi) - \varepsilon)^{\frac{n-3}{2}} \, d\xi$$

$$\leq \begin{cases}
16 \pi \left(\sqrt{3} r\right)^{-1} \sqrt{\varepsilon} & \text{if } n = 2, \\
\bar{C}(n) \omega_n^3 (2R)^{n-3} \sqrt{\varepsilon} & \text{if } n \geq 3.
\end{cases}$$
This implies
\[
\left| \int_{S^{n-1}} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} A'_{K,\xi}(t) \, dt \, d\xi \right| = \left| \int_{S^{n-1}} (A'_{K,\xi}(-\sqrt{\varepsilon}) - A'_{K,\xi}(\sqrt{\varepsilon})) \, d\xi \right|
\]
(15)
\[
\leq \begin{cases}
32\pi (\sqrt{3}r)^{-1}\sqrt{\varepsilon} & \text{if } n = 2, \\
2\tilde{C}(n) \omega_n^2 (2R)^{n-3}\sqrt{\varepsilon} & \text{if } n \geq 3.
\end{cases}
\]

Noting that \(\tilde{L}(2) = 0 \), inequalities (12), (14), and (15) give
\[
\int_{S^1} |A'_{K,\xi}(0)| \, d\xi \leq \left(6\pi + \frac{32\pi}{\sqrt{3}r}\right)\sqrt{\varepsilon}
\]
when \(n = 2 \). For \(n \geq 3 \), inequalities (13), (14), and (15) give
\[
\int_{S^{n-1}} |A'_{K,\xi}(0)|^2 \, d\xi \leq C(n) \left(\sqrt{\varepsilon} + \frac{R^{2n-4}}{r} + \frac{R^{3n-3}}{r^{n+2}}\right)\sqrt{\varepsilon},
\]
where \(C(n) \) is a constant depending on \(n \). \(\square \)

Lemma 11. Let \(K \) and \(L \) be infinitely smooth convex bodies in \(\mathbb{R}^n \) such that
\[
B_2^n(r) \subset K \subset B_2^n(R) \quad \text{and} \quad B_2^n(r) \subset L \subset B_2^n(R)
\]
for some \(r, R > 0 \). Let \(p \in (0, n) \). If \(\varepsilon > 0 \) is such that
\[
\left\| I_p \left(\|\xi\|_K^{-n+p} - \|\xi\|_L^{-n+p} \right) \right\|_2 \leq \varepsilon,
\]
then when \(n \leq 2p \),
\[
\rho(K, L) \leq C(n, p) R^2 r^{\frac{3n-1+2p}{n+1}} \varepsilon^{\frac{2}{n+1}},
\]
and when \(n > 2p \),
\[
\rho(K, L) \leq C(n, p) R^2 r^{\frac{3n-1+2p}{n+1}} \left(\varepsilon^2 + \frac{R^{2(n+1-p)}}{r^{2p(n+1)}}\right)^{\frac{n-2p}{(n+2-2p)(n+1)}} \varepsilon^{\frac{2}{n+1}}.
\]

Here, \(\|\cdot\|_2 \) denotes the norm on \(L^2(S^{n-1}) \), and \(C(n, p) > 0 \) are constants depending on the dimension and \(p \).

Proof. Define the function
\[
f(\xi) := \|\xi\|_K^{-n+p} - \|\xi\|_L^{-n+p}
\]
on \(S^{n-1} \). Towards bounding the radial distance between \(K \) and \(L \) by \(\|f\|_2 \), the \(L^2(S^{n-1}) \) norm of \(f \), note that the identity
\[
\rho_K(\xi) - \rho_L(\xi) = \rho_K(\xi)\rho_L(\xi) \left(\|\xi\|_L - \|\xi\|_K\right)
\]
implies
\[
|\rho_K(\xi) - \rho_L(\xi)| \leq R^2 \|\xi\|_K - \|\xi\|_L|.
\]
By Theorem 6 we have
\[
\delta_\infty(K^\circ, L^\circ) \leq C(n) D^{\frac{n-1}{n+1}} \left(\delta_2(K^\circ, L^\circ)\right)^{\frac{2}{n+1}},
\]
Combining the above inequalities, we get

