TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY.
Volume 370, Number 1, January 2018, Pages 1-25
http://dx.doi.org/10.1090/tran/6876

Article electronically published on May 1, 2017

RADIAL POSITIVE DEFINITE FUNCTIONS AND
SCHOENBERG MATRICES WITH NEGATIVE EIGENVALUES

L. GOLINSKII, M. MALAMUD, AND L. ORIDOROGA

ABSTRACT. The main object under consideration is a class ®,\®,+1 of radial
positive definite functions on R™ which do not admit radial positive definite
continuation on R™*1. We find certain necessary and sufficient conditions
on the Schoenberg representation measure vy, of f € @, for f € @14, k €
N. We show that the class ®,\®, 4 is rich enough by giving a number of
examples. In particular, we give a direct proof of Q, € ®,\®,+1, which
avoids Schoenberg’s theorem; €2, is the Schoenberg kernel. We show that
Qn(a)n(b:) € 2y \Ppy1 for a # b. Moreover, for the square of this function
we prove the surprisingly much stronger result Q%(w) € ®op—1\P2n. We also
show that any f € ®,\®p4+1, n > 2, has infinitely many negative squares.
The latter means that for an arbitrary positive integer N there is a finite
Schoenberg matrix Sx (f) := |[f(|zi — @j|nt1)[I]% 21, X = {2372, C R,
which has at least N negative eigenvalues.

1. INTRODUCTION

Positive definite functions have a long history, being an important chapter in var-
ious areas of harmonic analysis. They can be traced back to papers of Carathéodory,
Herglotz, Bernstein, culminating in Bochner’s celebrated theorem from 1932-1933.

In this paper we will be dealing primarily with radial positive definite functions.
Such functions have significant applications in probability theory, statistics, and
approximation theory, where they occur as the characteristic functions or Fourier
transforms of spherically symmetric probability distributions. Denote the class of
radial positive definite functions on R™ by ®,,.

We follow the standard notation for the inner product (u,v), = (u,v) = uyvy +
..+ upvy, of two vectors u = (uq,...,u,) and v = (vy,...,v,) in R", and |u|, =
|u| = v/ (u,u) for the Euclidean norm of u.

Definition 1.1. Let n € N. A real-valued and continuous function f on R}y =
[0,00), f € C(Ry4), is called a radial positive definite (RPD) function on R™ if for
an arbitrary finite set {z1,...,zn}, zx € R, and {&,...,&,} € C™,

(1.1) 0 Fllwk = al0)&€, > 0.

k,j=1
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In other words, RPD functions f are exactly those for which f(] - |,) are pos-
itive definite functions on R™ or, equivalently, the Schoenberg matrices Sx(f) :=
I f(lzi — 2]n)||7%=1 are positive definite for any X := {z;}", C R".

The characterization of radial positive definite functions is a fundamental result
of I. Schoenberg [I3L[14] (see, e.g., [2, Theorem 5.4.2]).

Theorem 1.2. A function f € ®,, f(0) =1, if and only if there exists a probability
measure v on Ry such that

(1.2) fir)y= /000 Q,,(rt) v(dt), re Ry,

where the Schoenberg kernel

oo

Jq is the Bessel function of the first kind and order q. Moreover,
(1.4) Qn(|z]) = / g (du), xR,
Sn—1

where o, is the normalized surface measure on the unit sphere S"~* C R™.

So it is not surprising that various properties of the Bessel functions (recurrence
and differential relations, bounds and asymptotics, integrals) come up repeatedly
throughout the paper. The first three functions ,, n = 1,2,3, can be computed
as
(1.5) Q1(s) =coss, Qa(s)=Jo(s), Qs(s)= % .

It is well known that the classes ®,, are nested, and inclusion ®,,11 C ®,, is proper
for any n € N. The result is mentioned in the pioneering paper of Schoenberg [13]
(without proof) and then duplicated in Akhiezer’s book [2] (and in a number of later
papers and books). The main goal of Section 2 is to study the classes ®,\®, 1.
We start out with two proofs of the known fact that €,, € ®,\®,1; the first one
is based on the Schoenberg theorem and some rudiments of the Stieltjes moment
problem. The second one is direct and has nothing to do with Schoenberg’s theorem.

We just manufacture a set X = {z; ;‘;ng C R™*! such that the corresponding matrix

Sx () = |9 (Jzs — z4])] ?;;31’ called the Schoenberg matriz (see [5] for a detailed
account of this object), has at least one negative eigenvalue (Proposition 22)).

