Homotopy principles for equivariant isomorphisms
HTML articles powered by AMS MathViewer
- by Frank Kutzschebauch, Finnur Lárusson and Gerald W. Schwarz PDF
- Trans. Amer. Math. Soc. 369 (2017), 7251-7300 Request permission
Abstract:
Let $G$ be a reductive complex Lie group acting holomorphically on Stein manifolds $X$ and $Y$. Let $p_X\colon X\to Q_X$ and $p_Y\colon Y\to Q_Y$ be the quotient mappings. When is there an equivariant biholomorphism of $X$ and $Y$? A necessary condition is that the categorical quotients $Q_X$ and $Q_Y$ are biholomorphic and that the biholomorphism $\varphi$ sends the Luna strata of $Q_X$ isomorphically onto the corresponding Luna strata of $Q_Y$. Fix $\varphi$. We demonstrate two homotopy principles in this situation. The first result says that if there is a $G$-diffeomorphism $\Phi \colon X\to Y$, inducing $\varphi$, which is $G$-biholomorphic on the reduced fibres of the quotient mappings, then $\Phi$ is homotopic, through $G$-diffeomorphisms satisfying the same conditions, to a $G$-equivariant biholomorphism from $X$ to $Y$. The second result roughly says that if we have a $G$-homeomorphism $\Phi \colon X\to Y$ which induces a continuous family of $G$-equivariant biholomorphisms of the fibres $p_X{^{-1}}(q)$ and $p_Y{^{-1}}(\varphi (q))$ for $q\in Q_X$ and if $X$ satisfies an auxiliary property (which holds for most $X$), then $\Phi$ is homotopic, through $G$-homeomorphisms satisfying the same conditions, to a $G$-equivariant biholomorphism from $X$ to $Y$. Our results improve upon those of our earlier paper [J. Reine Angew. Math. 706 (2015), 193–214] and use new ideas and techniques.References
- E. Bierstone and P. D. Milman, Relations among analytic functions. I, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 187–239 (English, with French summary). MR 894566, DOI 10.5802/aif.1082
- E. Bierstone and P. D. Milman, Relations among analytic functions. II, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 2, 49–77 (English, with French summary). MR 898931, DOI 10.5802/aif.1086
- Henri Cartan, Espaces fibrés analytiques, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 97–121 (French). MR 0098196
- Harm Derksen and Frank Kutzschebauch, Nonlinearizable holomorphic group actions, Math. Ann. 311 (1998), no. 1, 41–53. MR 1624259, DOI 10.1007/s002080050175
- Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286, DOI 10.1007/BFb0080338
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518, DOI 10.1007/978-1-4615-7904-5
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin-New York, 1979. Translated from the German by Alan Huckleberry. MR 580152, DOI 10.1007/978-1-4757-4357-9
- Hans Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Rämen, Math. Ann. 133 (1957), 139–159 (German). MR 98197, DOI 10.1007/BF01343296
- Hans Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450–472 (German). MR 98198, DOI 10.1007/BF01343758
- Hans Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263–273 (German). MR 98199, DOI 10.1007/BF01351803
- M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851–897. MR 1001851, DOI 10.1090/S0894-0347-1989-1001851-9
- Peter Heinzner, Linear äquivariante Einbettungen Steinscher Räume, Math. Ann. 280 (1988), no. 1, 147–160 (German). MR 928302, DOI 10.1007/BF01474186
- Alan T. Huckleberry, Actions of groups of holomorphic transformations, Several complex variables, VI, Encyclopaedia Math. Sci., vol. 69, Springer, Berlin, 1990, pp. 143–196. MR 1095091
- Frank Kutzschebauch, Finnur Lárusson, and Gerald W. Schwarz, Sufficient conditions for holomorphic linearisation, Transform. Groups, arXiv:1503.00794.
- Frank Kutzschebauch, Finnur Lárusson, and Gerald W. Schwarz, An Oka principle for equivariant isomorphisms, J. Reine Angew. Math. 706 (2015), 193–214. MR 3393367, DOI 10.1515/crelle-2013-0064
- Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983, DOI 10.1007/978-3-662-03582-5
- Hanspeter Kraft, Challenging problems on affine $n$-space, Astérisque 237 (1996), Exp. No. 802, 5, 295–317. Séminaire Bourbaki, Vol. 1994/95. MR 1423629
- Hanspeter Kraft and Gerald W. Schwarz, Reductive group actions with one-dimensional quotient, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 1–97. MR 1215592, DOI 10.1007/BF02699430
- John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- Domingo Luna, Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 0342523, DOI 10.24033/msmf.110
- Domingo Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33–49 (French, with English summary). MR 423398
- Mark Roberts, A note on coherent $G$-sheaves, Math. Ann. 275 (1986), no. 4, 573–582. MR 859331, DOI 10.1007/BF01459138
- Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37–135. MR 573821, DOI 10.1007/BF02684776
- Gerald W. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 2, 89–94 (English, with French summary). MR 1004947
- Gerald W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 253–305. MR 1326669, DOI 10.24033/asens.1714
- Gerald W. Schwarz, Vector fields and Luna strata, J. Pure Appl. Algebra 217 (2013), no. 1, 54–58. MR 2965903, DOI 10.1016/j.jpaa.2012.04.008
- Gerald W. Schwarz, Quotients, automorphisms and differential operators, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 169–193. MR 3174739, DOI 10.1112/jlms/jdt056
- Dennis M. Snow, Reductive group actions on Stein spaces, Math. Ann. 259 (1982), no. 1, 79–97. MR 656653, DOI 10.1007/BF01456830
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
Additional Information
- Frank Kutzschebauch
- Affiliation: Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- MR Author ID: 330461
- Email: frank.kutzschebauch@math.unibe.ch
- Finnur Lárusson
- Affiliation: School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- MR Author ID: 347171
- Email: finnur.larusson@adelaide.edu.au
- Gerald W. Schwarz
- Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454-9110
- MR Author ID: 157450
- Email: schwarz@brandeis.edu
- Received by editor(s): April 23, 2015
- Received by editor(s) in revised form: January 13, 2016
- Published electronically: May 5, 2017
- Additional Notes: The first author was partially supported by Schweizerischer Nationalfond grant 200021-140235/1
The first and third authors thank the University of Adelaide for hospitality and the Australian Research Council for financial support
The second author was partially supported by Australian Research Council grants DP120104110 and DP150103442
The second and third authors thank the University of Bern for hospitality and financial support - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 7251-7300
- MSC (2010): Primary 32M05; Secondary 14L24, 14L30, 32E10, 32M17, 32Q28
- DOI: https://doi.org/10.1090/tran/6797
- MathSciNet review: 3683109