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CENTRAL LIMIT THEOREMS FOR THE SPECTRA

OF CLASSES OF RANDOM FRACTALS

PHILIPPE H. A. CHARMOY, DAVID A. CROYDON, AND BEN M. HAMBLY

Abstract. We discuss the spectral asymptotics of some open subsets of the
real line with random fractal boundary and of a random fractal, the continuum
random tree. In the case of open subsets with random fractal boundary we
establish the existence of the second order term in the asymptotics almost
surely and then determine when there will be a central limit theorem which
captures the fluctuations around this limit. We will show examples from a class
of random fractals generated from Dirichlet distributions as this is a relatively
simple setting in which there are sets where there will and will not be a central
limit theorem. The Brownian continuum random tree can also be viewed as
a random fractal generated by a Dirichlet distribution. The first order term
in the spectral asymptotics is known almost surely and here we show that
there is a central limit theorem describing the fluctuations about this, though
the positivity of the variance arising in the central limit theorem is left open.
In both cases these fractals can be described through a general Crump-Mode-
Jagers branching process and we exploit this connection to establish our central
limit theorems for the higher order terms in the spectral asymptotics. Our
main tool is a central limit theorem for such general branching processes which

we prove under conditions which are weaker than those previously known.

1. Introduction

Let D be a non-empty bounded open subset of Rd for d ≥ 1 and let Δ be the
Dirichlet Laplacian on D. Then the spectrum Λ of −Δ is discrete and forms a
positive increasing sequence

0 < λ1 ≤ λ2 ≤ · · · ,
where the eigenvalues are repeated according to their multiplicity. Interest in the
geometric information about D encoded by Λ started a little over 100 years ago
and was crystallised by Kac in his paper [29] entitled “Can one hear the shape of
a drum?” Or more precisely, does Λ determine D up to isometry? The answer
to that question is “no” in general, as shown in [21, 43]; see also [9] for a concise
presentation of a family of counterexamples.

However, some geometric information about D can be recovered. Weyl’s theorem
shows that the eigenvalue counting function N defined by

N(λ) = #{λi : λi ≤ λ}
has asymptotic expansion

N(λ) = c1(d)vold(D)λd/2 + o(λd/2),
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as λ → ∞, for some constant c1(d) depending only on d, where vold denotes the
d-dimensional Lebesgue measure. Aside from prompting Kac’s question this result
has led to a large body of work on the behaviour of the eigenvalue counting function
and we now give a very brief description of the results that have motivated the work
we will present here.

As a first extension it is natural to ask about the second order term in this
expansion. If ∂D is smooth, then under some assumptions, that there are not too
many periodic geodesics, the expansion has a second order term

N(λ) = c1(d)vold(D)λd/2 − c2(d)vold−1(∂D)λ(d−1)/2 + o(λ(d−1)/2),

as λ → ∞, for some other constant c2(d) depending only on d. The reader is referred
to [26, 34, 46, 47, 50] and references therein for more information. This means that,
under some regularity conditions, we can recover the size of the domain and that of
the boundary from the spectral asymptotics; in particular, using the isoperimetric
inequality, we can determine whether or not D is an open ball.

Interest in the second term of the expansion of N grew further when Berry
studied the spectral asymptotics of domains with a fractal boundary in [6, 7]. He
conjectured that the Hausdorff dimension of ∂D should drive the second order term.
Brossard and Carmona in [8] studied the associated partition function, a smoothed
version of the eigenvalue counting function, and showed that the Minkowski dimen-
sion, dM , was the relevant notion of dimension for the second order term in the
short time expansion of this function. For the counting function itself a general re-
sult of Lapidus [35] shows that, if d−1 < dM ≤ d, the second order term is of order
O(λdM/2) provided the Minkowski content of the boundary is finite. In general it
is difficult to determine the precise order of growth for the second order term for
arbitrary boundaries, however, for one-dimensional domains [38] it was shown that
the Minkowski dimension captures the order of growth of the second term in the
asymptotics and the Minkowski content, the constant, when they exist.

The problem of determining the spectral asymptotics has also been considered
for sets which are themselves fractal. For some classes of fractal, such as the Sier-
pinski gasket or, more generally, p.c.f. self-similar sets [32] or generalised Sierpinski
carpets [4], a Laplacian can be defined and shown to have a discrete spectrum.
The exponent for the leading order growth rate in the eigenvalue counting func-
tion is called the spectral dimension and differs from the Hausdorff or Minkowski
dimension of the set. If the fractal has enough symmetry, such as for instance the
Sierpinski gasket, then a Weyl type theorem is no longer true [19], [5] in that the
rescaled limit of the eigenvalue counting function does not converge. However, the
Weyl limit does exist for “generic” deterministic p.c.f. self-similar sets [33] and also
for random Sierpinski gaskets [23] and it is natural to ask about the growth of the
second order term in these settings.

Our aim is to consider some random fractals where we anticipate more generic
behaviour of the counting function. We will consider both domains with fractal
boundaries and fractal sets here. First we will consider the case of open subsets
with fractal boundaries in the one-dimensional case of a so-called fractal string.
Our second case will be an example where the set itself is a fractal, the continuum
random tree. In both cases the first order terms in the spectral asymptotics due
to the fractal structure are understood and we will focus on the behaviour of the
second order terms.
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A fractal string is a set obtained as the complement of a Cantor set in the
unit interval, so can be thought of as a sequence of intervals of decreasing length
[37]. The Dirichlet Laplacian is then the union of the Dirichlet Laplacians on each
interval. Some discussion of the spectral asymptotics of random fractal strings can
be found in [24] where it is shown that for Cantor sets constructed via random
iterated function systems, the second order term due to the boundary exists almost
surely. We will consider a suitable subset of these random fractal strings and
determine when the order of the fluctuations about the boundary term is given by
a central limit theorem (CLT).

This turns out to be a subtle question and the existence of a CLT is determined
by the rate of convergence in an associated renewal theorem. We will give a precise
statement after introducing all the terminology in Theorem 4.3. We will then show
that when the fractal is generated using a Dirichlet distribution, the existence of a
central limit theorem depends on the particular Dirichlet distribution considered.

An example of what we are able to show is the following. Let Sγ,α, for γ ∈
(0, 1), α ∈ N, be the random fractal string obtained as the complement of the ran-
dom Cantor set generated by subdividing any interval of length � into three, retain-

ing two intervals of size T
1/γ
1 �, T

1/γ
2 �, and removing one of length �(1− T

1/γ
1 − T

1/γ
2 ),

where the pair (T1, T2) is independent for each interval and distributed as
Dirichlet(α, α) (that is a Beta(α, α) distribution in this simple case) and 0 < γ < 1.
We write P for the probability law for the random fractal string and E for expec-
tation with respect to P. We note that γ will be the Minkowski dimension of the
random Cantor set P-almost surely, that is, the dimension of the boundary of the
string. We write Nγ,α(λ) for the associated eigenvalue counting function.

Theorem 1.1. (i) For all α ∈ N and γ ∈ (0, 1) there is a strictly positive deter-
ministic constant C(γ, α) such that as λ → ∞,

λ−γ/2

(
1

π
λ1/2 −Nγ,α(λ)

)
→ C(γ, α) P-almost surely.

(ii) If α ≤ 59, then there exists a strictly positive deterministic constant σ(α)
such that as λ → ∞,

λγ/4

(
λ−γ/2

(
1

π
λ1/2 −Nγ,α(λ)

)
− C(γ, α)

)
→ Z, in distribution,

where Z is normally distributed with mean 0 and variance σ(α)2 ∈ (0,∞).
(iii) There exists an α̃ > 80 and a γ ∈ (0, 1) such that: if 59 < α < α̃, then there

exists a not-identically-zero periodic function pγ,α(x) such that

ENγ,α(λ) =
1

π
λ1/2 − C(γ, α)λγ/2 + pγ,α(log λ)λ

γη(α)/2 + o(λη(α)),

where η(α) = max{�(θ0) ∈ (−∞, 1) : P (θ0) = 0},

P (θ) :=
α−1∏
i=0

(α+ θ + i)− (2α)!

α!

and, for this range of α we have 1/2 < η(α) < 1. In particular

λγ/4

(
λ−γ/2

(
1

π
λ1/2 −Nγ,α(λ)

)
− C(γ, α)

)
does not converge in distribution as λ → ∞.
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Remark 1.2. (1) The first result gives the almost sure behaviour of the second
term in the counting function asymptotics and is true for random fractal strings
constructed using a wide class of distributions on the simplex.

(2) In part (iii) we conjecture that it is possible to take α̃ = ∞ and any γ ∈ (0, 1).
Indeed, towards proving the above result, we first provide conditions under which
a CLT holds (see Theorem 4.3 and Section 5.2), and explain when one will not
(see Remark 4.4). This distinction is determined by the rate of convergence in
a related renewal theorem and depends on the values of the roots of P (θ) = 0,
which we solve numerically (we can also solve this equation analytically for small
values of α). These computations demonstrate that we can take α̃ to be at least
81. Furthermore, although we are not able to prove it rigorously, the monotonicity
of the results suggests that α̃ can be taken arbitrarily large.

(3) We also conjecture that, in the case where there is no CLT, i.e., α > 59, the
size of the second order term is determined by η(α), in that, P-almost surely for
ε > 0,

Nγ,α(λ) =
1

π
λ1/2 − C(γ, α)λγ/2 +O(λγη(α)/2+ε),

where 1/2 < η(α) < 1 and η(α) → 1 as α → ∞.
(4) The proof of the above result shows that the period of pγ,α is given by

4π/γ|I(θ0)|, where θ0 is one of the complex conjugate pair of roots whose real part
gives η(α).

Observe that, as α increases, the Beta(α, α) distribution becomes closer to the
distribution given by a delta measure at the point (1/2,1/2). If we take γ =
ln 2/ ln 3, then we anticipate that our random fractal string should converge (in
a suitable sense) to the Cantor string (the string formed as the complement of
the classical ternary Cantor set) as α goes to infinity. It is known that for the
Cantor string there is a non-constant periodic function that appears in the second
order term in the counting function asymptotics [37]. Thus our result suggests that
there is a non-trivial transition in the parameter space from the case where there
is “enough randomness” for a CLT about the second order term, to the case where
there is not, up to the limit, even a strong law of large numbers for this term.

We will also consider the case of the Brownian continuum random tree, a random
self-similar fractal. It was shown in [11] that there was a Weyl limit for the counting
function in this case. It was also shown that the second order term for this fractal
set was of order 1 in mean, which would be anticipated as the boundary of the
tree is just two points, a 0-dimensional set. In this paper we show that there is a
CLT about the almost sure asymptotics. However, at this point we have not shown
strict positivity of the variance due to the complexity of the correlation structure
in the variance of the limit of the rescaled counting function. We conjecture that
there will be a non-trivial CLT for this counting function. This will show that
the randomness in the construction means the second order term in the spectral
asymptotics is determined by the fluctuations about the leading order term, as
these are much greater than the effects due to the boundary of the set.

The main technical tool we develop is a central limit theorem for the general
Crump-Mode-Jagers branching process. In our setting the random fractal sets,
the random Cantor set boundary of the string, or the continuum random tree,
can be encoded as general branching processes. We are able to use a characteristic
associated with these processes to determine the behaviour of the counting function.
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In this case there may be dependence on the offspring of an individual and we obtain
a CLT in this more general setting, extending the work of [28]. We also remark
that the techniques used here can easily be applied to geometric counting functions
or other functions associated with heat flow, such as the partition function or heat
content of the set. We anticipate similar behaviour in the fluctuations of these
quantities about their almost sure limits.

The paper is organised as follows. In Section 2, we recall the definition of the
general branching process and some laws of large numbers for such processes. We
then prove our central limit theorem for the general branching process using a Taylor
expansion proof. In Section 3, we restrict ourselves to general branching processes
where a suitable function of the birth times is chosen to lie on an n-dimensional
simplex, which will ensure that the limit of the usual branching process martingale
is a constant. We will call such processes Δn-GBPs and discuss extensively how to
establish the conditions required for the central limit theorem in this setting as this
will allow us to illustrate when we do and do not have a central limit theorem for
the associated general branching process. In Section 4, we define a family of open
subsets U of [0, 1] whose random boundary is a statistically self-similar Cantor set
built using scale factors on the simplex. We are then able to show our main result
which gives conditions for the existence of a central limit theorem. In Section 5
we consider some examples where the law of the Δn-GBP is given by a Dirichlet
distribution. We show that, for some Dirichlet weights, the eigenvalue counting
function of the set U satisfies a central limit theorem. As a consequence we will
be able to establish Theorem 1.1. In Section 6 we turn to the continuum random
tree. We recall that this tree can be viewed as a random self-similar set and how
to construct a Laplace operator on it. We then show that the conditions for the
general branching process central limit theorem hold and hence there is a CLT in
the spectral asymptotics.

Notation. For convenience, we will use the shorthand notation ci with i ∈ N to
mean some positive constant whose value is fixed for the length of a proof or a
subsection.

2. A central limit theorem for general branching processes

2.1. General branching processes. In this subsection, we introduce the general
or C-M-J branching process. The presentation is inspired by [23, 27, 45], to which
the reader is referred for further information.

In the general branching process, the typical individual x is born at time σx,
has offspring whose birth times are determined by a point process ξx on (0,∞), a
lifetime modelled as a non-negative random variable Lx, and a (possibly random)
càdlàg function φx on R called a characteristic.

We index the individuals of the general branching process using the address space

(1) I =
⋃
k≥0

N
k, where N

0 = ∅.

The ancestor ∅ is born at time σ∅ = 0, and individual x has ξx(0,∞) offspring
whose birth times σx,i satisfy

ξx =

ξx(∞)∑
i=1

δσx,i−σx
,
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where δ is the Dirac measure and x, i is the concatenation of x and i. The trace of
the underlying Galton-Watson process is a random subtree of I which we denote
by Σ. We write ∂Σ for the set of infinite lines of descent in the process. For
x, y ∈ Σ we also use the notation x ≤ y if there exists a sequence (z1, . . . , zk)
with zi ∈ N, i = 1, . . . , k with k ∈ N such that y = (x, z1, . . . , zk). Similarly,
for x ∈ Σ, y ∈ ∂Σ we write x ≤ y if there exists a sequence (z1, z2, . . . ) with
zi ∈ N, i = 1, 2, . . . , such that y = (x, z1, z2, . . . ). A cut-set C of Σ is a collection of
x ∈ Σ such that x 	≤ x′ and x′ 	≤ x for all x′ 	= x ∈ C and for all y ∈ ∂Σ there is an
x ∈ C such that x ≤ y.