Let us emphasize that the inclusion f € ®,\®,41 means that f is an RPD
function on R™ but does not admit radial positive definite continuation on R+,
while positive definite continuations obviously exist.

As it turns out, the class ®,\®,1 is rich enough. We give some sufficient
conditions in terms of Schoenberg’s measure v, = v, (f) for f to belong to ®,,\® 1.
A key ingredient here is the following relation called a transition formula.

Let f € ®,, n > 2. Then f € ®,, for m = 1,2,...,n — 1, and according to
Schoenbeerg’s theorem f admits representation ([2]) with some measure v, (f).
We show (see Theorem [B.1]) that the relation between the measures v, and vy, is
given by

2z 1 o0 2\ "5 -1 v, (du)
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where B(a, b) is the Euler beta function. So, each v,, is absolutely continuous and
Um{(0,¢)} > 0 for any € > 0. In other words, if v, (f) is either not purely absolutely
continuous (contains a singular component) or v,{(0,¢)} = 0 for some ¢ > 0, then
[ & Pnsa.

Besides, we investigate the smoothness and decaying properties of the distribu-
tion function generated by Schoenberg’s measure v, in ([L6). For instance, it is

shown in Theorem B.9] that v, € ACl[fc/ 2 (R ) and moreover, x7 P (x) € LP(R4),
j=0,1,...,[k/2]—1, k = n—m, whenever v, is absolutely continuous, v,, = p,, dz,
and p, € LP(R4) for some 1 < p < 0.

We put a function f € ®,, to the subclass ®%¢ if its Schoenberg representing
measure vy, = v, (f) is absolutely continuous v, (dz) = py,(z) dz, pm(-) € L (RL).
We equip ®% with the L'-norm by setting |[vm||eee = [|pmllr2(r,). Denoting
by My, m+k the set of (necessarily absolutely continuous) representing measures of
functions f € ®,,41 considered as functions from ®,,, we show that the set My, 4k
forms a closed nowhere dense subset in ®PLC.

Clearly, Q,(a-) € @, for each a > 0. Since the Schur (entrywise) product of two
nonnegative matrices is again a nonnegative matrix, the product of two Schoenberg
kernels Q,(a-)Q,(b) € ®,,, a,b > 0. Moreover, the following result is proved in
Section 4.

Theorem 1.3. Forn € N,
(i) Qn(at)Qn(bt) € P \Ppi1, a#Db;
(11) Q%(t) S (I)Qn_l\(l)gn.

The problem we deal with in Section [l concerns the number of negative squares
of a function f € ®,\®,1. Namely, since such f does not admit RPD continuation
on R"! the quadratic forms (II)) associated with f(| - |,4+1) in place of f(] - |)
might have negative squares. We are interested in the maximal number of negative
squares of such forms. One reformulates this concept in terms of the maximal
number of negative eigenvalues of the corresponding Schoenberg matrices Sx (f) :=
£ (i =25y 1) [77=, with X = {2;}72, € R**!. To be precise, given a real-valued
and continuous function g on R and a finite set X C R™, denote by (g, X) a
number of negative eigenvalues of the finite Schoenberg matrix Sx(g), and by

K, (g) :==sup{x~ (g, X) : X runs through all finite subsets of R"}.

Certainly, x,, (g) = 0 for g € ®,,. The question is whether £, (¢) can be finite for
g ¢ O

Theorem 1.4. Let g be a continuous function on Ry such that the limit
. i = >
(1.7) Qi g(t) = g(00) > 0
exists. If k= (g,Y) > 1 for some set Y € R™, then k,,(g) = +oo. In particular,
(1.8) Kpy1(g) = +oo foreach g€ ®,\®, 1, n>2.

The case n = 1 is more subtle, since Q1(t) = cost has no limit at infinity.
Nonetheless we believe that the conclusion in (L8] holds in this case as well.

Conjecture. For each function f € ®1\ ®q the relation k5 (f) = 400 holds.

We confirm this conjecture for f € ®;\ Py under certain additional assumptions
on the Schoenberg measure v1(f) (see (5.13)).
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In connection with relation (L8] we note that functions with a finite number of
negative squares (indefinite analogs of positive definite functions) appear naturally
in various extension problems. According to Theorem [[.4] this is not the case for
functions f € ®,\ Py, 41.

We note also that indefinite analogs of positive definite and more general classes
of functions have thoroughly been investigated by M. Krein and H. Langer (see [9]
and references therein).

