A vanishing theorem on fake projective planes with enough automorphisms
HTML articles powered by AMS MathViewer
- by JongHae Keum PDF
- Trans. Amer. Math. Soc. 369 (2017), 7067-7083 Request permission
Abstract:
For every fake projective plane $X$ with automorphism group of order 21, we prove that $H^i(X, 2L)=0$ for all $i$ and for every ample line bundle $L$ with $L^2=1$. For every fake projective plane with automorphism group of order 9, we prove the same vanishing for every cubic root (and its twist by a 2-torsion) of the canonical bundle $K$. As an immediate consequence, there are exceptional sequences of length 3 on such fake projective planes.References
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119–A121. MR 433520
- Donald I. Cartwright and Tim Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, 11–13 (English, with English and French summaries). MR 2586735, DOI 10.1016/j.crma.2009.11.016
- D. Cartwright and T. Steger, http://www.maths.usyd.edu.au/u/donaldc/fakeprojective planes
- Igor Dolgachev, Algebraic surfaces with $q=p_g=0$, Algebraic surfaces, C.I.M.E. Summer Sch., vol. 76, Springer, Heidelberg, 2010, pp. 97–215. MR 2757651, DOI 10.1007/978-3-642-11087-0_{3}
- Najmuddin Fakhruddin, Exceptional collections on 2-adically uniformized fake projective planes, Math. Res. Lett. 22 (2015), no. 1, 43–57. MR 3342178, DOI 10.4310/MRL.2015.v22.n1.a4
- Dongseon Hwang and Jonghae Keum, The maximum number of singular points on rational homology projective planes, J. Algebraic Geom. 20 (2011), no. 3, 495–523. MR 2786664, DOI 10.1090/S1056-3911-10-00532-1
- DongSeon Hwang and JongHae Keum, Algebraic Montgomery-Yang problem: the nonrational surface case, Michigan Math. J. 62 (2013), no. 1, 3–37. MR 3049295, DOI 10.1307/mmj/1363958239
- S. Galkin, L. Katzarkov, A. Mellit, and E. Shinder, Minifolds and Phantoms, arXiv:1305.4549.
- Masa-Nori Ishida, An elliptic surface covered by Mumford’s fake projective plane, Tohoku Math. J. (2) 40 (1988), no. 3, 367–396. MR 957050, DOI 10.2748/tmj/1178227980
- JongHae Keum, A fake projective plane with an order 7 automorphism, Topology 45 (2006), no. 5, 919–927. MR 2239523, DOI 10.1016/j.top.2006.06.006
- Jonghae Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008), no. 4, 2497–2515. MR 2443971, DOI 10.2140/gt.2008.12.2497
- JongHae Keum, A fake projective plane constructed from an elliptic surface with multiplicities $(2,4)$, Sci. China Math. 54 (2011), no. 8, 1665–1678. MR 2824965, DOI 10.1007/s11425-011-4247-0
- Jonghae Keum, Toward a geometric construction of fake projective planes, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 23 (2012), no. 2, 137–155. MR 2924897, DOI 10.4171/RLM/622
- Bruno Klingler, Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs”, Invent. Math. 153 (2003), no. 1, 105–143 (French, with English summary). MR 1990668, DOI 10.1007/s00222-002-0283-2
- János Kollár, Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995. MR 1341589, DOI 10.1515/9781400864195
- D. Mumford, An algebraic surface with $K$ ample, $(K^{2})=9$, $p_{g}=q=0$, Amer. J. Math. 101 (1979), no. 1, 233–244. MR 527834, DOI 10.2307/2373947
- Gopal Prasad and Sai-Kee Yeung, Fake projective planes, Invent. Math. 168 (2007), no. 2, 321–370. MR 2289867, DOI 10.1007/s00222-007-0034-5
- Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 451180, DOI 10.1073/pnas.74.5.1798
Additional Information
- JongHae Keum
- Affiliation: School of Mathematics, Korea Institute for Advanced Study, Hoegiro 85, Dondaemungu, Seoul 02455, Korea
- MR Author ID: 291447
- Email: jhkeum@kias.re.kr
- Received by editor(s): February 5, 2015
- Received by editor(s) in revised form: October 20, 2015
- Published electronically: March 29, 2017
- Additional Notes: This research was supported by the National Research Foundation of Korea (NRF-2007-0093858)
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 7067-7083
- MSC (2010): Primary 14J29, 14F05
- DOI: https://doi.org/10.1090/tran/6856
- MathSciNet review: 3683103