It is customary to assume that the triples (ξx, Lx, φx)x are i.i.d. but we allow φx

to depend on the progeny of x; we also do not make any assumptions on the joint
distribution of (ξx, Lx, φx). When discussing a generic individual, it is convenient
to drop the dependence on x and write (ξ, L, φ). We will write P for the associated
probability law and E for its expectation.

We define

ξ(t) = ξ((0, t]), ν(dt) = Eξ(dt), ξγ(dt) = e−γtξ(dt), and νγ(dt) = Eξγ(dt),

for γ ∈ (0,∞). Furthermore, we will always assume that the general branching
process has Malthusian growth, i.e., that there exists a Malthusian parameter γ ∈
(0,∞) for which νγ(∞) = 1. This implies, in particular, that the general branching
process is super-critical.

We denote the moments of the probability measure νγ by

(2) μk =

∫ ∞

0

skνγ(ds).

In all cases of interest to us, μ1 will be finite. Note, however, that some convergence
results still hold when that is not the case, as explained in [45].

The presence of the characteristic φ in the population is captured using the
characteristic counting process Zφ defined as

(3) Zφ(t) =
∑
x∈Σ

φx(t− σx) = φ∅(t) +

ξ∅(∞)∑
i=1

Zφ
i (t− σi),

where the Zφ
i are i.i.d. copies of Zφ. An important example in the study of random

fractals is the characteristic φ(t) = (ξ(∞) − ξ(t))1[0,∞)(t), whose corresponding

counting process Zφ has the property that Zφ(t) is the number of offspring born
after time t to parents born up to time t. Later, we will define characteristics that
count eigenvalues of the Dirichlet Laplacian.

There are two central elements in the study of the asymptotics of the counting
process. The first is that the functions

zφ(t) = e−γtEZφ(t) and uφ(t) = e−γtEφ(t),

satisfy the well-studied renewal equation

(4) zφ(t) = uφ(t) +

∫ ∞

0

zφ(t− s)νγ(ds);

see [18] for a classic exposition and [27, 30, 41] for alternative results.
The second is the process defined by

Mt =
∑
x∈Λt

e−γσx ,
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where

Λt = {x ∈ Σ : x = (y, i) for some y ∈ Σ, i ∈ N, and σy ≤ t < σx}
is the set of individuals born after time t to parents born up to time t. The process
M is a non-negative càdlàg Ft-martingale with unit expectation, where

Ft = σ(Fx, σx ≤ t) and Fx = σ({(ξy, Ly) : σy ≤ σx});
we call it the fundamental martingale of the general branching process.

The martingale convergence theorem shows that Mt → M∞ as t → ∞, almost
surely, for some random variable M∞. Furthermore, under an x log x condition
standard in the theory of branching processes, M is uniformly integrable. More
precisely, in [13, 14], Doney proved the following result.

Theorem 2.1 (Doney). The following are equivalent:

(i) E [ξγ(∞)(log ξγ(∞))+] < ∞;
(ii) EM∞ > 0;
(iii) EM∞ = 1;
(iv) M∞ > 0 almost surely on the set where there is no extinction;
(v) M is uniformly integrable.

Otherwise, M∞ = 0 almost surely.

For technical reasons, it is often easier to apply renewal theory under the as-
sumption that φ vanishes for negative times. When that is not the case, we can
set

(5) χx(t) = φx(t)1t≥0 +

ξx(∞)∑
i=1

Zφ
x,i(t− σi)10≤t<σi

so that

Zφ1[0,∞)(t) = χ∅(t) +

ξ∅(∞)∑
i=1

Zφ
i (t− σi)1t−σi≥0.

This means that Zφ1[0,∞) = Zχ, the counting process of the characteristic χ, and

we can then work with Zχ instead of Zφ because χ vanishes for negative times and
Zχ and Zφ obviously have the same asymptotics as t → ∞.

2.2. Application to statistically self-similar fractals. As discussed in [17,22,
42], the general branching process provides a natural way to encode statistically
self-similar sets. We outline this connection now.

To build a statistically self-similar set K, we start with the address space I
defined in (1) and a non-empty compact set K∅. To each x ∈ I, we associate
a random collection (Nx,Φx,1, . . . ,Φx,Nx

)x∈I , where Nx is a natural number and
Φx,i are contracting similitudes whose ratios we write Rx,i. We assume that the
collection is i.i.d. in x.

The random numbers (Nx, x ∈ I) generate a random subtree Σ of I defined by
∅ ∈ Σ and

y = y1, . . . , yn ∈ Σ ⇐⇒ y1, . . . , yn−1 ∈ Σ and yn ≤ Ny1,...,yn−1
.

For x = x1, . . . , xn ∈ Σ, define

Kx = Φx1
◦ · · · ◦ Φx1,...,xn

(K∅) and K =

∞⋂
n=1

⋃
|x|=n

Kx,
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where |x| is the length of the word x. The set K has the intuitive property that it
can be written as scaled i.i.d. copies of itself, namely,

K =
N⋃
i=1

Φi(Ki),

where K1, . . . ,KN are i.i.d. copies of K.
Let us emphasise that the choice of K∅ is not unique in general. However, for

technical reasons discussed in [17], we make the following two assumptions. First,
we assume that the sets (intKx, x ∈ Σ) form a net, i.e.,

x ≤ y =⇒ intKy ⊂ intKx

and also

intKx ∩ intKy = ∅ if neither x ≤ y nor y ≤ x;

the analogue of the open set condition for self-similar sets. Second, we assume that
the construction of K is proper, i.e., that every cut-set C of Σ satisfies the condition:
for every x ∈ C, there exists a point in Kx that does not lie in any other Ky with
y ∈ C.

The Hausdorff dimension of statistically self-similar sets is almost surely constant
on the event that it is not empty and was calculated in [17, 22, 42]. It is given in
the following result by a formula, the random analogue of that due to Moran [44]
and Hutchinson [25] familiar from the deterministic setup.

Theorem 2.2. Let K be a statistically self-similar set. Write (N,R1, . . . , RN ) for
the number of similitudes and their ratios. Then, on the event that the set K is not
empty,

dimK = inf

{
s : E

(
N∑
i=1

Rs
i

)
≤ 1

}
a.s.

To specify a general branching process corresponding to the random set K, we
set

ξx =

Nx∑
i=1

δ− logRx,i
,

and Lx = supi σx,i −σx. With this parametrisation, the set Kx in the construction
of K corresponds to an individual born at time σx and has size e−σx . Furthermore,
since

E

∫ ∞

0

e−sxξ(dx) = E

(
N∑
i=1

Rs
i

)
,

the Malthusian parameter γ is equal to the Hausdorff dimension of K by definition.

2.3. Laws of large numbers. Before we can prove our central limit theorem for
the general branching process, we state Nerman’s laws of large numbers, proved in
[45]. They are proved for non-negative characteristics with progeny dependence.
In applications, if this is not the case, it suffices to write the characteristic as the
difference of its positive and negative parts.

We start with the weak law of large numbers. Recall that a measure is said to
be lattice if its support is contained in a discrete subgroup of R and non-lattice
otherwise.
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Theorem 2.3. Let (ξx, Lx, φx)x be a general branching process with Malthusian
parameter γ, where φ ≥ 0 and φ(t) = 0 for t < 0. Assume that uφ is directly
Riemann integrable and that νγ is non-lattice. Assume further that, for every t,

E

[
sup
u≤t

φ(u)

]
< ∞.

Then,

zφ(t) → zφ(∞) = μ−1
1

∫ ∞

0

uφ(s)ds,

where μ1 is defined in (2), and

e−γtZφ(t) → zφ(∞)M∞, in probability,

as t → ∞, where M∞ is the almost sure limit of the fundamental martingale of
the general branching process. Furthermore, if M is uniformly integrable, then the
convergence also takes place in L1.

The strong law of large numbers requires the following additional regularity
condition.

Condition 2.4. There exist non-increasing bounded positive integrable càdlàg
functions g and h on [0,∞) such that

E

[
sup
t≥0

ξγ(∞)− ξγ(t)

g(t)

]
< ∞ and E

[
sup
t≥0

e−γtφ(t)

h(t)

]
< ∞.

This first part of the condition is satisfied if there exists a non-increasing bounded
positive function g such that νγ(1/g) is finite, because then

ξγ(∞)− ξγ(t)

g(t)
≤
∫ ∞

t

1

g(s)
ξγ(ds) ≤

∫ ∞

0

1

g(s)
ξγ(ds),

which has finite expectation. As such, this can be thought of as a moment condition
that is weaker than imposing that νγ have a finite second moment; take g(t) =
t−2 ∧ 1.

In particular, if the expected number of offspring is finite, this part of the con-
dition is satisfied since, with the latter choice of g,

E

∫ ∞

0

g(t)−1e−γtξ(dt) ≤ sup
t≥0

{(1 ∨ t2)e−γt}Eξ(∞) < ∞.

We can now state the strong law of large numbers.

Theorem 2.5. Let (ξx, Lx, φx)x be a general branching process with Malthusian
parameter γ, where φ ≥ 0 and φ(t) = 0 for t < 0. Assume that νγ is non-lattice.
Assume further that Condition 2.4 is satisfied. Then,

zφ(t) → zφ(∞) = μ−1
1

∫ ∞

0

uφ(s)ds,

where μ1 is defined at (2), and

e−γtZφ(t) → zφ(∞)M∞, a.s.,

as t → ∞, where M∞ is the almost sure limit of the fundamental martingale of
the general branching process. Furthermore, if M is uniformly integrable, then the
convergence also takes place in L1.
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Similar results have been proved by Gatzouras in the lattice case. We will not
use them here and refer the reader to [20].

2.4. The central limit theorem. In [28], Jagers and Nerman proved a central
limit theorem for the general branching process under the assumptions that the
characteristics are i.i.d. We now give a Taylor expansion proof of a similar result,
but continue to allow φx to depend on the progeny of x. We start by introducing
some additional notation.

Consider the general branching process (ξx, Lx, ζ̄x)x with Malthusian parameter
γ. We assume that ζ̄ is such that

Z̄(t) := Z ζ̄(t)

has zero expectation. In applications, ζ̄ is typically a suitably centered version of
some characteristic φ; we will discuss examples in Section 3.

We will use the rescaled version Z̃ of Z̄ defined by

(6) Z̃(t) = e−γt/2Z̄(t) = ζ̃∅(t) +

ξ(∞)∑
i=1

e−γσi/2Z̃i(t− σi),

where ζ̃(t) = e−γt/2ζ̄(t).
Finally, to have a proxy for the variance, we define

(7) V (t) = Z̄(t)2 = ρ∅(t) +

ξ(∞)∑
i=1

Vi(t− σi),

where

ρ∅(t) = ζ̄∅(t)
2 + 2ζ̄∅(t)

ξ(∞)∑
i=1

Z̄i(t− σi) + 2

ξ(∞)∑
i=1

∑
j<i

Z̄i(t− σi)Z̄j(t− σj).

As V satisfies an equation of the form (3) which leads to the renewal equation
(4), the functions v and r defined by

(8) v(t) = e−γtEV (t) and r(t) = e−γtEρ(t)

satisfy the renewal equation

(9) v(t) = r(t) +

∫ ∞

0

v(t− s)νγ(ds).

Our central limit theorem requires two technical conditions which we discuss
now.

Condition 2.6. There exists ε ∈ (0, 1/2) such that

e−γt/2
∑

σx≤εt

ζ̄x(t− σx) → 0, in probability,

as t → ∞.

This is a regularity condition on ζ̄. In applications, we typically expect ζ̄ to
satisfy a weak law of large numbers. Therefore, the sum should grow like eγεt and
we can expect that the condition is satisfied.

Condition 2.7. There exists κ ∈ (0,∞) such that

sup
t∈R

E{|Z̃(t)|2+κ} < ∞.



CENTRAL LIMIT THEOREMS FOR THE SPECTRA OF RANDOM FRACTALS 8977

This is a moment condition. In applications, it is convenient to check it for the
third moment, i.e., when κ = 1, because that can be done using renewal arguments.

Theorem 2.8. Let (ξx, Lx, ζ̄x)x be a general branching process with Malthusian
parameter γ, where ζ̄ is such that EZ̄(t) = 0 for every t. Assume that v is bounded
and that

v(t) → v(∞),

some finite constant, as t → ∞. Assume further that Conditions 2.6 and 2.7 hold.
Then,

Z̃(t) → Z̃∞, in distribution,

as t → ∞, where the distribution of Z̃∞ is characterised by

E
[
eiθZ̃∞

]
= E

[
e−

1
2 θ

2v(∞)M∞
]
.

In the proof, we will use that if z1, . . . , zn and w1, . . . , wn are complex numbers
whose modulus is bounded by C, then

(10)

∣∣∣∣∣
n∏

i=1

zi −
n∏

i=1

wi

∣∣∣∣∣ ≤ Cn−1
n∑

i=1

|zi − wi|.

A proof of this may be found in [16, Lemma 3.4.3].

Proof. For ε ∈ (0, 1/2), iterating from (6), the definition of Z̃, we get

(11) Z̃(t) =
∑

σx≤εt

e−γσx/2ζ̃x(t− σx) +
∑

x∈Λεt

e−γσx/2Z̃x(t− σx).

The first sum appearing in (11) can be rewritten as

e−γt/2
∑

σx≤εt

ζ̄x(t− σx)

which, by Condition 2.6, converges to 0 in probability as t → ∞ if we choose ε
appropriately small. For the rest of the proof, we fix such a choice of ε.

