Néron models and the height jump divisor
HTML articles powered by AMS MathViewer
- by Owen Biesel, David Holmes and Robin de Jong PDF
- Trans. Amer. Math. Soc. 369 (2017), 8685-8723
Abstract:
We define an algebraic analogue, in the case of jacobians of curves, of the height jump divisor introduced recently by R. Hain. We give explicit combinatorial formulae for the height jump for families of semistable curves using labelled reduction graphs. With these techniques we prove a conjecture of Hain on the effectivity of the height jump, and also give a new proof of a theorem of Tate, Silverman and Green on the variation of heights in families of abelian varieties.References
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Gregory S. Call, Variation of local heights on an algebraic family of abelian varieties, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 72–96. MR 1024553
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI 10.1090/conm/067/902592
- Pierre Deligne, Le lemme de Gabber, Astérisque 127 (1985), 131–150 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801921
- Steven Diaz and David Harbater, Strong Bertini theorems, Trans. Amer. Math. Soc. 324 (1991), no. 1, 73–86. MR 986689, DOI 10.1090/S0002-9947-1991-0986689-6
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- William Green, Heights in families of abelian varieties, Duke Math. J. 58 (1989), no. 3, 617–632. MR 1016438, DOI 10.1215/S0012-7094-89-05829-8
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Richard Hain, Biextensions and heights associated to curves of odd genus, Duke Math. J. 61 (1990), no. 3, 859–898. MR 1084463, DOI 10.1215/S0012-7094-90-06133-2
- Richard Hain, Normal functions and the geometry of moduli spaces of curves, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 527–578. MR 3184171
- D. Holmes. Néron models of jacobians over base schemes of dimension greater than $1$. Preprint, arxiv:1402.0647.
- D. Holmes, A Néron model of the universal jacobian, Preprint, arxiv:1412.2243.
- David Holmes and Robin de Jong, Asymptotics of the Néron height pairing, Math. Res. Lett. 22 (2015), no. 5, 1337–1371. MR 3488379, DOI 10.4310/MRL.2015.v22.n5.a5
- James Jeans, The mathematical theory of electricity and magnetism, Cambridge University Press, New York, 1960. 5th ed. MR 0115577
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Dale Allen Lear, Extensions of normal functions and asymptotics of the height pairing, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)–University of Washington. MR 2685578
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- H. M. Melvin, On concavity of resistance functions, J. Appl. Phys. 27 (1956), 658–659.
- Laurent Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985), 266 (French, with English summary). MR 797982
- Laurent Moret-Bailly, Métriques permises, Astérisque 127 (1985), 29–87 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801918
- André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 128 (French). MR 179172, DOI 10.1007/bf02684271
- Gregory Pearlstein, $\textrm {SL}_2$-orbits and degenerations of mixed Hodge structure, J. Differential Geom. 74 (2006), no. 1, 1–67. MR 2260287
- Michel Raynaud, Modèles de Néron, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A345–A347 (French). MR 194421
- C. Shannon and D. Hagelbarger, Concavity of resistance functions, J. Appl. Phys. 27 (1956), 42–43.
- Joseph H. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197–211. MR 703488, DOI 10.1515/crll.1983.342.197
- J. Tate, Variation of the canonical height of a point depending on a parameter, Amer. J. Math. 105 (1983), no. 1, 287–294. MR 692114, DOI 10.2307/2374389
- Shouwu Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171–193. MR 1207481, DOI 10.1007/BF01232429
Additional Information
- Owen Biesel
- Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- Email: bieselod@math.leidenuniv.nl
- David Holmes
- Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- MR Author ID: 972881
- Email: holmesdst@math.leidenuniv.nl
- Robin de Jong
- Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- MR Author ID: 723243
- Email: rdejong@math.leidenuniv.nl
- Received by editor(s): January 30, 2015
- Received by editor(s) in revised form: February 15, 2016
- Published electronically: June 27, 2017
- © Copyright 2017 by the authors
- Journal: Trans. Amer. Math. Soc. 369 (2017), 8685-8723
- MSC (2010): Primary 14H10; Secondary 11G50, 14G40, 14K15
- DOI: https://doi.org/10.1090/tran/7087
- MathSciNet review: 3710640