\[
\sup_{\xi \in S^{n-1}} |\|\xi\|_K - \|\xi\|_L| \leq C(n) \int_{S^{n-1}} (|\|\xi\|_K - \|\xi\|_L|^2) \, d\xi
\]

for some new constant \(C(n)\). There exists a function \(g : S^{n-1} \to \mathbb{R}\) such that

\[
(|\|\xi\|_K - \|\xi\|_L|)g(\xi) = |\|\xi\|_K^{-n+p} - \|\xi\|_L^{-n+p}|
\]

If \(\xi \in S^{n-1}\) is such that \(\|\xi\|_K \neq \|\xi\|_L\), then an application of the Mean Value Theorem to the function \(t^{-n+p}\) on the interval bounded by \(\|\xi\|_K\) and \(\|\xi\|_L\) gives

\[
|g(\xi)| \geq (n-p) \left(\max \{\|\xi\|_K, \|\xi\|_L\} \right)^{-n-1+p} \geq (n-p)r^{n+1-p}.
\]

Therefore,

\[
|\|\xi\|_K - \|\xi\|_L| \leq (n-p)^{-1}r^{-n-1+p}|f(\xi)|.
\]

Combining the above inequalities, we get

\[
(16) \quad \sup_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)| \leq C(n,p)R^2r^{-\frac{3n-4p}{n+2-p}} \|f\|_2^n
\]

for some constant \(C(n,p)\).

We now compare the \(L^2\) norm of \(f\) to that of \(I_p(f)\) by considering two separate cases based on the dimension \(n\), as in the proof of Theorem 3.6 in [6]. In both cases, we let \(\sum_{m=0}^\infty Q_m\) be the condensed harmonic expansion for \(f\), and let \(\lambda_m(n,p)\) be the eigenvalues from Lemma 7. As in [6], the condensed harmonic expansion for \(I_p f\) is then given by \(\sum_{m=0}^\infty \lambda_m(n,p)Q_m\).

Assume \(n \leq 2p\). An application of Stirling’s formula to the equations given in Lemma [7] shows that \(\lambda_m(n,p)\) diverges to infinity as \(m\) approaches infinity. The eigenvalues are also non-zero, so there is a constant \(C(n,p)\) such that \(C(n,p)|\lambda_m(n,p)|^2\) is greater than one for all \(m\). Therefore,

\[
\|f\|_2^2 = \sum_{m=0}^\infty \|Q_m\|_2^2
\]

\[
\leq C(n,p) \sum_{m=0}^\infty |\lambda_m(n,p)|^2 \|Q_m\|_2^2 = C(n,p)\|I_p f\|_2^2 \leq C(n,p)\varepsilon^2.
\]

Combining this inequality with (16) gives the first estimate in the theorem.

Assume \(n > 2p\). Hölder’s inequality gives

\[
\|f\|_2^2 = \sum_{m=0}^\infty \|Q_m\|_2^2
\]

\[
= \sum_{m=0}^\infty \left(|\lambda_m(n,p)|^{\frac{4}{n+2-2p}} \|Q_m\|_2^{\frac{4}{n+2-2p}} \right) \cdot \left(|\lambda_m(n,p)|^{-\frac{4}{n+2-2p}} \|Q_m\|_2^{-\frac{2n-4p}{n+2-2p}} \right)
\]

\[
\leq \left(\sum_{m=0}^\infty |\lambda_m(n,p)|^2 \|Q_m\|_2^2 \right)^{\frac{2}{n+2-2p}} \left(\sum_{m=0}^\infty |\lambda_m(n,p)|^{-\frac{4}{n+2-2p}} \|Q_m\|_2^{-\frac{2n-4p}{n+2-2p}} \right)^{\frac{2n-4p}{n+2-2p}},
\]