We now consider the other sum appearing in (11), and show that it converges

in distribution to Z̃∞ as t → ∞. The result will then follow from Slutsky’s lemma.
In other words, for θ ∈ R, we want to show that

(12) E
[
eiθ

∑
x∈Λεt

e−γσx/2Z̃(t−σx) − e−
1
2 θ

2v(∞)M∞
]
→ 0,

as t → ∞. To do this, write, for an x0 ∈ (0, 1) that will be chosen below,

Aε,t =

{
sup
x∈Λεt

|θe−γσx/2Z̃x(t− σx)| ≤ x0

}
,

and split (12) as

E
[
eiθ

∑
x∈Λεt

e−γσx/2Z̃x(t−σx) − e−
1
2 θ

2v(∞)M∞ ;Ac
ε,t

]
(13)

+E
[
eiθ

∑
x∈Λεt

e−γσx/2Z̃x(t−σx) − e−
1
2 θ

2v(∞)
∑

x∈Λεt
e−γσx

;Aε,t

]
(14)

+E
[
e−

1
2 θ

2v(∞)
∑

x∈Λεt
e−γσx − e−

1
2 θ

2v(∞)M∞ ;Aε,t

]
.(15)

We will show that each of these terms converge to 0 as t → ∞.
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Fix θ ∈ R and δ ∈ (0, 1). Let x0 = x0(δ) ∈ (0, 1) be such that

|ez − 1− z| ≤ δ|z| and

∣∣∣∣ez − 1− z − z2

2

∣∣∣∣ ≤ δ|z|2,

whenever z ∈ C satisfies |z| ≤ x0, and let τ = τ (δ, θ) ∈ (0,∞) be such that for
t ≥ τ ,

x
−(2+κ)
0 |θ|2+κ sup

u∈R

E{|Z̃(u)|2+κ}e−γεκt/2 ≤ δ,

θ2‖v‖∞e−γεt ≤ x0

and

|v(∞)− v(t/2)| ≤ δ,

where κ is given by Condition 2.7.
Let us start by dealing with (13). For t ≥ τ ,

P(Ac
ε,t) = P

(
sup
x∈Λεt

|θe−γσx/2Z̃x(t− σx)|2+κ > x2+κ
0

)

≤ P

( ∑
x∈Λεt

|θ|2+κe−γσx(1+κ/2)|Z̃x(t− σx)|2+κ ≥ x2+κ
0

)
,

which, by Markov’s inequality, is bounded by

(16)

x0
−(2+κ)|θ|2+κe−γεκt/2E

[ ∑
x∈Λεt

e−γσx |Z̃x(t− σx)|2+κ

]

≤ x
−(2+κ)
0 |θ|2+κe−γεκt/2E

[ ∑
x∈Λεt

e−γσxE{|Z̃x(t− σx)|2+κ|Fεt}
]

≤ x
−(2+κ)
0 |θ|2+κ sup

u∈R

E{|Z̃(u)|2+κ}e−γεκt/2

≤ δ,

where we have used that σx ∈ Fεt, that Z̃x is independent of Fεt and that EMεt = 1.
(This is where we need to control the moment of order 2 + κ for some κ ∈ (0,∞).)
Therefore, (13) is dominated by

2P(Ac
ε,t) ≤ 2δ.

Since δ is arbitrary, it follows that

E
[
eiθ

∑
x∈Λεt

e−γσx/2Z̃x(t−σx) − e−
1
2 θ

2v(∞)M∞ ;Ac
ε,t

]
→ 0,

as t → ∞, as required.
To deal with (15), recall that∑

x∈Λεt

e−γσx = Mεt → M∞, a.s.,

as t → ∞. Therefore, dominated convergence implies that

E
[
e−

1
2 θ

2v(∞)
∑

x∈Λεt
e−γσx − e−

1
2 θ

2v(∞)M∞ ;Aε,t

]
→ 0,

as t → ∞, as required.
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We will spend the rest of the proof dealing with (14), which we rewrite as

E

[ ∏
x∈Λεt

E
{
eiθe

−γσx/2Z̃x(t−σx)1Ax
ε,t

∣∣∣Fεt

}
−
∏

x∈Λεt

E
{
e−

1
2 θ

2v(∞)e−γσx
1Ax

ε,t

∣∣∣Fεt

}]

using the conditional independence built into the branching structure, where

Ax
ε,t = {|θe−γσx/2Z̃x(t− σx)| ≤ x0}.

By (10), the term inside the expectation satisfies
(17)∣∣∣∣∣

∏
x∈Λεt

E
{
eiθe

−γσx/2Z̃x(t−σx)1Ax
ε,t

∣∣∣Fεt

}
−
∏

x∈Λεt

E
{
e−

1
2 θ

2v(∞)e−γσx
1Ax

ε,t

∣∣∣Fεt

}∣∣∣∣∣
≤
∑

x∈Λεt

∣∣∣E{eiθe−γσx/2Z̃x(t−σx)1Ax
ε,t

∣∣∣Fεt

}
−E

{
e−

1
2 θ

2v(∞)e−γσx
1Ax

ε,t

∣∣∣Fεt

}∣∣∣ .
A Taylor expansion and the second order exponential estimate yield that∣∣∣E{eiθe−γσx/2Z̃x(t−σx)1Ax

ε,t

∣∣∣Fεt

}
− E

{(
1 + iθe−γσx/2Z̃x(t− σx)−

1

2
θ2e−γσxZ̃x(t− σx)

2

)
1Ax

ε,t

∣∣∣∣Fεt

}∣∣∣∣
≤ δθ2‖v‖∞e−γσx .

Furthermore,∣∣∣∣E
{(

1 + iθe−γσx/2Z̃x(t− σx)−
1

2
θ2e−γσxZ̃x(t− σx)

2

)
1Ax

ε,t

∣∣∣∣Fεt

}

− E
{
e−

1
2 θ

2v(∞)e−γσx
1Ax

ε,t

∣∣∣Fεt

}∣∣∣
≤
∣∣∣E{(iθe−γσx/2Z̃x(t− σx)

)
1Ax

ε,t

∣∣∣Fεt

}∣∣∣
+

∣∣∣∣E
{(

1− 1

2
θ2e−γσx Z̃x(t− σx)

2 − e−
1
2 θ

2v(∞)e−γσx

)
1Ax

ε,t

∣∣∣∣Fεt

} ∣∣∣∣ .
Now, since

E
[
Z̃x(t− σx)

∣∣∣Fεt

]
= 0,

reasoning as in (16) shows that∣∣∣E{(iθe−γσx/2Z̃x(t− σx)
)
1Ax

ε,t

∣∣∣Fεt

}∣∣∣
=
∣∣∣E{(iθe−γσx/2Z̃x(t− σx)

)
1Ω\Ax

ε,t

∣∣∣Fεt

}∣∣∣
≤ x0E

{
x−1
0 |θ|e−γσx/2|Z̃x(t− σx)|1Ω\Ax

ε,t

∣∣∣Fεt

}
≤ x0E

{
x
−(2+κ)
0 |θ|2+κe−γσx(1+κ/2)|Z̃x(t− σx)|2+κ1Ω\Ax

ε,t

∣∣∣Fεt

}
≤ δe−γσx ,

for t ≥ τ ; and, since for x ∈ Λεt we have

|v(∞)θ2e−γσx/2| ≤ θ2‖v‖∞e−γεt ≤ x0,
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a Taylor expansion and the first moment exponential estimate yield that∣∣∣∣E
{(

1− 1

2
θ2e−γσxZ̃x(t− σx)

2 − e−
1
2 θ

2v(∞)e−γσx

)
1Ax

ε,t

∣∣∣∣Fεt

} ∣∣∣∣
≤
∣∣∣∣E
{
−1

2
θ2e−γσx Z̃x(t− σx)

2 +
1

2
θ2v(∞)e−γσx

∣∣∣∣Fεt

}∣∣∣∣+ 1

2
δθ2|v(∞)|e−γσx

≤ θ2{|v(t− σx)− v(∞)|+ δ‖v‖∞}e−γσx .

Notice that, for t ≥ τ ,

(18)

∑
x∈Λεt

θ2{|v(t− σx)− v(∞)|+ δ‖v‖∞}e−γσx

≤ θ2
∑

x∈Λεt\Λt/2

δ(1 + ‖v‖∞)e−γσx + θ2
∑

x∈Λεt∩Λt/2

(2 + δ)‖v‖∞e−γσx

≤ δθ2(1 + ‖v‖∞)Mεt + θ2(2 + δ)‖v‖∞
∑

x∈Λεt∩Λt/2

e−γσx .

Together, (17) to (18) show that (14) is dominated by

(19) E
[
δ[1 + θ2(1 + 2‖v‖∞)]Mεt

]
+E

⎡
⎣θ2(2 + δ)‖v‖∞

∑
x∈Λεt∩Λt/2

e−γσx

⎤
⎦ .

Fix c ∈ (0,∞) large. For t large enough, by Lemma 3.5 of [45],

E

⎡
⎣ ∑
x∈Λεt∩Λt/2

e−γσx

⎤
⎦ ≤ E

⎡
⎣ ∑
x∈Λεt∩Λεt+c

e−γσx

⎤
⎦→ μ−1

∫ ∞

c

(1− νγ(s))ds,

as t → ∞. The limiting expression can be made arbitrarily small by choosing c large
enough. Therefore, the second term in (19) converges to 0. Since EMεt = 1, the
first term can also be made arbitrarily small by adjusting δ. The result follows. �

2.5. A word on the lattice case. The statement of Theorem 2.8 requires us to
show that v(t) → v(∞). This is typically done using renewal theory. Recall that if
νγ is lattice, supported on bZ, say, then this convergence does not occur. Instead
we typically get that, for every y,

v(y + bn) → g(y),

as n → ∞, where g(y) is a b-periodic function. In this case, the proof presented
above shows that, for every y,

Z̃(y + bn) → Z̃∞(y), in distribution,

as n → ∞, where the distribution of Z̃∞(y) is characterised by

E
[
eiθZ∞(y)

]
= E

[
e−

1
2 θ

2g(y)M∞
]
.

3. The central limit theorem for Δn-general branching processes

In this section, we discuss applications of the central limit theorem to the gen-
eral branching process under the assumption that the number of offspring ξ(∞) is
constant and equal to n, say, and that the birth times σ1, . . . , σn are distributed
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such that, for some fixed constant γ ∈ (0,∞), we have (e−γσ1 , . . . , e−γσn) is a
distribution on the simplex Δn in Rn, i.e.,

n∑
i=1

e−γσi = 1.

The latter assumption ensures that the fundamental martingale M ≡ 1. We call
a branching process with offspring distribution defined on the simplex in this way
a Δn-general branching process. For simplicity, we also suppose throughout this
section that νγ is non-lattice, though as discussed in Section 2.5, we expect subse-
quential versions of the results below to hold if this is not the case. A basic example
that we will return to is the case where the distribution of (e−γσ1 , . . . , e−γσn) is
Dirichlet(α1, . . . , αn).

In this case our general branching process (ξx, Lx, φx)x, with Malthusian param-
eter γ, will satisfy a weak law of large numbers, i.e.,

e−γtZφ(t) → zφ(∞), in probability,

as t → ∞. We wish to describe the random fluctuations around the limit. To do
this, we study the expression

(20) eγt/2
[
e−γtZφ(t)− zφ(∞)

]
= e−γt/2

[
Zφ(t)− eγtzφ(t)

]
+eγt/2[zφ(t)−zφ(∞)].

Our aim is to apply Theorem 2.8 to the first part of this expression. We will
see that conditions making this possible ensure that the second term converges to
0. This will then produce a result on the fluctuations of Zφ(t) thanks to Slutsky’s
lemma.

An outline of this section is that we begin by centering our characteristic in
order to apply the central limit theorem of Section 2. We then show that in order
to control the centered characteristic we need to control the rate of convergence in
the associated renewal theorem.

3.1. Centering the process. To start, notice that, in the notation of Section 2,

Zφ(t)− eγtzφ(t) = Z̄(t) = Z ζ̄(t)

is a centered characteristic counting process, if we define ζ̄ by

(21)

ζ̄∅(t) = φ∅(t) +
n∑

i=1

eγ(t−σi)zφ(t− σi)− eγtzφ(t)

= φ∅(t) +
n∑

i=1

eγ(t−σi)[zφ(t− σi)− zφ(t)],

where we have used that e−γσ1 + · · ·+ e−γσn = 1. This representation can be used
to get the following control on ζ̄ under an assumption on |zφ(t− σi)− zφ(t)|.

Lemma 3.1. Let (ξx, Lx, φx)x be a Δn-general branching process. Assume that

|zφ(t)− zφ(∞)| ≤ c1e
−β1t ∧ c2,

for some positive constants c1, c2 and β1 ∈ [0, γ]. Then,

|ζ̄(t)| ≤ |φ(t)|+ 2n
(
c1e

(γ−β1)t ∧ c2e
γt
)
.
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Proof. Notice that

|ζ̄∅(t)| ≤ |φ∅(t)|+
n∑

i=1

eγ(t−σi){|zφ(t− σi)− zφ(∞)|+ |zφ(t)− zφ(∞)|}

≤ |φ∅(t)|+
n∑

i=1

(
c1e

(γ−β1)(t−σi) ∧ c2e
γ(t−σi)

)
+ n

(
c1e

(γ−β1)t ∧ c2e
γt
)

≤ |φ∅(t)|+
(
c1

n∑
i=1

e(γ−β1)(t−σi) ∧ c2

n∑
i=1

eγ(t−σi)

)
+ n

(
c1e

(γ−β1)t ∧ c2e
γt
)
.

The result follows upon noticing that

n∑
i=1

e(γ−β1)(t−σi) = e(γ−β1)t
n∑

i=1

e−(γ−β1)σi ≤ ne(γ−β1)t,

and proceeding similarly for the other sum. �

This lemma and the decomposition in (20) show that understanding the rate of
convergence of zφ(t) to its limit in the renewal theorem is helpful for estimating
the fluctuations of Zφ.

3.2. Convergence rate in the renewal theorem. Consider the renewal equa-
tion

(22) z(t) = u(t) +

∫ ∞

0

z(t− s)F (ds),

where F is a non-lattice distribution function on [0,∞). The key to solving the
renewal equation is the renewal measure

H =

∞∑
n=0

F ∗n,

where F ∗n denotes the n-fold convolution of F with itself, because z is typically
given by

z(t) =

∫ ∞

0

u(t− y)H(dy);

see [18,30] among others. The renewal theorem of [18] states that if F has a finite
mean μ1, then

(23) H(t) ∼ μ−1
1 t,

where f(x) ∼ g(x) means that f(x)/g(x) → 1 as x → ∞. Under some regularity
conditions on u, e.g., if u is directly Riemann integrable, this can be used to show
that

z(t) → z(∞) =
1

μ1

∫ ∞

−∞
u(s)ds,

as t → ∞; see [18].
The error in the linear approximation of the renewal function

G(t) = H(t)− μ−1
1 t(24)
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has been studied extensively. When F has a finite second moment μ2,

(25) G(t) → μ2

2μ2
1

,

as t → ∞.
The rate of convergence of G(t) to its limit in this case can be studied using the

Fourier transform f of F defined by

f(w) =

∫ ∞

−∞
ewsF (ds), w ∈ C.

