Néron models and the height jump divisor
Authors:
Owen Biesel, David Holmes and Robin de Jong
Journal:
Trans. Amer. Math. Soc. 369 (2017), 8685-8723
MSC (2010):
Primary 14H10; Secondary 11G50, 14G40, 14K15.
DOI:
https://doi.org/10.1090/tran/7087
Published electronically:
June 27, 2017
MathSciNet review:
3710640
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We define an algebraic analogue, in the case of jacobians of curves, of the height jump divisor introduced recently by R. Hain. We give explicit combinatorial formulae for the height jump for families of semistable curves using labelled reduction graphs. With these techniques we prove a conjecture of Hain on the effectivity of the height jump, and also give a new proof of a theorem of Tate, Silverman and Green on the variation of heights in families of abelian varieties.
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
- Gregory S. Call, Variation of local heights on an algebraic family of abelian varieties, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 72–96. MR 1024553
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI https://doi.org/10.1090/conm/067/902592
- Pierre Deligne, Le lemme de Gabber, Astérisque 127 (1985), 131–150 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801921
- Steven Diaz and David Harbater, Strong Bertini theorems, Trans. Amer. Math. Soc. 324 (1991), no. 1, 73–86. MR 986689, DOI https://doi.org/10.1090/S0002-9947-1991-0986689-6
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353
- William Green, Heights in families of abelian varieties, Duke Math. J. 58 (1989), no. 3, 617–632. MR 1016438, DOI https://doi.org/10.1215/S0012-7094-89-05829-8
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Richard Hain, Biextensions and heights associated to curves of odd genus, Duke Math. J. 61 (1990), no. 3, 859–898. MR 1084463, DOI https://doi.org/10.1215/S0012-7094-90-06133-2
- Richard Hain, Normal functions and the geometry of moduli spaces of curves, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 527–578. MR 3184171
- D. Holmes. Néron models of jacobians over base schemes of dimension greater than $1$. Preprint, arxiv:1402.0647.
- D. Holmes, A Néron model of the universal jacobian, Preprint, arxiv:1412.2243.
- David Holmes and Robin de Jong, Asymptotics of the Néron height pairing, Math. Res. Lett. 22 (2015), no. 5, 1337–1371. MR 3488379, DOI https://doi.org/10.4310/MRL.2015.v22.n5.a5
- James Jeans, The mathematical theory of electricity and magnetism, Cambridge University Press, New York, 1960. 5th ed. MR 0115577
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605
- Dale Allen Lear, Extensions of normal functions and asymptotics of the height pairing, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)–University of Washington. MR 2685578
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- H. M. Melvin, On concavity of resistance functions, J. Appl. Phys. 27 (1956), 658–659.
- Laurent Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985), 266 (French, with English summary). MR 797982
- Laurent Moret-Bailly, Métriques permises, Astérisque 127 (1985), 29–87 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801918
- André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 128 (French). MR 179172, DOI https://doi.org/10.1007/bf02684271
- Gregory Pearlstein, ${\rm SL}_2$-orbits and degenerations of mixed Hodge structure, J. Differential Geom. 74 (2006), no. 1, 1–67. MR 2260287
- Michel Raynaud, Modèles de Néron, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A345–A347 (French). MR 194421
- C. Shannon and D. Hagelbarger, Concavity of resistance functions, J. Appl. Phys. 27 (1956), 42–43.
- Joseph H. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197–211. MR 703488, DOI https://doi.org/10.1515/crll.1983.342.197
- J. Tate, Variation of the canonical height of a point depending on a parameter, Amer. J. Math. 105 (1983), no. 1, 287–294. MR 692114, DOI https://doi.org/10.2307/2374389
- Shouwu Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171–193. MR 1207481, DOI https://doi.org/10.1007/BF01232429
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14H10, 11G50, 14G40, 14K15.
Retrieve articles in all journals with MSC (2010): 14H10, 11G50, 14G40, 14K15.
Additional Information
Owen Biesel
Affiliation:
Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
Email:
bieselod@math.leidenuniv.nl
David Holmes
Affiliation:
Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
MR Author ID:
972881
Email:
holmesdst@math.leidenuniv.nl
Robin de Jong
Affiliation:
Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
MR Author ID:
723243
Email:
rdejong@math.leidenuniv.nl
Keywords:
Canonical height,
Deligne pairing,
dual graph,
effective resistance,
Green’s function,
height jump divisor,
labelled graph,
Néron model,
resistive network
Received by editor(s):
January 30, 2015
Received by editor(s) in revised form:
February 15, 2016
Published electronically:
June 27, 2017
Article copyright:
© Copyright 2017
by the authors