where \(C(n) > 0\) is a constant depending on \(n\), and \(D\) is the diameter of \(K^o \cup L^o\). Both \(K^o\) and \(L^o\) are contained in a ball of radius \(r^{-1}\) centred at the origin. We then have \(D \leq 2r^{-1}\), and

\[
\sup_{\xi \in S^{n-1}} |\|\xi\|_K - \|\xi\|_L| \leq C(n) \int_{S^{n-1}} (|\|\xi\|_K - \|\xi\|_L|^2) \, d\xi
\]

Therefore,

\[
|\|\xi\|_K - \|\xi\|_L| \leq (n-p)^{-1}r^{-n-1+p}|f(\xi)|.
\]

Combining the above inequalities, we get

\[
(16) \quad \sup_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)| \leq C(n,p)R^2r^{-\frac{3n-4p}{n+2-p}} \|f\|_2^n.
\]

for some constant \(C(n,p)\).
where we again note that the eigenvalues are all non-zero. It follows from Lemma 7 and Stirling’s formula that there is a constant $C(n, p)$ such that
\[
\left| \lambda_m(n, p) \right|^{\frac{-4}{n+2p}} \leq C(n, p)m^2
\]
for all $m \geq 1$, and
\[
\left| \lambda_0(n, p) \right|^{\frac{-4}{n+2p}} \leq C(n, p).
\]
Using the identity
\[
\| \nabla o f \|^2 = \sum_{m=1}^\infty m(m+n-2)\|Q_m\|^2
\]
given by Corollary 3.2.12 in [7], we then have
\[
\| f \|^2 \leq C(n, p) \left(\|I_p(f)\|^2 \right)^{\frac{-2}{n+2-2p}} \left(\|Q_0\|^2 + \|\nabla o f \|^2 \right)^{\frac{n-2p}{n+2-2p}}.
\]
The Minkowski functional of a convex body is the support function of the corresponding polar body, so
\[
\nabla o \|\xi\|^{-n+p}_K = (-n+p)\|\xi\|^{-n-1+p}_K \nabla o h_{K^o}(\xi).
\]
Because K^o is contained in a ball of radius r^{-1}, it follows from Lemma 2.2.1 in [7] that
\[
\|\nabla o h_{K^o}(\xi)\| \leq 2r^{-1}
\]
for all $\xi \in S^{n-1}$. We now have
\[
\|\nabla o \|\xi\|^{-n+p}_K\|^2 \leq 4(n-p)^2 R^{2(n+1-p)} r^{-2}\omega_n.
\]
This constant bounds the squared L^2 norm of $\nabla o \|\xi\|^{-n+p}_L$ as well, so
\[
\|\nabla o f\|^2 \leq 16(n-p)^2 R^{2(n+1-p)} r^{-2}\omega_n.
\]
Therefore,
\[
\| f \|^2 \leq C(n, p) \varepsilon^{\frac{4}{n+2-2p}} \left(\varepsilon^2 + R^{2(n+1-p)} r^{-2}\right)^{\frac{n-2p}{n+2-2p}},
\]
where the constant $C(n, p) > 0$ is different from before. This inequality with (16) gives the second estimate in the theorem. \qed

4. Proofs of stability results

We are now ready to prove our stability results.