We refer the reader to [18, 40, 48, 49] and references therein for proofs; see also
Appendix B of [32] for a discussion of the lattice case. In particular, Stone proved
the following theorem in [48].

Theorem 3.2 (Stone). Suppose that there exists r1 ∈ (0,∞) such that f(w) is
analytic and 	= 1 when �w ∈ (0, r1). Then, for every r ∈ (0, r1),

G(t)− μ2

2μ2
1

= O(e−rt),

as t → ∞.

Since we aim to apply Lemma 3.1, we will be particularly interested in exponen-
tial rates of convergence of z(t) to its limit. This rate of convergence is connected
to that in Theorem 3.2 by the following lemma adapted from [12] which we include
for convenience.

Lemma 3.3. Let z, u and F satisfy the renewal equation (22). Suppose that

z(t) =

∫ ∞

0

u(t− y)H(dy) → μ−1
1

∫ ∞

−∞
u(y)dy,

as t → ∞. Then,

z(∞)− z(t) = μ−1
1

∫ ∞

0

u(t+ y)dy −
∫ ∞

0

u(t− y)G(dy).

Proof. It suffices to notice that

z(∞)− z(t) = μ−1
1

∫ ∞

0

u(t+ y)dy + μ−1
1

∫ ∞

0

u(t− y)dy −
∫ ∞

0

u(t− y)H(dy),

and use the definition of G. �

3.3. Checking the conditions of the central limit theorem. Discussing the
conditions of the central limit theorem involves finding growth estimates for ζ̄ which
can be verified using Lemma 3.1. To be compatible with the framework of Nerman’s
law of large numbers, we will focus on the situation where the characteristic vanishes
for negative times; extensions will be discussed where needed. We start by looking
at Condition 2.6.

Lemma 3.4. Let (ξx, Lx, φx)x be a Δn-general branching process and let ζ̄ be de-
fined as in (21). Assume that φ(t) = 0 for t < 0 and that there exists a constant
c1 > 0 such that

|ζ̄(t)| ≤ c1e
β1t,

for some β1 ∈ (0, γ/2). Then, Condition 2.6 is satisfied.
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Proof. Let ε ∈ (0, γ/2− β1). Then, for t ≥ 0,∣∣∣∣∣∣e−γt/2
∑

σx≤εt

ζ̄(t− σi)

∣∣∣∣∣∣ ≤ e(β1+ε−γ/2)te−εt
∑

σx≤εt

c1.

By Theorem 2.3,

e−εt
∑

σx≤εt

1 → 1

μ1

∫ ∞

0

e−γtdt =
1

γμ1
in probability,

as t → 0. So the result follows since β1 + ε < γ/2. �

Coupled with Lemma 3.1, this result hints that we should not expect to have a
central limit theorem when zφ(t)− zφ(∞) does not decay at least as fast as e−γt/2,
which is the threshold for the second term in the right-hand side of (20) to converge
to 0. We will explain more precisely why this is sharp in Remark 4.4.

Let us now discuss the moment condition for the central limit theorem. The
next lemmas discuss a set of sufficient assumptions for Condition 2.7 to be satisfied
for the Δn-GBP. We introduce the function

ψ(θ) = E

n∑
i=1

e−θγσi ,

and note that ψ(1) = 1 and that ψ(θ) is strictly decreasing in θ.

Lemma 3.5. Let (ξx, Lx, φx)x be a Δn-general branching process. Then, we have

E

[∑
x∈Σ

e−yγσx

]
=

∞∑
k=0

ψ(y)k,

and the sum is finite if y ∈ (1,∞).

Proof. By monotone convergence,

E

[∑
x∈Σ

e−yγσx

]
=

∞∑
k=0

E

⎡
⎣∑
|x|=k

e−yγσx

⎤
⎦ .

Further, conditioning on the birth times, we get that

E

⎡
⎣∑
|x|=k

e−yγσx

⎤
⎦=E

⎡
⎣ ∑
|x|=k−1

n∑
i=1

e−yγσxe−yγ(σx,i−σx)

⎤
⎦=ψ(y)E

⎡
⎣ ∑
|x|=k−1

e−yγσx

⎤
⎦.

Iterating this and summing over k proves the equality with the infinite sum. Noting
that ψ(y) < 1 for y ∈ (1,∞) completes the proof. �

Relying on this, we can produce the following estimate on the third moment of
the scaled process Z̃.

Lemma 3.6. Let (ξx, Lx, φx)x be a Δn-general branching process. Assume that
φ(t) = 0 for t < 0, that

|ζ̄(t)| ≤ c1e
γt/2 for t ≥ 0

and that v is bounded. Then,

sup
t≥0

E|Z̃(t)|3 < ∞.
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Proof. Notice that

(26) Z̄(t)3 = W∅(t) +
n∑

i=1

Z̄i(t− σi)
3,

where

W∅(t) = ζ̄∅(t)
3 + 3ζ̄∅(t)

2
n∑

i=1

Z̄i(t− σi) + 3ζ̄∅(t)
n∑

i,j=1

Z̄i(t− σi)Z̄j(t− σj)

+
3∑

i,j,k=1
not all equal

Z̄i(t− σi)Z̄j(t− σj)Z̄k(t− σk).

Therefore, it is clear that |Z̄(t)|3 is bounded by∑
x∈Σ

|ζ̄x(t− σx)|3(27)

+ 3
∑
x∈Σ

|ζ̄x(t− σx)|2
n∑

i=1

|Z̄x,i(t− σx,i)|(28)

+ 3
∑
x∈Σ

|ζ̄x(t− σx)|
n∑

i,j=1

|Z̄x,i(t− σx,i)| |Z̄x,j(t− σx,j)|(29)

+
∑
x∈Σ

n∑
i,j,k=1

not all equal

|Z̄x,i(t− σi)| |Z̄x,j(t− σj)| |Z̄x,k(t− σk)|.(30)

To prove the lemma, it is sufficient to check that e−3γt/2 times the expectation of
each of these terms is bounded, which we do now.

To deal with (27), note that

e−3γt/2E
∑
x∈Σ

|ζ̄x(t− σx)|3 ≤ c31E
∑
x∈Σ

e−
3
2γσx = c31

∞∑
k=0

ψ(3/2)k < ∞,

thanks to Lemma 3.5.
Notice that our assumption on the boundedness of v implies that

EZ̄(t)2 ≤ c2e
γt.

Therefore, we can control the term corresponding to (28) using that

e−3γt/2E
∑
x∈Σ

|ζ̄x(t− σx)|2
n∑

i=1

|Z̄x,i(t− σx,i)|

≤ c21e
−3γt/2E

[∑
x∈Σ

eγ(t−σx)
n∑

i=1

E[Z̄x,i(t− σx,i)
2|Fx]

1/2

]

≤ c21c2E

[∑
x∈Σ

e−γσi

n∑
i=1

e−γσx,i/2

]

≤ nc21c2

∞∑
k=1

ψ(3/2)k < ∞,

using that σx,i ≥ σx and Lemma 3.5.
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To deal with (29), we proceed similarly to get that

e−3γt/2E
∑
x∈Σ

|ζ̄x(t− σx)|
n∑

i,j=1

|Z̄x,i(t− σx,i)| |Z̄x,j(t− σx,j)|

≤ ne−3γt/2E
∑
x∈Σ

|ζ̄x(t− σx)|
n∑

i=1

|Z̄x,i(t− σx,i)|2

≤ n2c1c2

∞∑
k=0

ψ(3/2)k.

A similar argument needed to bound the term corresponding to (30) relies on
the observation that, if i, j and k are not all equal, then, assuming without loss of
generality that i is different, we have

E{|Z̄i(t− σi)| |Z̄j(t− σj)| |Z̄k(t− σk)||F∅}
= E{|Z̄i(t− σi)||F∅}E{|Z̄j(t− σj)| |Z̄k(t− σk)||F∅}
≤ (E[Z̄i(t− σi)

2|F∅])
1/2(E[Z̄j(t− σj)

2|F∅])
1/2(E[Z̄k(t− σk)

2|F∅])
1/2.

Using this and reasoning as above then shows that

e−3γt/2E
∑
x∈Σ

n∑
i,j,k=1

not all equal

|Z̄x,i(t− σx,i)| |Z̄x,j(t− σx,j)| |Z̄x,k(t− σx,k)|

≤ n3c2

∞∑
k=0

ψ(3/2)k.

The proof is complete. �

These results are easily combined to produce a version of the CLT for the case
with weights on the simplex.

Theorem 3.7. Let (ξx, Lx, φx)x be a Δn-general branching process such that φ(t) =
0 for t < 0. Assume that

|zφ(t)− zφ(∞)| ≤ c1e
−β1t

for some β1 ∈ (γ/2,∞), that

|φ(t)| ≤ c2e
β2t

for some β2 ∈ (0, γ/2), and that v is bounded with v(t) → v(∞) as t → ∞. Then
the CLT holds in that

e−γt/2Z ζ̄(t) → Z̃∞, in distribution,

as t → ∞, where the distribution of Z̃∞ is normal with mean 0 and variance v(∞).

Proof. It follows from Lemmas 3.1, 3.4 and 3.6 that Conditions 2.6 and 2.7 are
satisfied. This, with our other assumptions, gives the required conditions for The-
orem 2.8. �
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Figure 1. First 4 iterations of the construction of K with the
distribution Dir(1, 1, 1) and γ = 0.6.

4. Spectrum of random self-similar Cantor strings

In this section, we discuss the spectral asymptotics of a family of open subsets
of [0, 1] whose boundary is a random self-similar Cantor set generated using a
distribution on the simplex, called Δn-random Cantor strings. Spectral asymptotics
for a variety of Cantor strings have been studied extensively in [24, 36, 38, 39] and
references therein. We specialise the discussion to Δn-random Cantor strings here
so that we can study the fluctuations of the spectrum using the results of the
previous section.

4.1. Construction. Choose γ ∈ (0, 1), n ≥ 2 and consider the random vector
(T1, . . . , Tn) with a probability law on the simplex. Start with the unit interval

K0 = [0, 1] and replace it by n equally spaced intervals of length T
1/γ
1 , . . . , T

1/γ
n .

Replace each of these intervals by n intervals created independently with the same
procedure. Iterating indefinitely, we obtain a decreasing sequence of compact sets
(Kj , j ≥ 0), and K =

⋂
j Kj is a statistically self-similar Cantor set. Indeed, in the

notation of Subsection 2.2, it suffices to set

(N,R1, . . . , RN ) = (n, T
1/γ
1 , . . . , T 1/γ

n );

the maps (Φ1, . . . ,ΦN ) can easily be deduced from this. The corresponding general
branching process (ξ, L) (no characteristic just yet) is obtained as described in
Subsection 2.2. By construction this is a Δn-general branching process and its
Malthusian parameter is γ. Figure 1 depicts the first 4 iterations in the construction
of the set K with the distribution Dir(1, 1, 1).

The set in which we are interested in this chapter is U = [0, 1] \ K, whose
boundary is K by construction. Thanks to the Lindelöf property, U is a countable
union of intervals. As such, U is a random string in the sense of [36, 38, 39] and
references therein.

4.2. Fractal dimension. Consider the set U defined above and recall that the
Hausdorff dimension of ∂U = K is γ. Using Theorem 2.5, we now show that the
Minkowski dimension of ∂U exists and is also equal to γ almost surely.

Theorem 4.1. The Minkowski dimension of the Δn-random Cantor string K is
almost surely equal to γ.

Proof. Consider the characteristic function defined by

φ(t) = ξ(∞)− ξ(t).
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The corresponding counting process Zφ counts the number of offspring born after
time t to parents born up to time t. As such, Zφ(t) is an upper bound for the
covering number N(e−t,K) of K with balls of radius e−t.

By the strong law of large numbers, we have

e−γtZφ(t) → 1

μ1

∫ ∞

0

Ee−γsφ(s)ds ∈ (0,∞), a.s.,

as t → ∞. This is easily used to check that dimMK ≤ γ almost surely. The result
follows since dimK = γ almost surely. �
4.3. Spectrum of the Dirichlet Laplacian. Recall that the eigenvalue counting
function for a domain D (or a countable union of domains) of R is defined by

ND(λ) = #{eigenvalues of −Δ ≤ λ}.
Following [41], we define

N̄D(λ) =
1

π
vol1(D)λ1/2 −ND(λ).

The function N̄D has the property that if D1 and D2 are disjoint, then

(31) N̄D1∪D2
(λ) = N̄D1

(λ) + N̄D2
(λ).

Furthermore, for r ∈ (0,∞), a change of variables shows that

(32) N̄rD(λ) = N̄D(r2λ).

In our applications of the central limit theorem, we will rely on the following
assumption, which was discussed in the previous section.

Assumption 4.2. The rate of convergence in the renewal theorem satisfies∣∣∣∣G(t)− μ2 + σ2

2σ2

∣∣∣∣ ≤ c1e
−β1t

for large t, for some β1 ∈ (γ/2,∞).

We may now use the general branching process to study N̄U .

Theorem 4.3. Let K be a Δn-random Cantor string with dimension γ and consider
the string U = [0, 1] \K. Then,

λ−γ/2N̄U (λ) → N, a.s. and in L1,

as λ → ∞, for some strictly positive constant N.
Furthermore, if Assumption 4.2 holds, then

λγ/4(λ−γ/2N̄U (λ)−N) → Z in distribution,

as λ → ∞, where Z has a normal distributions with mean 0 and variance σ2 for
some strictly positive constant σ.

Proof. Define the random variable S by

S = (1−R1 − · · · −Rn)/(n− 1).

By construction and the properties in (31) and (32), we have

N̄U (λ) = (n− 1)N̄S[0,1](λ) +
n∑

i=1

N̄RiUi
(λ) = (n− 1)N̄[0,1](S

2λ) +
n∑

i=1

N̄Ui
(R2

iλ),

where Ui are i.i.d. copies of U .
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Now recall that the eigenvalues of −Δ for the unit interval [0, 1] are (nπ)2.
Therefore,

N̄[0,1](λ) = π−1λ1/2 − �π−1λ1/2�,
which is bounded by 1 ∧ (π−1λ1/2).