2. FuNCTIONS FROM ®,\®,,,1: ALGEBRAIC APPROACH

As we mentioned above the classes ®,, are nested, and inclusion ®,,.1 C &, is
proper for any n € N. For some examples of functions f € &,\®P,, 1 see, e.g.,
[6, Remark 3.5], [19].

There is a simple way to show that Q, ¢ ®,.1, which relies on some basics
from the Stieltjes moment problem. We sketch the proof without getting into much
detail. Assume on the contrary that €, € ®,,1, and so

(1) = /OOO Qi (rt) o(dt),  o(Ry) = 1.

As the function on the left hand side is an even entire function, it is easy to see
that o has all moments finite. By using the Taylor series expansions ([3]) for both
Q,, and ,,4+1 we come thereby to the following moment problem:

n+1)(n+3)...(n+2k-1)
nn+2)...(n+2k-2)

o0
so =1, szkzz/ t%a(dt)z( k=1,2,...,
0

in particular,

n+1 (n+1)(n+3)

2T T = n(n + 2)

But such a moment problem has no solution, since, e.g.,

o =R () <

Our goal here is to suggest a direct proof of the relation Q,, ¢ ®,,11, which avoids
Schoenberg’s theorem. In other words, we construct an explicit finite set X c R"*!
so that the Schoenberg matrix Sx (€2,,) has at least one negative eigenvalue, whereas
Sy (Qy,) > 0 for each finite set Y C R™. Moreover, we show that there is no upper
bound for the number of negative eigenvalues of Sx (£2,,) for an appropriate choice
of the set X.

Let Ej ., be an I x m matrix composed of 1’s, that is, (Ej ;)i =1, 1 <i <1,
1<j<m, E, = E; . Itis clear that rank E,,, = 1 and its spectrum o(E,,) =
{00"=1 m}. Let I, be the unit matrix of order p.

Lemma 2.1. Let

(2.1) 5= [; f,j |
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where a p X p matriz A and a g X k matriz B are defined as

(2.2)
1 a a ... a bbb
a 1l a ... a
A=]. | =0 —=a)l, +aFE,, B=|: ‘| =bE,
) b b ... b
a a a ... 1

with real entries a, b. S has at least one negative eigenvalue if and only if either of
two inequalities holds:

(2.3) a>1 or XAi=1+(p—1)a—kpb®* <0.

Proof. A general linear algebraic identity for the block matrix S
_|I, B||A-BB* 0||I, O

(2:4) S = {O Ik] [ 0 Ik] [B* I;J

shows that S has the same number of negative eigenvalues as the block diagonal
matrix in the right hand side of ([Z4]) or the same number of negative eigenvalues
as the matrix A — BB*.
In our particular case the spectrum of the latter matrix can be computed explic-
itly. Indeed, as
E;jm = Lim,l, Em,lEl,m = lEma

then by (2.2]),
D =A-BB* = (1-a)l,+(a—kb*)E,,  o(D)={(1-a)® Y 1+(p—1)a—kpb*},
and the result follows. [l

The matrix S (ZI)-@2) (with & = 1) will arise as the Schoenberg matrix Sx (f)
for a certain configuration X in R™+1.

Proposition 2.2. Let f € C(R}) be a real-valued function, f < 1, analytic at the
origin with the Taylor series expansion

oo

(2.5) f(z) = Z(—l)jajz2j, ap=1, a; >0, jeN
§=0

Then f ¢ ®,,41 provided that

2m+6

m+1

(2.6) as < ai.

In particular, Q, € @\ Ppiq.

Proof. Let X = {xj};":ﬁ?’ be a configuration in R™*! such that the first m + 2
points are the vertices of a regular simplex in R™*! with the edge length ¢ and let
ZTm+3 be the center of this simplex. Clearly,
(2.7)

m+1

‘.’Ei—l‘j‘:t, iaj:1a25"'am+27 |xm+3_xi|:pnt7 Pm = m7

where p,, is the radius of the circumscribed sphere. It is easily seen that Sx (f) = S,
where S is given by (21]) with

p=m+2 k=1 a=a(t)=f(t), b=0bt)=f(pmt).
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From (2.3 and (2.6) we see that for small enough ¢,

Am(t) =1+ (m+ 1) f(t) = (m+2)f =) (-1
j=1
with
m+1
A1 =0, Ap2= m(@m +6)az — (m + 1)af) < 0.
So

An(t) = Aot +O(t%) < 0

for small enough ¢, and the result follows from Lemma 211
The series expansion for €2, is