Proof of Theorem 2. Let $\{K_\delta\}_{0<\delta<1}$ be the family of smooth convex bodies from Lemma 8. We will show that $\rho(K_\delta, -K_\delta)$ is small for $0 < \delta < \alpha$, where α is the constant from the proof of Lemma 10. The bounds in the theorem will then follow from
\[
\rho(K, -K) \leq \lim_{\delta \to 0} \left(2\rho(K, K_\delta) + \rho(K_\delta, -K_\delta) \right) = \lim_{\delta \to 0} \rho(K_\delta, -K_\delta).
\]
We begin by separately considering the case $n = 2$. Let the radial function ρ_{K_δ} be a function of the angle measured counter-clockwise from the positive horizontal axis. For any $\xi \in S^1$, let the angles ϕ_1 and ϕ_2 be functions of $t \in (-r, r)$ as indicated
Figure 2. K_δ is a convex body in \mathbb{R}^2, and $\xi \in S^1$.

In Figure 2, if ξ corresponds to the angle θ, then the parallel section function for K_δ may be written as

$$A_{K_\delta, \theta}(t) = \rho_{K_\delta}(\theta + \phi_1) \sin \phi_1 + \rho_{K_\delta}(\theta - \phi_2) \sin \phi_2.$$

Implicit differentiation of

$$\cos \phi_j = t \rho_{K_\delta}(\theta - (-1)^j \phi_j) \quad (j = 1, 2)$$

gives

$$\frac{d\phi_j}{dt} \bigg|_{t=0} = \frac{(-1)}{\rho_{K_\delta}(\theta - (-1)^j \frac{\pi}{2})}.$$

so

$$A'_{K_\delta, \theta}(0) = -\frac{\rho'_{K_\delta}(\theta + \frac{\pi}{2})}{\rho_{K_\delta}(\theta + \frac{\pi}{2})} + \frac{\rho'_{K_\delta}(\theta - \frac{\pi}{2})}{\rho_{K_\delta}(\theta - \frac{\pi}{2})}.$$

Since $f(\phi) := \rho_{K_\delta}(\phi + \pi/2) - \rho_{K_\delta}(\phi - \pi/2)$ is a continuous function on $[0, \pi]$ with

$$f(0) = \rho_{K_\delta}(\pi/2) - \rho_{K_\delta}(-\pi/2) = -\left(\rho_{K_\delta}(-\pi/2) - \rho_{K_\delta}(\pi/2)\right) = -f(\pi),$$

there exists an angle $\theta_0 \in [0, \pi]$ such that $\rho_{K_\delta}(\theta_0 + \pi/2) = \rho_{K_\delta}(\theta_0 - \pi/2)$. With this θ_0, we get the inequality

$$\left|\int_{\theta_0}^{\theta} \left(-\frac{\rho'_{K_\delta}(\phi + \frac{\pi}{2})}{\rho_{K_\delta}(\phi + \frac{\pi}{2})} + \frac{\rho'_{K_\delta}(\phi - \frac{\pi}{2})}{\rho_{K_\delta}(\phi - \frac{\pi}{2})} \right) d\phi \right| \leq \int_{0}^{2\pi} \left| A'_{K_\delta, \phi}(0) \right| d\phi.$$

Integrating the left side of this inequality and applying Lemma 10 to the right side, gives