To use the general branching process, set

φ(t) = (n− 1)N̄[0,1](S
2e2t) and Zφ(t) = N̄U (e

2t)

so that

Zφ(t) = φ∅(t) +
n∑

i=1

Zφ
i (t− σi),

where Zφ
i are i.i.d. copies of Zφ and Zφ is the counting process of the characteristic

φ. Furthermore, notice that

(33) 0 ≤ φ(t) ≤ (n− 1)et1t<0 + c11t≥0 and Zφ(t)1t<0 ≤ c2e
t1t<0,

for some positive constants c1 and c2.
To establish the first statement of the theorem, we use (5) and set

χ(t) = φ(t)1t≥0 +

n∑
i=1

Zφ
i (t− σi)10≤t<σi

,

which is bounded thanks to (33).
Thanks to Theorem 2.5, this implies that

e−γtZχ(t) → μ−1
1

∫ ∞

0

e−γsEχ(s)ds ∈ (0,∞), a.s. and in L1,

as t → ∞. By definition, this means that

λ−γ/2N̄U (λ) → μ−1
1

∫ ∞

0

e−γsEχ(s)ds, a.s. and in L1,

as λ → ∞, as required.
Let us now prove the second part of the theorem under Assumption 4.2. Consider

ζ̄φ and ζ̄χ defined as in (21) using φ and χ. Notice that

Z̄χ := Z ζ̄χ

(t) and Z̄φ := Z ζ̄φ

(t)

are equal for t ≥ 0. In particular, the corresponding variance functions vχ(t) and
vφ(t) are equal for t ≥ 0. Furthermore, applying the fact that (ζ̄φx )x is i.i.d. together
with the bounds from Lemma 3.1, it follows that there are positive constants c, τ =
(2β1 − γ) ∧ γ such that

rφ(t) = e−γtE|ζ̄φ(t)|2 ≤ ce−τ |t|.

These observations and the renewal theorem of [41] imply that

(34) lim
t→∞

vχ(t) = lim
t→∞

vφ(t) = μ−1
1

∫ ∞

0

e−γtEζ̄φ(s)2ds = v(∞) ∈ (0,∞),

say.
Since χ is bounded and

(35) |zχ(t)− zχ(∞)| ≤ c2e
−β1t

by Assumption 4.2 and Lemma 3.3, the conditions of Theorem 2.8 are satisfied.
This implies that

eγt/2(e−γtZχ(t)−N) → N(0, v(∞)), in distribution,
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as t → ∞. Using the definition of Zχ, the decomposition in (20), (35) and Slutsky’s
lemma completes the proof. �

Remark 4.4. The arguments in the proof can be used to show that there cannot be
a central limit theorem when the rate of convergence in the renewal theorem is not
fast enough. Suppose that

zφ(t)− zφ(∞) = c1e
−β1t + o(e−β1t),

as t → ∞, for some real constant c1. Then notice that the centering ζ̄φ introduced
in (21) and used in the proof of Theorem 4.3 satisfies

ζ̄φ∅ (t) = φ∅(t) +
n∑

i=1

eγ(t−σi)[zφ(t− σi)− zφ(∞) + zφ(∞)− zφ(t)]

= φ∅(t) + c1e
(γ−β1)t

(
n∑

i=1

e−(γ−β1)σi − e−γσi

)
+ o(e(γ−β1)t)

= φ∅(t) + c1e
(γ−β1)tR + o(e(γ−β1)t),

say, as t → ∞ (where the remainder is deterministic). Notice that R is a strictly
positive random variable. In particular, for some ε0 ∈ (0,∞), we have P(R ≥ ε0) >
0. Therefore, there exists t0 such that, for t ≥ t0,

|ζ̄φ∅ (t)|
2 ≥ |ζ̄φ∅ (t)|

21R≥ε0 ≥ 1

2
c21ε

2
0e

2(γ−β1)t1R≥ε0 .

This implies that, for t ≥ t0,

rφ(t) = e−γtE|ζ̄φ∅ (t)|
2 ≥ 1

2
c21ε

2
0e

(γ−2β1)tP(R ≥ ε0).

If β1 ∈ (0, γ/2], then, by renewal theory, we cannot have a finite limiting variance
in (34) and, in particular, no central limit theorem.

5. Dirichlet distributions

We now consider the case where the distribution on the simplex is the Dirichlet
distribution and perform some explicit calculations to show the range of behaviour
that is possible in our set up. In this set up the birth times are distributed as

(e−γσ1 , . . . , e−γσn) ∼ Dir(α1, . . . , αn),

where Dir denotes the Dirichlet distribution. We will describe this situation by say-
ing that the Δn-general branching process has Dirichlet weights α = (α1, . . . , αn)
and write

α0 = α1 + · · ·+ αn,

as usual.

5.1. Explicit calculations with Dirichlet weights. In general, it is difficult to
determine the solutions to f(w) = 1 needed to use Theorem 3.2. In some cases
with Dirichlet weights which we discuss now, however, we can use the properties
of the Gamma function to study f and deduce convergence rates for the renewal
theorem.

Let X ∼ Dir(α) be a random vector in Rn. It is well-known that, for every i,

Xi ∼ Beta(αi, α0 − αi),
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where Beta denotes the Beta distribution. Recall that if Y ∼ Beta(β1, β2), then

EY θ =
B(θ + β1, β2)

B(β1, β2)
,

where B is the Beta function, i.e.,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Therefore, we get that

(36) ψ(θ) = E

[
n∑

i=1

Xθ
i

]
=

Γ(α0)

Γ(α0 + θ)

n∑
i=1

Γ(αi + θ)

Γ(αi)
,

where the equation defines ψ. For the general branching process with Dirichlet
weights defined above, it follows that
(37)

f(w) =

∫ ∞

−∞
ewsνγ(ds) =

∫ ∞

−∞
e(w−γ)sν(ds) = E

[
n∑

i=1

e−γσi(1−w/γ)

]
= ψ(1−w/γ).

If α0 − αi ∈ Z for every i, we can use that Γ(w + 1) = wΓ(w) to reduce the
function ψ to a rational function which may be simpler to analyse. Notice that this
assumption implies in particular that there exist some a ∈ R and �i ∈ Z such that,
for every i, we have αi = a+ �i. Therefore,

α0 = a+ �0 = α1 + · · ·+ αn = na+ �1 + · · ·+ �n,

from which it follows that (n− 1)a ∈ Z.
By definition of G in (24) and writing F = νγ , we have

G ∗ F (t) = H ∗ F (t)− μ−1
1

∫ ∞

0

(t− s)F (ds)

= H(t)− 1t≥0 − μ−1
1 t+ 1

= G(t) + 1t<0.

Denoting by g the Fourier transform of G and f that of F = νγ , we thus get that

g(w) =
1

1− f(w)
, w ∈ C.

Applying (36) and (37), for the general branching process with Dirichlet weights α
satisfying α0 − αi ∈ Z for every i, the function f can be written

f(w) = ψ(1− w/γ) =

n∑
i=1

1

Pi(w)
,

where Pi is a polynomial of degree α0 − αi. It follows that

g(w) =

∏n
i=1 Pi(w)∏n

i=1 Pi(w)−
∑n

i=1

∏
j �=i Pj(w)

= 1 +

∑n
i=1

∏
j �=i Pj(w)∏n

i=1 Pi(w)−
∑n

i=1

∏
j �=i Pj(w)

= 1 +
R(w)

Q(w)
,
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say. It is easy to see that

degR < (n− 1)α0 = degQ.

Now, decompose g into partial fractions and write

g(w) = 1 +

q∑
i=1

Qi(w)

(w − ρi)mi
,

where (ρi, i ≤ q) are the roots of Q with corresponding multiplicities mi and Qi

are polynomials with degQi < mi for every i; in particular,

m1 + · · ·+mq = (n− 1)α0.

Recall that, for k ∈ Z+ and �(λ− r) < 0,∫ ∞

−∞
eλttke−rt1t≥0dt =

∫ ∞

0

tke(λ−r)tdt =
k!

(r − λ)k+1

and therefore that

(38)

∫ ∞

0

eλt
dk

dtk
(
tke−rt

)
dt =

k!λk

(r − λ)k+1
.

Using this, it is easy to check that

G(dt) = δ0(t)dt+
∑


ρi≤0

Q̃i(t)e
ρit1t<0dt+

∑

ρi>0

Q̃i(t)e
−ρit1t≥0dt,

where the Q̃i are polynomials determined using (38) and satisfying deg Q̃i < mi.
Of course, since F is supported on [0,∞), so is H and therefore, by definition of
G, we have

G(t)1t<0 = −μ−1
1 t1t<0.

Putting this together shows that

(39) G(dt) = δ0(t)dt− μ−1
1 1t<0dt+

∑

ρi>0

Q̃i(t)e
−ρit1t≥0dt,

which we can integrate to study the asymptotics of G. A particular example which
will guide us below is given in the following lemma.

Lemma 5.1. Assume that all the roots of Q are simple. Then,

G(t) = −μ−1
1 1t<0t+

μ2

2μ2
1

1t≥0 +
∑


ρi>0

ci
ρi
e−ρit1t≥0,

where ci = Res(g; ρi), the residue of g at ρi.

Since in this case none of the singularities can be removed and all have order
one, all the ci are non-zero. Furthermore, since if ρi is a root with residue ci, then
ρ̄i is a root with residue c̄i as g(w̄) = g(w), roots with the same real part cannot
cancel out. In particular, in this case, the result of Theorem 3.2 is sharp.

Proof. Since all the roots of Q are simple, we have

g(w) = 1 +

q∑
i=1

ci
w − ρi

,
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where we must have ci = Res(g; ρi). Integrating (39) then shows that

G(t) = 1t≥0 − μ−1
1 1t<0t−

∑

ρi>0

ci
ρi
1t≥0 +

∑

ρi>0

ci
ρi
e−ρit1t≥0.

Since F has a second moment, the result now follows from (25) after letting t →
∞. �

5.2. Examples. Let us first discuss how the observations above enable us to es-
tablish the desired rate of convergence for some simple cases of Dirichlet weights.

Example 1.

Lemma 5.2. Consider the general branching processes with Dirichlet weights α
described above. Assume that

α1 = · · · = αn =
k

n− 1
, k ∈ {1, 2, 3, 4}, n ≥ 2.

Then the Fourier transform f(w) of νγ is analytic and 	= 1 when �w ∈ (0, γ]. In
particular,

G(t)− μ2

2μ2
1

= O(e−γt),

as t → ∞.

Proof. Letting α = k/(n− 1) a direct calculation gives

ψ(θ) =

k∏
i=1

α+ i

θ + α+ i− 1
, θ > −α.

There is always a solution to ψ(θ) = 1 at θ = 1 and all we require is that the other
solutions are less than 0 to establish, via (37), that f(w) is analytic and 	= 1 on
�w ∈ (0, (1 + α)γ).

For k = 1, the only solution to ψ(θ) = 1 is θ = 1.
For k = 2, the other solution to ψ(θ) = 1 is given by θ = −2(α+ 1).
For k = 3, the other solutions to ψ(θ) = 1 are

θ = −3α+ 4

2
± 1

2

√
−3α2 − 12α− 8,

and k = 4 has solutions to ψ(θ) = 1 at

θ = −2α− 4,−3

2
− α± 1

2

√
−4α2 − 20α− 15.

Thus the real parts of all the solutions are less than zero and we have the required
analyticity.

The rest of the statement follows from Theorem 3.2. �

Analytic solutions for the solutions to the equation ψ(θ) = 1 do not appear to
be available for larger values of k.

Example 2. Here we discuss the general branching process derived from the class
of examples mentioned in the Introduction in which the Dirichlet weights are of the
form α = (α, α) with α ∈ N. We will establish the theorem from the Introduction.

Thanks to Lemma 5.2, we know that if α ≤ 4, as n = 2, then the Fourier
transform f of νγ defined in (37) can be used to show that the rate of convergence
in the renewal theorem is sufficiently fast for the requirements of Theorem 2.8.
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Figure 2. Phase plots of 1−f(γw) for α = 1, 2, 3, 10, 30 and 60.
The black line indicates the set {z ∈ C : �z = 1/2}. The regions
of the plot are {z ∈ C : �z and �z ∈ [−s, s]} for s = 5, 10, 10, 40,
50 and 50.

In other words, the applicability of Theorem 2.8 depends on the regularity of the
characteristic φ.

More generally we need to solve the equation

f(γ(1− θ)) = ψ(θ) =
2Γ(2α)Γ(α+ θ)

Γ(α)Γ(2α+ θ)
= 1.

As α ∈ N this is a polynomial equation and hence we seek roots of

α−1∏
i=0

(θ + α+ i) =
2(2α− 1)!

(α− 1)!
.

By letting w = 1 − θ the rate of convergence in the renewal theorem is given by
the root of 1 − f(γw) with smallest strictly positive real part. We have computed
these values numerically.

The numerical evidence shows that when α increases, some roots of 1 − f(γw)
get close to the imaginary axis. This phenomenon is illustrated in Figure 2 which
contains phase plots of 1 − f(γw) for different values of α; we rescaled for conve-
nience. To highlight this more clearly, Figure 3 contains some close-ups of phase
plots showing the absence or presence of such roots of 1−f(γw) for different values
of α. In particular, when α = 30, the two non-zero roots of 1 − f(γw) closest to
the imaginary axis are

ρ± � 0.9951± 9.1074i;

when α = 60, they are

ρ± � 0.4962± 9.1027i;
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Figure 3. Phase plots of 1− f(γw) for α = 30, 60, 80. The black
line indicates the set {z ∈ C : �z = 1/2}. The region of the plot
is {z ∈ C : �z ∈ [0, 2] and �z ∈ [8, 10]}.

Figure 4. Plot of the real part of the root of 1−f(γw) in �z > 0
closest to the imaginary axis against α.

and when α = 80, they are

ρ± � 0.3718 + 9.0963i.

We have in fact computed the real part of the relevant root for all values of α from
1 to 80; these are plotted in Figure 4. Numerically, this establishes that α = 60 is
the smallest integer value for which 1− f(γw) has roots with real part < 1/2.

Our computations also show that for 1 ≤ α ≤ 80 the roots of 1− f(γw) are all
simple and occur as complex conjugate pairs except for the root at 0.