2 4
Qn(t)zl—;—n—i—m—i-O(tﬁ), t—0,
SO
, 246 11 n+3 1
T 2T R(E_ (n—l—l)(n—l—Z)) - 2n?(n+1)(n+ 2) > 0.
The proof is complete. O

Remark 2.3. Proposition 2.2l applies to a wide class of functions, e.g., to the powers
of the Schoenberg kernels Q22 p € N, but the result obtained this way is far from
being optimal (at least for p = 2). For instance, for the squares and cubes we find

ai(Q2) 2n+4 ai(Q3)  6n+12
ax(Q2)  n+1’ ax(3)  3n+4’

and (Z6) holds with m > 2n + 2 and m > 3n + 4, respectively. Hence, Q2 ¢ ®g,,,3
and Q3 ¢ ®3,,,5. As a matter of fact we show later in Theorem 3] that Q2 ¢ ®,,.

Remark 2.4. If X = {2}}72? is the set of vertices of a regular simplex (without
its center), then the corresponding Schoenberg matrix Sx(2,,) is positive definite.
Nonetheless, we conjecture that a negative eigenvalue can already be seen on a
certain configuration Y = {y;}?2? of n + 2 points in R**1.

3. WHEN A FUNCTION FROM THE CLASS ®,, BELONGS TO @,

3.1. First approach. As a matter of fact, the class ®,\®,; is rather rich. We
give certain necessary and sufficient conditions in terms of Schoenberg’s measure
vp = vp(f) for f to belong to ®,\®,41.

Theorem 3.1. Let (const #)f € ®,,, and let vy, be its Schoenberg measure. Then
f € Pk, k €N, if and only if there is a finite positive Borel measure v on Ry of
the total mass 1 such that

T

(3.1)  vm(dz) =pm(x)de,  pm(z)= BQ(%;) /;o (1 - u_z)%_l %

In this case Vv = Uyt With vp .y being the Schoenberg representing measure of f as
a function from ®p, k. In particular, vy, is absolutely continuous and v, {(0,e)} >
0 for any € > 0.
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Proof. Assume that f € ®,, . Then f admits two representations:

(3.2) f(r)= /OOO Q (ru) v (du) = /OOO Qo ke (P10 Ve (du).

It is not hard to obtain a relation between the measures v, and v,,4+;. Indeed,
recall Sonine’s integral [I formula (4.11.11), p. 218]:

2 A 1
Jtt:—(—) /Jt M1 — 2 A 1 g, A> =,
0= (3) [ A a2 s us Az g

For the values
m m+k k
A=——1 = 1=+ -
g M 2 3

one has in terms of Q’s

(3:3) Qmr(t) = 2 ) /0 Qun(ts)s™ (1 — 52)§71 ds.

B(%.5

We plug the latter equality into ([B.2]) to obtain

oS] 1
—k/ Vm+k(du)/ Qm(rus)sm_l(l—s2)%_1ds
3) Jo 0

2
B(%,
_ 2 * Vmgk(du) [ m—1(1 _ $_2 31
B B(%v%) /0 um /0 S (rz)a (1 u2) dr
271 o i 22\ 51 vy r(du)
L g [0 ) e,
e AR A M

Due to the uniqueness of Schoenberg’s representation we arrive at (3.1]).
Conversely, starting from (B.1)) and reversing the argument we come to ([B.2]) with
VUm+k = V.
Since f # const, vy # do, we see that v, is absolutely continuous and
Um{(0,€)} > 0 for any € > 0, as claimed. O

Remark 3.2. A closely related result is obtained in [16, Theorem 6.3.5], where a
certain condition for f € ®, to belong to ®,, with m > n is given in terms of f
itself.

We call BI) the k-step transition formula.

We can paraphrase the statement of Theorem Bl as follows: f € ®,,\®,,11 as
long as vy, is either not purely absolutely continuous or v,,{(0,¢)} = 0 for some
e>0.

Corollary 3.3. Let f € ®,,, and let its Schoenberg measure v,, be a pure point
one. Then [ € @, \ @pq1. In particular,

(3.4) F) = arn(rit) € B\ 0pps
k=1
for any sequence of nonnegative numbers {ry r>1 and {ag}r>1 € I1(N).

Example 3.4. Let
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Both functions belong to ®,, for all n € N, and their Schoenberg measures are
known explicitly (see, e.g., [I5, Chapter 1)):
(3.5)

2 uml A u?
Um(f1) = B2 1) (11w du, vm(f2) = r(m) (5) exp{—I} du.

