Isometric dilations and $H^\infty$ calculus for bounded analytic semigroups and Ritt operators
HTML articles powered by AMS MathViewer
- by Cédric Arhancet, Stephan Fackler and Christian Le Merdy PDF
- Trans. Amer. Math. Soc. 369 (2017), 6899-6933 Request permission
Abstract:
We show that any bounded analytic semigroup on $L^p$ (with $1<p<\infty$) whose negative generator admits a bounded $H^{\infty }(\Sigma _\theta )$ functional calculus for some $\theta \in (0,\frac {\pi }{2})$ can be dilated into a bounded analytic semigroup $(R_t)_{t\geqslant 0}$ on a bigger $L^p$-space in such a way that $R_t$ is a positive contraction for any $t\geqslant 0$. We also establish a discrete analogue for Ritt operators and consider the case when $L^p$-spaces are replaced by more general Banach spaces. In connection with these functional calculus issues, we study isometric dilations of bounded continuous representations of amenable groups on Banach spaces and establish various generalizations of Dixmier’s unitarization theorem.References
- Cédric Arhancet and Christian Le Merdy, Dilation of Ritt operators on $L^p$-spaces, Israel J. Math. 201 (2014), no. 1, 373–414. MR 3265289, DOI 10.1007/s11856-014-1030-6
- Wolfgang Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates, Evolutionary equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 1–85. MR 2103696
- Cédric Arhancet, Square functions for Ritt operators on noncommutative $L^p$-spaces, Math. Scand. 113 (2013), no. 2, 292–319. MR 3145184, DOI 10.7146/math.scand.a-15573
- Earl Berkson, T. A. Gillespie, and Paul S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), no. 1, 1–14. MR 1004717, DOI 10.1007/BF02386355
- Sönke Blunck, Analyticity and discrete maximal regularity on $L_p$-spaces, J. Funct. Anal. 183 (2001), no. 1, 211–230. MR 1837537, DOI 10.1006/jfan.2001.3740
- Sönke Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), no. 2, 157–176. MR 1853519, DOI 10.4064/sm146-2-3
- Charles J. K. Batty and Derek W. Robinson, Positive one-parameter semigroups on ordered Banach spaces, Acta Appl. Math. 2 (1984), no. 3-4, 221–296. MR 753696, DOI 10.1007/BF02280855
- Donald L. Burkholder, Martingales and singular integrals in Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 233–269. MR 1863694, DOI 10.1016/S1874-5849(01)80008-5
- Michael Cowling, Ian Doust, Alan McIntosh, and Atsushi Yagi, Banach space operators with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), no. 1, 51–89. MR 1364554, DOI 10.1017/S1446788700037393
- Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438
- Jacques Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213–227 (French). MR 37470
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- K. de Leeuw and I. Glicksberg, The decomposition of certain group representations, J. Analyse Math. 15 (1965), 135–192. MR 186755, DOI 10.1007/BF02787692
- Nick Dungey, Subordinated discrete semigroups of operators, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1721–1741. MR 2746662, DOI 10.1090/S0002-9947-2010-05094-9
- Stephan Fackler, On the structure of semigroups on $L_p$ with a bounded $H^\infty$-calculus, Bull. Lond. Math. Soc. 46 (2014), no. 5, 1063–1076. MR 3262207, DOI 10.1112/blms/bdu062
- Stephan Fackler, Regularity properties of sectorial operators: Extrapolation, counterexamples and generic classes, Ph.D. thesis, Universität Ulm, 2015.
- T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), no. 2, 121–155. MR 425581, DOI 10.4064/sm-56-2-121-155
- T. Figiel, Uniformly convex norms on Banach lattices, Studia Math. 68 (1980), no. 3, 215–247. MR 599147, DOI 10.4064/sm-68-3-215-247
- Andreas M. Fröhlich and Lutz Weis, $H^\infty$ calculus and dilations, Bull. Soc. Math. France 134 (2006), no. 4, 487–508 (English, with English and French summaries). MR 2364942, DOI 10.24033/bsmf.2520
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Markus Haase, The functional calculus for sectorial operators, Operator Theory: Advances and Applications, vol. 169, Birkhäuser Verlag, Basel, 2006. MR 2244037, DOI 10.1007/3-7643-7698-8
- S. Heinrich, Ultraproducts of $L_{1}$-predual spaces, Fund. Math. 113 (1981), no. 3, 221–234. MR 641306, DOI 10.4064/fm-113-3-221-234
- Matthias Hieber and Jan Prüss, Functional calculi for linear operators in vector-valued $L^p$-spaces via the transference principle, Adv. Differential Equations 3 (1998), no. 6, 847–872. MR 1659281
- Markus Haase and Yuri Tomilov, Domain characterizations of certain functions of power-bounded operators, Studia Math. 196 (2010), no. 3, 265–288. MR 2587299, DOI 10.4064/sm196-3-4
- Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726, DOI 10.1017/CBO9780511526169
- Marius Junge, Christian Le Merdy, and Quanhua Xu, $H^\infty$ functional calculus and square functions on noncommutative $L^p$-spaces, Astérisque 305 (2006), vi+138 (English, with English and French summaries). MR 2265255
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- M. A. Khamsi and B. Sims, Ultra-methods in metric fixed point theory, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 177–199. MR 1904277, DOI 10.1002/9781118033074
- N. J. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators, Math. Ann. 321 (2001), no. 2, 319–345. MR 1866491, DOI 10.1007/s002080100231
- Peer C. Kunstmann and Lutz Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959, DOI 10.1007/978-3-540-44653-8_{2}
- N. J. Kalton and L. Weis, The $h^{\infty }$-functional calculus and square function estimates, arXiv: http://arxiv.org/abs/1411.0472 (2014).