To summarise, this numerical evidence shows that the general branching process
with Dirichlet weights (α, α) admits a central limit theorem of the type described
when α ≤ 59, but not when 60 ≤ α ≤ 80. Moreover, the monotonicity of the plot
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in Figure 4 suggests that the range for which there is not a central limit theorem
extends to all α ≥ 60.

We note that we see similar results in the asymmetric case with Dirichlet weights
(α1, α2), α1, α2 ∈ N with α2 ≤ α1−1. In this case the polynomial equation becomes(

α2−1∏
i=0

(α1 + θ + i)− (α1 + α2 − 1)!

(α1 − 1)!

)
α1−α2−1∏

i=0

(α2 + θ + i) =
(α1 + α2 − 1)!

(α2 − 1)!
.

Here is a table showing for a given α2 the values of α1 below which we are in the
central limit theorem regime.

α2 1 2 3 4 5 6 7 α1 − 1
α1 26 32 39 45 51 57 64 60

5.3. Applications to random self-similar strings. For the range of examples
considered in Example 1 of Section 3, thanks to Lemma 5.2, we know that the
Cantor set in Figure 1 satisfies Assumption 4.2 and so, by Theorem 4.3, the corre-
sponding Cantor string satisfies a spectral central limit theorem.

We now return to the second example of Section 3, which was also discussed in
the Introduction. Figure 5 contains some pictures of statistically self-similar Cantor
sets with Dirichlet weights (α, α) discussed in Subsection 5.2. The figure illustrates
the fact that the geometry of the Cantor set becomes more rigid as α increases,
because the corresponding Dirichlet distribution becomes more concentrated.

Figure 5. Statistically self-similar Cantor strings for the distri-
bution Dir(α, α), with α = 1, 30 and 80 and γ = 0.6.

Proof of Theorem 1.1. The numerical evidence discussed in Subsection 5.2 shows
that Assumption 4.2 is satisfied for integers α ≤ 59. Thus, by Theorem 4.3, we
have established parts (i) and (ii) of the theorem.

For (iii), we start by noting if S := 1−T 1/γ−(1−T )1/γ , where T is a [0, 1]-valued
random variable with density

Γ(2α)

Γ(α)2
xα−1(1− x)α−1,

and S̃ := S/π, then the explicit form of φ(t) yields the following distributional
equality:

φ(t) = S̃et − �S̃et�.
This is clearly bounded above by 1 for all t ∈ R and, moreover, we recall from (33)
that φ(t) ≤ et for t ≤ 0. Taking expectations, the same is true of Eφ(t). Such
an observation, together with the asymptotic behaviour of the renewal function
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(as stated at (23)), readily allows us to apply the double-sided renewal theorem of
[30, Theorem 5] to deduce that

zφ(t) =

∫ ∞

0

uφ(t− y)H(dy) → μ−1
1

∫ ∞

−∞
uφ(y)dy =: zφ(∞).

Thus we can apply Lemma 3.3 to obtain that

zφ(t)− zφ(∞) =

∫ ∞

0

uφ(t− y)G(dy)− 1

μ1

∫ ∞

0

uφ(t+ y)dy.

Using the bounds from (33) again, it is straightforward to see that the second term
is of order e−γt. We now examine the first term. Using (39), we see∫ ∞

0

uφ(t− y)G(dy) =

∫ t

0

e−γ(t−y)Eφ(t− y)G(dy)

=
∑


ρi>0

∫ t

0

e−γ(t−y)Eφ(t− y)Q̃i(y)e
−ρiydy.

Define β1 := γ−1 min
ρi>0 �ρi, which by our numerical study in Example 2 of
Section 5.2 we know satisfies β1 ∈ (0, 1/2) (for 60 ≤ α ≤ 80). Then∣∣∣∣∣∣

∑

ρi>β1

∫ t

0

e−γ(t−y)Eφ(t− y)Q̃i(y)e
−ρiydy

∣∣∣∣∣∣
≤ c1

∑

ρi>β1

(1 + tmi−1)e−γt

∫ t

0

e(γ−
ρi)ydy

≤ c2
∑


ρi>β1

(1 + tmi−1)e−γt
(
1 + e(γ−
ρi)t

)

= o(e−β1t).

Without loss of generality we label the remaining pair of terms with ρ± = γ(β1 ±
iβ2), and we have that, as all the roots are simple and come in conjugate pairs

(again, for 60 ≤ α ≤ 80), by the remarks after Lemma 5.1, Q̃±(y) = ce±ic̃ for some
c, c̃ with c > 0. Hence∑


ρi=β1

∫ t

0

e−γ(t−y)Eφ(t− y)Q̃i(y)e
−ρydy

=
∑
±

ce±ic̃e−γt

∫ t

0

eγ(1−ρ±)yEφ(t− y)dy

=
∑
±

ce±ic̃e−ρ±t

∫ t

0

e−γ(1−ρ±)yEφ(y)dy.

As 1−β1 > 0 and φ(y) is a bounded function, the integrals in the above expression
converge, as t → ∞, to complex constants Re±iθ :=

∫∞
0

e−γ(1−ρ±)yEφ(y)dy. It
follows that

zφ(t)− zφ(∞) = 2Rc cos(γβ2t− θ − c̃)e−γβ1t + o(e−γβ1t).

Now, if we suppose that R > 0, then the reasoning in Remark 4.4 indicates that
the Cantor string does not satisfy a spectral central limit theorem for values of
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α ∈ {60, . . . , 80} (recall that we have checked numerically that β1 < γ/2 and also
c > 0 for α in this range). Moreover, splitting the process as in (20) but without
scaling, then taking expectations, we can write

EZφ(t) = eγtzφ(∞) + eγt
(
zφ(t)− zφ(∞)

)
= eγtzφ(∞) + 2Rc cos(γβ2t− θ̃)eγ(1−β1)t + o(eγ(1−β1)t).

Rewriting in terms of the counting function we have the result for the mean counting
function with η(α) = 1 − β1 the required root of the polynomial appearing in the
Theorem.

Thus to complete the proof of (iii) it remains to check that R > 0. We will do this
numerically for α ∈ {60, . . . , 80}. First, observe that for a ∈ C with Ra ∈ (0, 1),

I :=

∫ ∞

−∞
e−atEφ(t)dt

= E

∫ ∞

−∞
e−at

(
S̃et − �S̃et�

)
dt

= E

∞∑
n=0

∫ ln((n+1)/S̃)

ln(n/S̃)

e−at
(
S̃et − n

)
dt

= ES̃a

(
1

1− a
+

∞∑
n=1

n1−a

(
(1 + n−1)1−a

1− a
+

(1 + n−1)−a

a
− 1

a(1− a)

))

= ES̃a

( ∞∑
n=0

an

)
,

where a0 := (1− a)−1 and, for n ≥ 1,

an :=
n1−a

a(1− a)

(
(1 + n−1)−a(1 + an−1)− 1

)
.

Some elementary complex analysis yields∣∣∣∣(1 + n−1)−a − 1 + an−1 − a(a+ 1)

2
n−2

∣∣∣∣ ≤ 16Mn−3, ∀n ≥ 4,

where

M := max
|z|= 1

2

|(1 + z)−a| ≤ 2Rae
π
6 |Ia|.

Hence, if n ≥ 4, then∣∣∣∣an − n−1−Ra

2

∣∣∣∣
≤ n1−Ra

|a(1− a)|

(∣∣∣∣(1− an−1 +
a(a+ 1)

2
n−2)(1 + an−1)− 1− a(1− a)

2n2

∣∣∣∣
+ 16Mn−3|1 + an−1|

)

=
n1−Ra

|a(1− a)|

(∣∣∣∣a2(a+ 1)

2n3

∣∣∣∣+ 16Mn−3|1 + an−1|
)

≤ n−2−Raf(a),
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where

f(a) :=
1

|a(1− a)|

(
|a2(a+ 1)|

2
+ 24+Rae

π
6 |Ia||1 + a|

)
.

Now,∫ ∞

0

e−atEφ(t)dt = I −
∫ 0

−∞
e−atEφ(t)dt = I −

∫ 0

−∞
e−atES̃etdt = I − a0ES̃.

So, setting a = γ(1− ρ±), we obtain that for N ≥ 3,∣∣∣∣∣Re±iθ −ES̃a

(
N∑

n=1

an + 1
2ζ(1 + a)− 1

2

N∑
n=1

n−(1+a)

)
− a0

(
ES̃a −ES̃

)∣∣∣∣∣
≤ ES̃Ra

∞∑
n=N+1

∣∣∣∣an − n−1−Ra

2

∣∣∣∣ ≤ ES̃Ra
∞∑

n=N+1

n−2−Raf(a)

≤ ES̃RaN
−1−Raf(a)

1 +Ra
,

where ζ(x) =
∑∞

n=1 n
−x is the usual zeta function. In particular, the above in-

equality allows us to compute an estimate for Re±iθ whose error is no greater than
the upper bound. For values of α ∈ {60, . . . , 80} and γ = 1

2 , our computations
establish that R > 0, as desired. For example, with this choice of γ, we find that if
α = 60, then R � 0.09703, and if α = 80, then R � 0.1056. Note that values of ρ±
and R for all values of α ∈ {60, . . . , 80} are presented in the Appendix below. �

6. Spectral central limit theorem for the Brownian CRT

6.1. Brownian CRT definition and main result. Building on the investiga-
tions into the spectrum of the Brownian continuum random tree (CRT) undertaken
in [11, 12], in this section we apply Theorem 2.8 to deduce a central limit theorem
for the Brownian CRT’s eigenvalue counting function. The starting point for doing
this is the characterisation of the Brownian CRT as a random self-similar fractal
tree with Dir(1/2, 1/2, 1/2) weights. (This was shown in [11] using a decomposition
first derived in [3].)

To introduce the Brownian CRT precisely, it will be most convenient to use
the now well-known connection between real trees and excursions. In particular, a
function f is said to be an excursion of length � ∈ (0,∞) if it belongs to C(R+,R+)
and also satisfies f(x) > 0 if and only if x ∈ (0, �). Given such a function, define a
distance on [0, �] by setting df (x, y) := f(x) + f(y)− 2 inf{f(r) : r ∈ [x∧ y, x∨ y]},
and let ∼f be the equivalence relation arrived at by supposing x ∼f y if and only if
df (x, y) = 0. Subsequently, if Tf := [0, �]/ ∼f and dTf

is the corresponding quotient
metric, it is possible to check that (Tf , dTf

) is a real tree (see [15, Definition 2.1] for
the definition of a real tree, [15, Theorem 2.1] for a proof of this fact, and Figure 6
for a pictorial example). Applying this construction, one may define the Brownian
CRT to be the random real tree T = (T , dT ) := (T2e, dT2e

), where e is simply the
Brownian excursion normalised to have unit length (see [2, Corollary 22]).

For P-a.e. realisation of T , it is possible to define naturally an associated measure
and Dirichlet form as follows. First, the canonical measure on T , which will be
denoted by μT , is obtained by pushing forward Lebesgue measure on [0, 1] by the
quotient map onto T . This procedure yields a non-atomic Borel probability measure
of full support, P-a.s. Second, as a consequence of [31, Theorem 5.4], it is possible
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Figure 6. An excursion and associated real tree.

to build a local, regular, conservative Dirichlet form (ET ,FT ) on L2(T , μT ), which
is related to the metric dT through, for every x 	= y ∈ T ,

dT (x, y)
−1 = inf{ET (f, f) : f ∈ FT , f(x) = 0, f(y) = 1}.

The eigenvalues of the triple (ET ,FT , μT ) are defined to be the numbers λ which
satisfy

ET (f, g) = λ

∫
T
fgdμT , ∀g ∈ FT ,

for some eigenfunction f ∈ FT . The corresponding eigenvalue counting function,
NT , is obtained by setting

NT (λ) := #{eigenvalues of (ET ,FT , μT ) ≤ λ},
and it is this function that will be of interest here. We note that it was checked in
[11, Section 6] that NT is well-defined and finite for any λ ∈ R, P-a.s. Moreover,
from [11, Theorem 2] and [12, Theorem 1.1 and Remark 1.2], we know that there
exists a deterministic constant C0 ∈ (0,∞) such that, as λ → ∞,

(40) ENT (λ) = C0λ
2/3 +O(1),

and also, P-a.s.,

(41) λ−2/3NT (λ) → C0.

These establish second order mean behaviour, and first order almost sure behaviour
of the eigenvalue counting function. Here, we further investigate the second order
distributional behaviour, applying our central limit theorem to prove the following
result in particular.

Theorem 6.1. There exist constants C0 ∈ (0,∞) and C1 ∈ [0,∞) such that, as
λ → ∞,

NT (λ)− C0λ
2/3

λ1/3
→ N(0, C1),

in distribution.

Remark 6.2. Unfortunately we are not able to establish that the asymptotic vari-
ance C1 is strictly positive, as we were in the corresponding result for fractal strings
(Theorem 4.3). This is due to the more complicated correlation structure of the
relevant characteristics, for which we could not find suitable tools to analyse.
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Figure 7. Self-similar decomposition of the continuum random tree.

6.2. Self-similarity of the Brownian CRT. As noted above, the key tool in
studying the spectrum of the Brownian CRT in [11, 12] was a self-similar decom-
position. We again take this recursion as our starting point, and proceed in this
section to describe this in more detail. We also make the connection with the
branching process framework of Section 2.

Let ρ ∈ T be the ∼e-equivalence class of T and x(1), x(2) be two μT -random ver-
tices of T . Since T is a real tree, there exists a unique branch-point bT (ρ, x(1), x(2))
∈ T of these three vertices. To be more precise, this is the sole element in the set
[[ρ, x(1)]]∩ [[x(1), x(2)]]∩ [[x(2), ρ]], where [[x, y]] is the unique injective path from x
to y in T . Now, by the non-atomicity of μT , the vertices ρ, x(1), x(2) are distinct
almost surely, and therefore lie in different components of T \bT (ρ, x(1), x(2)). We
will label by T1, T2 and T3 the components containing ρ, x(1) and x(2), respectively.
Moreover, for i = 1, 2, 3, we define a metric dTi

and probability measure μTi
on

Ti by setting dTi
:= Δ

−1/2
i dT |Ti×Ti

, μTi
(·) := Δ−1

i μ(· ∩ Ti), where Δi := μT (Ti).
Note that, since μT has full support, Δi is almost surely non-zero. We also fix

ρ1 = ρ2 = ρ3 = bT (ρ, x(1), x(2)), set x
(1)
i = ρ, x(1), x(2) for i = 1, 2, 3, respectively,

and choose x
(2)
i to be a μTi

-random vertex of Ti for each i = 1, 2, 3. (See Figure 7.)
A minor adaptation of [2, Theorem 2] using the invariance under rerooting of the
Brownian CRT (see [1, Section 2.7], for example) then yields the following.