$$\left| \log \left(\frac{\rho_{K_\delta}(\theta - \frac{\pi}{2})}{\rho_{K_\delta}(\theta + \frac{\pi}{2})} \right) \right| \leq \left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon}.$$
This implies
\[
1 - \exp \left[\left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \right] \leq \exp \left[- \left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \right] - 1
\]
\[
\leq \frac{\rho_{K_\delta}(\theta - \frac{\pi}{2})^2}{\rho_{K_\delta}(\theta + \frac{\pi}{2})^2} - 1
\]
\[
\leq \exp \left[\left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \right] - 1.
\]
It follows that
\[
2 \left(\exp \left[\left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \right] - 1 \right) R \leq \rho_{K_\delta}(\theta - \frac{\pi}{2}) - \rho_{K_\delta}(\theta + \frac{\pi}{2})
\]
\[
\leq 2 \left(\exp \left[\left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \right] - 1 \right) R,
\]
since \(K_\delta\) is contained in a ball of radius \(2R\). Viewing \(\rho_{K_\delta}\) again as a function of vectors, we have
\[
\sup_{\xi \in S^1} |\rho_{K_\delta}(\xi) - \rho_{K_\delta}(-\xi)| \leq 2 \left(\exp \left[\left(6\pi + \frac{32\pi}{\sqrt{3}r} \right) \sqrt{\varepsilon} \right] - 1 \right) R.
\]
The inequality \(e^t - 1 \leq 2t\) is valid when \(0 < t < 1\); therefore, if
\[
\varepsilon < \left(\frac{\sqrt{3}r}{6\sqrt{3}\pi r + 32\pi} \right)^2,
\]
then
\[
\sup_{\xi \in S^1} |\rho_{K_\delta}(\xi) - \rho_{K_\delta}(-\xi)| \leq \left(24\pi + \frac{128\pi}{\sqrt{3}r} \right) R \sqrt{\varepsilon}.
\]
Consider the case when \(n > 2\). For \(K_\delta\) with \(p = 1\), equation (2) becomes
\[
I_2 (||x||_{K_\delta}^{-n+2} - ||x||_{K_\delta}^{-n+2}) (\xi) = -2\pi i (n - 2) A'_{K_\delta, \xi}(0),
\]
so
\[
\|I_2 (||x||_{K_\delta}^{-n+2} - ||x||_{K_\delta}^{-n+2})\|_2 = 2\pi(n - 2) \left(\int_{S^{n-1}} |A'_{K_\delta, \xi}(0)|^2 d\xi \right) ^{\frac{1}{2}}
\]
\[
\leq \tilde{C}(n) \left(\sqrt{\varepsilon} + \frac{R^{2n-4}}{r} + \frac{R^{3n-3}}{r^{n+2}} \right) ^{\frac{1}{2}} \varepsilon^{\frac{1}{2}}
\]
\[
\rho(K_\delta, -K_\delta) \leq C(n) \frac{R^{2n-4}}{r^{n+2}} \left(\sqrt{\varepsilon} + \frac{R^{2n-4}}{r} + \frac{R^{3n-3}}{r^{n+2}} \right) ^{\frac{1}{n+1}} \varepsilon^{\frac{1}{2(n+1)}}
\]
when \(n = 3\) or \(4\), and
\[
\rho(K_\delta, -K_\delta) \leq C(n) \left[\left(\sqrt{\varepsilon} + \frac{R^{2n-4}}{r} + \frac{R^{3n-3}}{r^{n+2}} \right) ^{\frac{1}{2}} \right] ^{\frac{n-4}{(n-2)(n+1)}} \frac{R^{2n-4}}{r^{n+2}} \varepsilon^{\frac{1}{2(n-2)}}
\]
when \(n \geq 5\), where \(C(n) > 0\) are constants depending on the dimension. \[\square\]
We now present the proof of our second stability result.

Proof of Theorem [5]. Apply Lemma [8] to K and L; let $\{K_\delta\}_{0<\delta<1}$ and $\{L_\delta\}_{0<\delta<1}$ be the resulting families of smooth convex bodies. For each δ, define the constant

$$
\varepsilon_\delta := \sup_{\xi \in S^{n-1}} \left| A^{(p)}_{K_\delta,\xi}(0) - A^{(p)}_{K,\xi}(0) \right| + \sup_{\xi \in S^{n-1}} \left| A^{(p)}_{L_\delta,\xi}(0) - A^{(p)}_{L,\xi}(0) \right| + \varepsilon.
$$