- S. Kwapień, On Banach spaces containing $c_{0}$, Studia Math. 52 (1974), 187–188. MR 356156
- Christian Le Merdy, $H^\infty$-functional calculus and applications to maximal regularity, Semi-groupes d’opérateurs et calcul fonctionnel (Besançon, 1998) Publ. Math. UFR Sci. Tech. Besançon, vol. 16, Univ. Franche-Comté, Besançon, 1999, pp. 41–77. MR 1768324
- Christian Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum 56 (1998), no. 2, 205–224. MR 1490293, DOI 10.1007/PL00005942
- Christian Le Merdy, Square functions, bounded analytic semigroups, and applications, Perspectives in operator theory, Banach Center Publ., vol. 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 191–220. MR 2341347, DOI 10.4064/bc75-0-12
- Christian Le Merdy, $\gamma$-Bounded representations of amenable groups, Adv. Math. 224 (2010), no. 4, 1641–1671. MR 2646307, DOI 10.1016/j.aim.2010.01.019
- Christian Le Merdy, $H^\infty$ functional calculus and square function estimates for Ritt operators, Rev. Mat. Iberoam. 30 (2014), no. 4, 1149–1190. MR 3293430, DOI 10.4171/RMI/811
- Christian Le Merdy and Arnaud Simard, Sums of commuting operators with maximal regularity, Studia Math. 147 (2001), no. 2, 103–118. MR 1855818, DOI 10.4064/sm147-2-1
- Christian Le Merdy and Quanhua Xu, Maximal theorems and square functions for analytic operators on $L^p$-spaces, J. Lond. Math. Soc. (2) 86 (2012), no. 2, 343–365. MR 2980915, DOI 10.1112/jlms/jds009
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- Yu. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math. 134 (1999), no. 2, 153–167. MR 1688223, DOI 10.4064/sm-134-2-153-167
- Alan McIntosh, Operators which have an $H_\infty$ functional calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, pp. 210–231. MR 912940
- Celso Martínez Carracedo and Miguel Sanz Alix, The theory of fractional powers of operators, North-Holland Mathematics Studies, vol. 187, North-Holland Publishing Co., Amsterdam, 2001. MR 1850825
- Olavi Nevanlinna, Convergence of iterations for linear equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. MR 1217705, DOI 10.1007/978-3-0348-8547-8
- Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002. Model operators and systems; Translated from the French by Andreas Hartmann and revised by the author. MR 1892647
- Béla Nagy and Jaroslav Zemánek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), no. 2, 143–151. MR 1688222, DOI 10.4064/sm-134-2-143-151
- Edward W. Packel, A semigroup analogue of Foguel’s counterexample, Proc. Amer. Math. Soc. 21 (1969), 240–244. MR 238124, DOI 10.1090/S0002-9939-1969-0238124-7
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Gilles Pisier, Complex interpolation and regular operators between Banach lattices, Arch. Math. (Basel) 62 (1994), no. 3, 261–269. MR 1259842, DOI 10.1007/BF01261367
- Gilles Pisier, Similarity problems and completely bounded maps, Second, expanded edition, Lecture Notes in Mathematics, vol. 1618, Springer-Verlag, Berlin, 2001. Includes the solution to “The Halmos problem”. MR 1818047, DOI 10.1007/b55674
- Gilles Pisier, Martingales in Banach spaces (in connection with type and cotype), http://www.math.jussieu.fr/~pisier/ihp-pisier.pdf, 2011.
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Beata Randrianantoanina, Norm-one projections in Banach spaces, Taiwanese J. Math. 5 (2001), no. 1, 35–95. International Conference on Mathematical Analysis and its Applications (Kaohsiung, 2000). MR 1816130, DOI 10.11650/twjm/1500574888
- Barry Simon, The $P(\phi )_{2}$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1974. MR 0489552
- Pascale Vitse, A band limited and Besov class functional calculus for Tadmor-Ritt operators, Arch. Math. (Basel) 85 (2005), no. 4, 374–385. MR 2174234, DOI 10.1007/s00013-005-1345-7
- J. M. A. M. van Neerven, M. Veraar, and L. Weis, Stochastic integration in Banach spaces - a survey, arXiv:1304.7575 (2013).
- J. M. A. M. van Neerven and L. Weis, Stochastic integration of functions with values in a Banach space, Studia Math. 166 (2005), no. 2, 131–170. MR 2109586, DOI 10.4064/sm166-2-2
- Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735–758. MR 1825406, DOI 10.1007/PL00004457
- Lutz Weis, The $H^\infty$ holomorphic functional calculus for sectorial operators—a survey, Partial differential equations and functional analysis, Oper. Theory Adv. Appl., vol. 168, Birkhäuser, Basel, 2006, pp. 263–294. MR 2240065, DOI 10.1007/3-7643-7601-5_{1}6
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Additional Information
- Cédric Arhancet
- Affiliation: Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté, 25030 Besançon Cedex, France
- Email: cedric.arhancet@univ-fcomte.fr
- Stephan Fackler
- Affiliation: Institute of Applied Analysis, University of Ulm, Helmholtzstrasse 18, 89069 Ulm, Germany
- MR Author ID: 1008455
- Email: stephan.fackler@uni-ulm.de
- Christian Le Merdy
- Affiliation: Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté, 25030 Besançon Cedex, France
- MR Author ID: 308170
- Email: christian.lemerdy@univ-fcomte.fr
- Received by editor(s): April 28, 2015
- Received by editor(s) in revised form: September 28, 2015
- Published electronically: March 17, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 6899-6933
- MSC (2010): Primary 47A60; Secondary 47D06, 47A20, 22D12
- DOI: https://doi.org/10.1090/tran/6849
- MathSciNet review: 3683097