Lemma 6.3. The collections (Ti, dTi
, μTi

, ρi, x
(1)
i , x

(2)
i ), i = 1, 2, 3, are indepen-

dent copies of (T , dT , μT , ρ, x
(1), x(2)), and moreover, the entire family of random

variables is independent of (Δi)
3
i=1, which has a Dir( 12 ,

1
2 ,

1
2 ) distribution.

We will label the objects generated by applying this procedure repeatedly using a
subset of the address space of sequences I introduced in Section 2.1. In particular,
for n ≥ 0, let Σn := {1, 2, 3}n (using the convention that {1, 2, 3}0 = {∅}), and
define Σ :=

⋃
m≥0Σm. For i ∈ Σm, j ∈ Σn, we continue to write the convolution

ij = i1 . . . imj1 . . . jn. For k ∈ Σ, we denote by |k| the unique integer n such that
k ∈ Σn. We will also write for i ∈ Σm, i|n = i1 . . . in for any n ≤ m.

Returning to our inductive procedure, given (Ti, dTi
, μTi

, ρi, x
(1)
i , x

(2)
i ), where i ∈

Σ, we define (Tij , dTij
, μTij

, ρij , x
(1)
ij , x

(2)
ij ) and Δij , j = 1, 2, 3, from (Ti, dTi

, μTi
, ρi,

x
(1)
i , x

(2)
i ) using the same method as that by which T was decomposed above. If

the σ-algebra generated by the random variables (Δi)1≤|i|≤n is denoted by Fn for
each n ∈ N, then Lemma 6.3 readily yields the following corollary. As in [11] and
[12], it is this result that facilitates all that follows.



9002 PHILIPPE H. A. CHARMOY, DAVID A. CROYDON, AND BEN M. HAMBLY

Corollary 6.4. For each n ∈ N, {(Ti, dTi
, μTi

, ρi, x
(1)
i , x

(2)
i )}i∈Σn

is an independent

collection of copies of (T , dT , μT , ρ, x
(1), x(2)), independent of Fn.

To prove Theorem 6.1, we will work with the Dirichlet eigenvalues of (ET ,FT , μT ).
These are defined to be the eigenvalues of the triple (ED

F ,FD
T , μT ), where ED

T :=

E|FD
T ×FD

T
and FD

T := {f ∈ FT : f(ρ) = f(x(1)) = 0}. Since the corresponding

eigenvalue counting function (ND
T (λ))λ∈R satisfies

(42) ND
T (λ) ≤ NT (λ) ≤ ND

T (λ) + 2, ∀λ ∈ R

(see [11, Lemma 19]), the asymptotics of ND
T are indistinguishable from those of

NT at the level at which we are working.
We now make the connection between the eigenvalue counting function ND

T on T
and a general branching process. Suppose that, starting from the single individual
∅, each individual i has three offspring, born at times − 3

2 lnΔij , j = 1, 2, 3, after i
was born (so that the entire population can be indexed by the set Σ). In particular,
this implies that an individual i ∈ Σ has birth time σi = − 3

2 lnDi, where D∅ := 1
and Di := Δi|1Δi|2 . . .Δi||i| for i ∈ Σ\{∅}. For our purposes, we do not need
to define lifetimes of individuals explicitly. We do, however, define characteristics
(φi)i∈Σ, via the formula

(43) ND
i (et) = φi(t) +

3∑
j=1

ND
ij (e

tΔ3/2),

where ND
i is the Dirichlet eigenvalue counting function on (Ti, dTi

, μTi
). Note that

[11, Lemma 19] implies that φi(t) ∈ [0, 6] for every t ∈ R, P-a.s. Note also that
the random function φi only depends on the progeny of i (including the birth times
of the offspring of i). Thus, we have a general branching process in the sense of
Section 2.1, and, in the sense of Section 5 it has Dirichlet weights. It is easy to
check that this process has Malthusian parameter equal to γ = 2/3. Moreover,
iterating (43) (and checking that the remainder term converges to 0) allows one to
deduce that the corresponding characteristic counting process

(44) Zφ(t) =
∑
i∈Σ

φi(t− σi)

satisfies Zφ(t) = ND
T (et) (see the proof of [12, Lemma 3.5]). As before, the rescaled

means of Zφ and φ will be written zφ(t) := e−γtE(Zφ(t)), uφ(t) := e−γtE(φ(t)),
where we omit the index from φ in the expectation since this is unimportant. Both
of the above functions are well-defined and finite for all t ∈ R (see [11]). In fact,

(45) M := sup
t∈R

zφ(t)

is a finite constant (see [11, Lemma 20]). Moreover, it was proved as [11, Proposition
21] that zφ(t) → zφ(∞) :=

∫∞
−∞ uφ(t)dt ∈ (0,∞). (The proof that zφ(∞) ∈ (0,∞)

was actually not included there, but this is a simple consequence of [10, Proposition
1.7] and [11, Corollary 4].) We also have that, P-a.s., e−γtZφ(t) → zφ(∞) (see
[11, Proposition 22]) as in the fractal strings with Dirichlet weights example, the
fundamental martingale is identically equal to one, and so the limit is deterministic.
Note that a simple reparameterisation of the two previous results yields the first
order parts of (40) and (41).



CENTRAL LIMIT THEOREMS FOR THE SPECTRA OF RANDOM FRACTALS 9003

To prove Theorem 6.1, we introduce a rescaled centred version of the character-
istic counting process. Specifically, as before, we set

Z̄(t) := Z ζ̄(t) = Zφ(t)− eγtzφ(t), Z̃(t) := e−γt/2Z̄(t),

where ζ̄ is defined as at (21). Just as (43) was fundamental to demonstrating the
first order asymptotic behaviour of NT (t) in the arguments of [11], the recursions
at (6) and (7) are central to our efforts to derive the corresponding second order
behaviour via the branching process result of Theorem 2.8. We note that the use
of an analogous recursion formula for providing second order bounds was already
noticed in [12]. However, that paper was mainly focused on the infinite variance
α-stable tree case, and did not obtain the type of detailed results that we do here
for the Brownian CRT.

6.3. Variance convergence. In this section, we use the renewal equation of (9)

to show that the rescaled variance v(t) := e−γtE(Z̄(t)2) = E(Z̃(t)2) converges as
t → ∞ to a finite constant. To do this, we are required to check that v, r and νγ
are suitably well-behaved, where r is defined at (8) and νγ(dt) :=

∑3
i=1 e

−γtP(σi ∈
dt)—this is the content of the next three lemmas. In the proof of the following
result, we recall the function ψ(x) = 3/(1 + 2x) for x > −1/2, as introduced in
(36).

Lemma 6.5. The function v is bounded and measurable, and v(t) → 0 as t → −∞.

Proof. We start by checking that v is bounded for t ≥ 0. Similarly to the proof
of [12, Lemma 5.3], by appealing to [12, Lemma 5.2], it is possible to deduce that
v(t) ≤ 2eγt(I1 + I2 + I3), where

I1 =
∑
i∈Σ

E
(
e−2γtD2

i (φi(t− σi)−E(φi(t− σi)|Di))
2
)
,

I2 =
∑
i∈Σ

E

⎛
⎜⎝D2

i

⎛
⎝ 3∑

j=1

Δijz
φ(t− σij)−E(Δijz

φ(t− σij)|Di)

⎞
⎠

2
⎞
⎟⎠ ,

I3 =
∑
i∈Σ

E

⎛
⎝e−2γtDiφi(t− σi)

3∑
j=1

Z̄ij(t− σij)

⎞
⎠ .

Since φ(t) ∈ [0, 6], I1 can be bounded as follows:

(46) I1 ≤ 6e−2γtE

(∑
i∈Σ

φi(t− σi)

)
= 6e−2γtE(Zφ(t)) = 6e−γtzφ(t) ≤ 6Me−γt,

where the first equality is a consequence of (44), and M is defined as at (45).
For I2, first observe that

(47)
3∑

j=1

Δijz
φ(t− σij) =

3∑
j=1

Δij ẑ
φ(t− σij),
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where ẑφ(t) := zφ(t)− zφ(∞), and the equality holds because
∑3

j=1 Δj = 1. Now,

by results of [12, Section 3], we have that |ẑφ(t)| ≤ Ce−γt for t ∈ R. Thus

Di

∣∣∣∣∣∣
3∑

j=1

Δijz
φ(t− σij)−E(Δijz

φ(t− σij)|Di)

∣∣∣∣∣∣ ≤ Ce−γt

for some deterministic constant C. In particular, we have proved that

I2 ≤ Ce−γt
∑
i∈Σ

E

⎛
⎝Di

∣∣∣∣∣∣
3∑

j=1

Δijz
φ(t− σij)−E(Δijz

φ(t− σij)|Di)

∣∣∣∣∣∣
⎞
⎠ .

Our next step is to show that the above sum is bounded. Writing zφ(s, t) :=
zφ(s)− zφ(t), we can proceed similarly to (47) to deduce that

E

∣∣∣∣∣∣
3∑

j=1

Dijz
φ(t− σij)−E(Dijz

φ(t− σij)|Di)

∣∣∣∣∣∣
≤ 2E

⎛
⎝ 3∑

j=1

Dijz
φ(t− σij , t− σi)

⎞
⎠ .

From [12, Section 3], we have for any s ≤ t that zφ(s, t) = uφ(s) − uφ(t) −∫ t

s
uφ(w)dw, and hence

∑
i∈Σ

E

∣∣∣∣∣∣
3∑

j=1

Dijz
φ(t− σij)−E(Dijz

φ(t− σij)|Di)

∣∣∣∣∣∣
≤ 2

∑
i∈Σ

E

⎛
⎝ 3∑

j=1

Diju
φ(t− σi)

⎞
⎠(48)

+2
∑
i∈Σ

E

⎛
⎝ 3∑

j=1

Diju
φ(t− σij)

⎞
⎠(49)

+2
∑
i∈Σ

E

⎛
⎝ 3∑

j=1

Dij

∫ t−σi

t−σij

uφ(w)dw

⎞
⎠ .(50)

To bound these expressions, we will apply the following characterisation of zφ(t):

(51) zφ(t) = e−γtE
(
Zφ(t)

)
= e−γt

∑
i∈Σ

E(φi(t− σi)) =
∑
i∈Σ

E(Diu
φ(t− σi)).

Specifically, the term at (48) satisfies

2
∑
i∈Σ

E

⎛
⎝ 3∑

j=1

Diju
φ(t− σi)

⎞
⎠ = 2

∑
i∈Σ

E
(
Diu

φ(t− σi)
)
= 2zφ(t) ≤ 2M.
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Similarly, the term at (49) is also bounded above by 2M . Furthermore, the term
at (50) can be rewritten as

2
∑
i∈Σ

E

⎛
⎝ 3∑

j=1

DiΔ
′
j

∫ 0

γ−1 lnΔ′
j

uφ(t+ w − σi)dw

⎞
⎠ ,

where (Δ′
j)

3
j=1 is a copy of (Δj)

3
j=1, independent of all the other random variables

of the discussion. Applying (51), this can be evaluated as

2E

⎛
⎝ 3∑

j=1

Δ′
j

∫ 0

γ−1 lnΔ′
j

zφ(t+ w)dw

⎞
⎠ ≤ 3ME

⎛
⎝ 3∑

j=1

Δ′
j | lnΔ′

j |

⎞
⎠ < ∞.

Putting these pieces together, we obtain that

(52) I2 ≤ Ce−γt

for some finite constant C.
Finally, note that I3 satisfies

I3 ≤ e−2γt
∑
i∈Σ

∑
j∈Σ

E (Diφi(t− σi)φij(t− σij)) ,

(cf. the proof of [12, Lemma 5.3]). Again applying (44), the boundedness of φ and
Lemma 3.5, it follows that

I3 ≤ 6e−2γt
∑
i∈Σ

E
(
DiZ

φ
i (t− σi)

)

= 6e−γt
∑
i∈Σ

E
(
D2

i z
φ(t− σi)

)

≤ 6Me−γt
∞∑
k=0

ψ(2)k

= Ce−γt,(53)

where again M := supt∈R
zφ(t), and C := 6M/(1− ψ(2)) is a finite constant.

Summing (46), (52) and (53), we obtain that v is bounded for t ≥ 0. We now
check that v(t) is bounded for t ≤ 0 and converges to 0 as t → −∞. For this, we
use the bound E(Zφ(t)2) ≤ Ce(2γ+ε)t for t ∈ R (cf. [12, Lemma 4.4]), which implies

v(t) ≤ e−γt
(
E
(
Zφ(t)2

)
+ e2γtzφ(t)2

)
≤ Ceγt

(
eεt + 1

)
.

Clearly this yields the desired properties of v(t). Finally, to confirm that v is
measurable is elementary using the fact that Zφ(t) is monotone cádlág, P-a.s. �

Lemma 6.6. The function r, as defined at (8), is in L1(R) and r(t) → 0 as
|t| → ∞.
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Proof. It follows from the definition of r that, similarly to the proof of Lemma 6.5,
we have |r(t)| ≤ 2eγt(J1 + J2 + J3), where

J1 = e−2γtVar(φ(t)),

J2 = Var

⎛
⎝ 3∑

j=1

Δjz
φ(t− σj)

⎞
⎠ ,

J3 = e−2γt

∣∣∣∣∣∣E
⎛
⎝φ(t)

3∑
j=1

Z̄j(t− σj)

⎞
⎠
∣∣∣∣∣∣ ,

and we will proceed by showing that the statements of the lemma hold for eγtJi,
i = 1, 2, 3. As in the previous proof, checking the measurability of the functions is
elementary, and so we will restrict ourselves to finding suitable bounds for them.
First, we have

eγtJ1 ≤ e−γtE
(
φ(t)2

)
≤ 6e−γtE (φ(t)) = 6uφ(t).