Defining the auxiliary function

$$
f_\delta(\xi) := \|\xi\|_{K_\delta}^{n+1+p} - \|\xi\|_{L_\delta}^{n+1+p},
$$

we have

$$
\cos \left(\frac{p\pi}{2} / 2 \right) I_{1+p} (f_\delta(x) + f_\delta(-x))(\xi) + i \sin \left(\frac{p\pi}{2} / 2 \right) I_{1+p} (f_\delta(x) - f_\delta(-x))(\xi)
$$

$$
= 2\pi(n - 1 - p) \left(A^{(p)}_{K_\delta,\xi}(0) - A^{(p)}_{L_\delta,\xi}(0) \right) + \left(A^{(p)}_{K_\delta,-\xi}(0) - A^{(p)}_{L_\delta,-\xi}(0) \right)
$$

from equation (2). The function of ξ on the left side of this equality is split into its even and odd parts, because I_{1+p} preserves even and odd symmetry. Therefore,

$$
\frac{\cos \left(\frac{p\pi}{2} / 2 \right) I_{1+p} (f_\delta(x) + f_\delta(-x))(\xi)}{\pi(n - 1 - p)} = \left(A^{(p)}_{K_\delta,\xi}(0) - A^{(p)}_{L_\delta,\xi}(0) \right) + \left(A^{(p)}_{K_\delta,-\xi}(0) - A^{(p)}_{L_\delta,-\xi}(0) \right)
$$

and

$$
\frac{i \sin \left(\frac{p\pi}{2} / 2 \right) I_{1+p} (f_\delta(x) - f_\delta(-x))(\xi)}{\pi(n - 1 - p)} = \left(A^{(p)}_{K_\delta,\xi}(0) - A^{(p)}_{L_\delta,\xi}(0) \right) - \left(A^{(p)}_{K_\delta,-\xi}(0) - A^{(p)}_{L_\delta,-\xi}(0) \right).
$$

By the definition of ε_δ,

$$
\left| I_{1+p} (2f_\delta)(\xi) \right| \leq \left| I_{1+p} (f_\delta(x) + f_\delta(-x))(\xi) \right| + \left| I_{1+p} (f_\delta(x) - f_\delta(-x))(\xi) \right|
$$

$$
\leq \frac{2\pi(n - 1 - p)}{\cos \left(\frac{p\pi}{2} / 2 \right)} \varepsilon_\delta + \frac{2\pi(n - 1 - p)}{\sin \left(\frac{p\pi}{2} / 2 \right)} \varepsilon_\delta,
$$

which implies

$$
\| I_{1+p} (f_\delta) \|_2 \leq \frac{2\pi(n - 1 - p)}{\sqrt{\omega_n}} \left(\left| \cos \left(\frac{p\pi}{2} / 2 \right) \right| + \left| \sin \left(\frac{p\pi}{2} / 2 \right) \right| \right) \varepsilon_\delta.
$$

Both K_δ and L_δ are contained in a ball of radius $2R$ when $0 < \delta < 1/2$ and contain a ball of radius $r/2$. It now follows from Lemma [11] that

$$
\rho(K_\delta, L_\delta) \leq C(n, p) R^2 r^{\frac{3n+1+2p}{n+1}} \varepsilon_\delta^{\frac{2}{n+1}}
$$

when $n \leq 2p + 2$, and

$$
\rho(K_\delta, L_\delta) \leq C(n, p) R^2 r^{\frac{3n+1+2p}{n+1}} \left(\varepsilon_\delta^2 + \frac{R^2(n-p)}{r^2} \right) \varepsilon_\delta^{\frac{4}{n-2p(n+1)}}
$$

when $n > 2p + 2$, where $C(n, p) > 0$ are constants depending on the dimension and p. Finally, the bounds in the theorem statement follow from the observations

$$
\rho(K, L) \leq \lim_{\delta \to 0} \left(\rho(K_\delta, K_\delta) + \rho(L_\delta, L_\delta) + \rho(K_\delta, L_\delta) \right) = \lim_{\delta \to 0} \rho(K_\delta, L_\delta),
$$

and $\lim_{\delta \to 0} \varepsilon_\delta = \varepsilon$. \qed
REFERENCES

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

E-mail address: mastephe@ualberta.ca

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

E-mail address: yaskin@ualberta.ca