That uφ ∈ L1(R) and uφ(t) → 0 as |t| → ∞ was established in [11, Lemma 20], and
so the corresponding result for eγtJ1 also holds. For eγtJ2, we consider the cases
t ≤ 0 and t ≥ 0 separately. In particular, we have eγtJ2 ≤ eγtM2, which clearly
demonstrates that eγtJ2 ∈ L1((−∞, 0]) and eγtJ2 → 0 as t → −∞. Furthermore,
defining ẑφ(t) := zφ(t) − zφ(∞) as in the previous result and recalling once again
that |ẑφ(t)| ≤ Ce−γt, we are able to deduce that

eγtJ2 = eγtVar

⎛
⎝ 3∑

j=1

Δj ẑ
φ(t− σj)

⎞
⎠ ≤ eγt

(
3Ce−γt

)2
= Ce−γt,

which confirms that eγtJ2 ∈ L1([0,∞)) and eγtJ2 → 0 as t → ∞. Finally, for eγtJ3
we proceed as follows:

eγtJ3 ≤ 31/2e−γt

⎛
⎝E(φ(t)2)E

⎛
⎝ 3∑

j=1

Z̄j(t− σj)
2

⎞
⎠
⎞
⎠

1/2

≤ Ce−γt/2

⎛
⎝E(φ(t))E

⎛
⎝ 3∑

j=1

Δjv(t− σj)

⎞
⎠
⎞
⎠

1/2

≤ Cuφ(t)1/2,

where for the final inequality we use the fact that v is bounded (Lemma 6.5). Now,
from the proof of [11, Lemma 20], it can be seen that (uφ)1/2 ∈ L1(R) (and we
have already noted that uφ(t) → 0 as |t| → ∞). Consequently, we have the desired
result for eγtJ3. The lemma follows. �

Lemma 6.7. The measure νγ is a non-atomic Borel probability measure on [0,∞)
and also

∫∞
0

tνγ(dt) = 1.

Proof. The proof of this lemma is straightforward and omitted. �

In view of the preceding three lemmas, the following result is an immediate
application of the double-sided renewal theorem of [30, Theorem 5].
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Proposition 6.8. The function v converges as t → ∞ to the finite constant
v(∞) :=

∫∞
−∞ r(t)dt.

6.4. Verification of Conditions 2.6 and 2.7. It now only remains for us to
check Conditions 2.6 and 2.7 before we can apply Theorem 2.8 to deduce the desired
central limit theorem for the eigenvalue counting function of the Brownian CRT.
We start by working towards an estimate for the third moment of Z̃, which will
confirm Condition 2.7, and, to this end, we use another recursion argument. This
is similar to the proof of Lemma 3.6, but more involved due to the lack of a uniform
bound for ζ̄. Specifically, iterating (26), we deduce that for any k ∈ N

Z̄(t)3 =
∑
|i|<k

Wi(t− σi) +
∑
i∈Σk

Z̄i(t− σi)
3.

The following lemma establishes that the expectation of the remainder term here
converges to 0 as k → ∞.

Lemma 6.9. For each t ∈ R,

lim
k→∞

E

(∑
i∈Σk

∣∣Z̄i(t− σi)
∣∣3) = 0.

Proof. By Cauchy-Schwarz and Lemma 6.5,

E
(∣∣Z̄(t)

∣∣3) ≤ E
(∣∣Z̄(t)

∣∣ (Zφ(t)2 + e2γtzφ(t)2
))

≤ Ceγt/2
((

E(Zφ(t)4)
)1/2

+ e2γtM2
)
.(54)

Applying the characterisation of Zφ(t) at (44), we have that

E(Zφ(t)4) =
∑

i,j,k,l∈Σ

E (φi(t− σi)φj(t− σj)φk(t− σk)φl(t− σl)) .

Since

(55) φi(t) ≤ 61{t≥− ln δi} ≤ 6eθγtδθγi ,

where δi is defined to be the diameter of the metric space (Ti, dTi
), which is a random

variable with a finite positive moments of all orders (see proof of [11, Lemma 20]),
it follows that, for any θ, ε > 0,

E(Zφ(t)4) ≤ Ce4θγt
∑

i,j,k,l∈Σ

E
(
Dθ

iD
θ
jD

θ
kD

θ
l δ

θγ
i δθγj δθγk δθγl

)

≤ Ce4θγt
∑

i,j,k,l∈Σ

E
(
D

θ(1+ε)
i D

θ(1+ε)
j D

θ(1+ε)
k D

θ(1+ε)
l

)1/(1+ε)

.(56)

Now, suppose Σ is viewed as a graph tree with edges between i||i|−1 and i for
each i ∈ Σ\{∅}, and the subtree of Σ spanning i, j, k, l (and the root ∅) has shape
as shown in Figure 8, where we assume that a, b1, b2, i, j, k, l are distinct. It is
then straightforward to check from the independence structure of (Di)i∈Σ that
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∅ a

b1

b2

i

j

k

l

Figure 8. A possible configuration of i, j, k, l.

E(D
θ(1+ε)
i D

θ(1+ε)
j D

θ(1+ε)
k D

θ(1+ε)
l ) is bounded above by

E
(
D

4θ(1+ε)
a

)
E

(
D

2θ(1+ε)
b1

D
2θ(1+ε)

b1||a|+1

)
E

(
D

2θ(1+ε)
b2

D
2θ(1+ε)

b2||a|+1

)

×E

(
D

θ(1+ε)
i

D
θ(1+ε)

i||b1|+1

)
E

(
D

θ(1+ε)
j

D
θ(1+ε)

j||b1|+1

)
E

(
D

θ(1+ε)
k

D
θ(1+ε)

k||b2|+1

)
E

(
D

θ(1+ε)
l

D
θ(1+ε)

l||b2|+1

)
,

which is equal to

(57)

(
ψ(4θ(1 + ε))

3

)|a|(
ψ(2θ(1 + ε))

3

)|b1|+|b2|−2|a|−2

×
(
ψ(θ(1 + ε))

3

)|i|+|j|+|k|+|l|−2|b1|−2|b2|−4

,

where we again recall ψ(x) = 3/(1+2x) for x > −1/2. Since ψ(θ) < 1 for any θ > 1
and 3ε/(1+ε)ψ(θ(1 + ε))1/(1+ε) → ψ(θ) as ε → 0, if we are given any θ > 1, then
it is possible to choose ε > 0 such that 3(ψ(θ(1 + ε))/3)1/1+ε < 1. By summing
(57) over all suitable a, b1, b2, i, j, k, l for such a choice of θ and ε, it follows that the
terms of the form considered contribute at most the finite amount(

1

1− 3
ε

1+εψ(4θ(1 + ε))
1

1+ε

) (
3

1− 3
ε

1+εψ(2θ(1 + ε))
1

1+ε

)2 (
3

1− 3
ε

1+εψ(θ(1 + ε))
1

1+ε

)4

to the sum at (56). For other configurations of i, j, k, l, it is possible to proceed
similarly, and consequently prove that, for any ε > 0, E(Zφ(t)4) ≤ Ce(4γ+ε)t.

Returning to (54), the bound of the previous paragraph implies E(|Z̄(t)|3) ≤
Ce5γt/2(1 ∨ eεt), and so

E

(∑
i∈Σk

∣∣Z̄i(t− σi)
∣∣3) ≤ Ce5γt/2(1 ∨ eεt)E

(∑
i∈Σk

D
5/2
i

)
≤ Cψ(5/2)k

which converges to 0 as k → ∞. �

The first main result of this section is the following, which establishes that Con-
dition 2.7 holds in the present setting.

Proposition 6.10. We have that supt∈R
E(|Z̃(t)|3) < ∞.
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Proof. As a result of the previous lemma, we have that Z̄(t)3 =
∑

i∈Σ Wi(t − σi).

Hence, from the definition of W , we deduce that E(|Z̄(t)|3) ≤ E(K1) + E(K2) +
E(K3) + E(K4), where K1, K2, K3, K4 are defined to be the terms appearing in
equations (27) to (30), respectively, and it will be our goal to show that e−tE(Ki)
is bounded for i = 1, 2, 3, 4.

Applying the bound for φ at (55) and the estimate |ẑφ(t)| = |zφ(t)− zφ(∞)| ≤
Ce−γt (as well as recalling that zφ is a bounded function), it is straightforward
to deduce the existence of a deterministic constant C such that, P-a.s., |ζ̄i(t)| ≤
C(1 ∧ (eγt(1 + δγi ))). This bound implies

|ζ̄i(t)| = |ζ̄i(t)|1/2|ζ̄i(t)|1/2 ≤ Ceγt/2(1 + δ
γ/2
i ),

and so e−tE(K1) is bounded above by

Ce−tE

(∑
i∈Σ

et−σi(1 + δi)

)
= C

∑
i∈Σ

E
(
D

3/2
i

)
E(1 + δi) = C

∞∑
k=0

ψ(3/2)k,

which is finite, because ψ(3/2) < 1.
Second, we proceed similarly to obtain that

e−tE(K2) ≤ Ce−tE

⎛
⎝∑

i∈Σ

eγ(t−σi)(1 + δγi )

3∑
j=1

|Z̄ij(t− σij)|

⎞
⎠

≤ Ce−t/3E

⎛
⎝∑

i∈Σ

Di

3∑
j=1

E
(
(1 + δγi1 + δγi2 + δγi3)Z̄ij(t− σij)F|i|+1

)⎞⎠

≤ Ce−t/3E

⎛
⎝∑

i∈Σ

Di

3∑
j=1

E
(
Z̄ij(t− σij)

2F|i|+1

)1/2⎞⎠

≤ Ce−t/3E

⎛
⎝∑

i∈Σ

Di

3∑
j=1

E(e(t−σij)/3)

⎞
⎠

≤ C

∞∑
k=0

ψ(3/2)k,

where the third inequality is a conditional Cauchy-Schwarz estimate (we also apply
the fact that the moments of δi are finite), and to deduce the fourth we use Lemma
6.5.

For the third term, we start by observing that, similarly to (54), E(|Z̄(t)|3) is
bounded above by

E
(∣∣Z̄(t)

∣∣7/4 (Zφ(t)5/4 + e5γt/4zφ(t)5/4
))

≤ Ce7γt/8
((

E(Zφ(t)10)
)1/8

+ e5γt/4M5/4
)
.

By making the obvious extensions to the argument applied in the proof of Lemma
6.9, it is possible to check that, for any ε > 0, E(Zφ(t)10) ≤ Ce(10γ+ε)t, and hence



9010 PHILIPPE H. A. CHARMOY, DAVID A. CROYDON, AND BEN M. HAMBLY

E(|Z̄(t)|3) ≤ Ce17t/12(eεt ∨ 1). For any a ∈ [0, 1], we also have that |ζ̄i(t)| =

|ζ̄i(t)|a|ζ̄i(t)|1−a ≤ Ce(1−a)γt(1 + δ
(1−a)γ
i ). Putting these bounds together yields

e−tE(K3) ≤ Ce−tE

⎛
⎝∑

i∈Σ

e(1−a)γ(t−σi)(1 + δ
(1−a)γ
i )

3∑
j,k=1

|Z̄ij(t− σij)Z̄ik(t− σik)|

⎞
⎠

≤ Ce−(1−(1−a)γ)tE

⎛
⎝∑

i∈Σ

D1−a
i

3∑
j,k=1

E
(
|Z̄ij(t− σij)|3F|i|+1

)1/3

×E
(
|Z̄ik(t− σik)|3F|i|+1

)1/3)

≤ Ce−(1−( 29
12−a)γ)t(eγεt ∨ 1)E

(∑
i∈Σ

D
29
12−a
i

)

= Ce−(1−( 29
12−a)γ)t(eγεt ∨ 1)

∞∑
k=0

ψ

(
29

12
− a

)k

,

where the second inequality is an application of Hölder (and we bound the δi term
similarly to how this was controlled when estimating K2 above). If a = 11

12 , then

for t ≤ 0 we obtain from this that e−tK3 ≤ C
∑∞

k=0 ψ(3/2)
k < ∞. If a = 1, then

it is possible to choose ε small enough so that the above bound implies, for t ≥ 0,
e−tK3 ≤ C

∑∞
k=0 ψ(17/12)

k < ∞.
Finally, we can proceed as in the proof of Lemma 3.5 to deduce that e−tE(K4) ≤

C
∑∞

k=0 ψ(3/2)
k. The additional input needed to do this is provided by Lemma 6.5

again. This completes the proof of the proposition. �

From the proof of the previous result, we have that |ζ̄i(t)| ≤ C for some deter-
ministic constant C. Hence we can deduce Condition 2.6 by applying the same
argument as that used to establish Lemma 3.4. We simply state the conclusion.

Proposition 6.11. For every ε ∈ (0, 1/2),

e−γt/2
∑
σi≤εt

ζ̄i(t− σi) → 0,

in probability as t → ∞.

To complete the proof of Theorem 6.1, note that, by definition and (42),∣∣∣∣NT (λ)−ENT (λ)

λ1/3
− Z̃(lnλ)

∣∣∣∣ ≤ 2λ−1/3.

Hence Propositions 6.8, 6.10 and 6.11 allow us to apply Theorem 2.8 to deduce the
result with

C0 := zφ(∞) ≡
∫ ∞

−∞
uφ(t)dt ∈ (0,∞), C1 := v(∞) ≡

∫ ∞

−∞
z(t)dt ∈ [0,∞).

Appendix

The following table contains the approximate values of ρ± and R for different
values of α with γ = 1

2 , as required in the proof of Theorem 1.1.
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α ρ± R

59 0.495347± 9.10306i 0.0964835
60 0.503788± 9.1027i 0.0970307
61 0.511952± 9.10235i 0.0975642
62 0.519852± 9.10199i 0.0980839
63 0.527501± 9.10164i 0.0985906
64 0.534909± 9.1013i 0.0990848
65 0.54209± 9.10096i 0.0995668
66 0.549052± 9.10062i 0.100037
67 0.555805± 9.10028i 0.100496
68 0.56236± 9.09995i 0.100945
69 0.568724± 9.09963i 0.101382
70 0.574906± 9.09931i 0.10181
71 0.580913± 9.09899i 0.102228
72 0.586753± 9.09867i 0.102636
73 0.592432± 9.09836i 0.103034
74 0.597958± 9.09806i 0.103425
75 0.603335± 9.09776i 0.103806
76 0.608571± 9.09746i 0.10418
77 0.613671± 9.09717i 0.104545
78 0.618639± 9.09688i 0.104902
79 0.623482± 9.09659i 0.105252
80 0.628203± 9.09631i 0.105594
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