It is a matter of simple (though lengthy) computations to verify formula (B.1]) for
each of these sequences of measures for all m, k € N.

Let us single out the simplest case k = 2.

Corollary 3.5. f € ®,, belongs to ®,, 1o if and only if there is a finite positive

Borel measure v on Ry of the total mass 1 such that
< v(d

B vlde) =p(e)de, ple) = man [T

um

V = Vm42.

The problem we address now concerns the smoothness properties and the rate
of decay of measures v, in [BI) for the case k = 2j, j € N.

We start with the following auxiliary statement. Let C*(R, ) denote the Freshet
space of k-smooth continuous functions defined on an open set Ry = (0,00), and
let AC[0,a] be the space of absolutely continuous functions on [0, a]. We also put

ACioc(Ry) :== {f € AC|0, a] Ya > 0},
ACE(Ry) = {f € C* ' (Ry) : fU7Y € ACie(R+)}.

Lemma 3.6. Let o be a function of bounded variation on Ry, o(x,-) € AC)oc(R4)
for each x € Ry, Dyp(-,t) € C*(0,00) for each t € Ry, and let

(3.7) o) = [ elait)do(t).

Assume also that there exist functions (o € L'([e,00);do) and v; € L'[e,00) for
each € > 0, and such that

(3.8) |p(x, )] < Colt), |DiDpp(z,t)| <;(t), z€Ry, j=0,1,....k—1

Moreover, assume that

(3.9) ¢(z,2) =0 and DIDyp(z,t)i= =0, j0O,1,....k—2,

and lim;_, oo @(x,t)0(t) = 0 for each x € Ry.. Then g € C¥(Ry). If in addition
(3.10) tli)rgo DEo(x,t) =0  for each v € Ry,

then

(311)  ¢®(@) = o(x) Dy (Ds + Do)pl(e, O)]le=s) + /Oo Dip(z,t)do(t).

Proof. Since ¢(z,-) € ACie(Ry) and ¢(z,-) € L*([z,00);do) for each 2 € R, one
gets after integrating by parts with account of the first relation in ([3.9)

oo

(3.12) mm:—wamdm—/ ¢u¢wmﬂ:—/w¢@¢wmw

x

On the other hand, since o is bounded, ;0 € L'[e,00) for each € > 0 and j =
0,1,...,k—1, and according to ([B.8))

(DiDyp(z,t))o(t) < v;(t)o(t), x€Ry.
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Therefore one can differentiate ([8.12]) subsequently with account of ([3.9]) to obtain
by induction that g € C7(0, 00) and

(3.13) g (z) = —/ DIDyp(z,t)o(t)dt, j€{0,1,....k—1},

and

(3.14) g™ (x) = o(x) (DE Dyp(a, t)|i=) —/ DEDyp(z, t)o(t)dt.
Integrating identity (B.I4]) by parts and taking ([BI0) into account we arrive at
B11). O

Remark 3.7. Note that we do not assume the majorant ¢y € L'[e,00) for each
e > 0. The existence of the Lebesgue integral in ([812]) is implied by estimate (3.8)
with § = 0.

Corollary 3.8. Assume that o € AC*[0,1] and

1 T _
(3.15) pla,t) =100 (T) =2 and o) = ¢p(1) = ... = o V(1) = 0.
Let also o(-) be of bounded variation and let g(-) be given by B). Then
(3.16) " (z / DEp(x,t)do(t).

Proof. Clearly, conditions [B3)) are implied by conditions [BI5]). Moreover, esti-
mates B8) hold with ¢;(t) = C;t=0+) and C; = || lofoap 4 € {1,--., k).
Besides, |p(x,t)] < Cot™1, where Cy = llollcro,1), hence ¢(z,t) € LY([z,00); do)
for each x € Ry.

Further, it is easily seen that

(Dy + D))D* Yoz, t) = (Dy + D) (tikwé’”) (%))

o) =0 [ (D) - 2] - el (3)]

It follows by taking ([BI0) into account that

_ ko k-
(3.18) (DS (D + Do)p(@, D] lie = (~1)F —c6" (1) = 0.
Thus conditions of Lemma [B.6] are met and (B.10) follows by combining (B.I1)) with
BIS). O

Recall a classical result of Hardy, Littlewood and Pélya [7, Theorem 319].

Theorem HLP. Let T be a measurable function on Ri such that it is homogeneous
of the degree —1, that is, T(Ax,\t) = A" T(x,t) for X > 0, and for some p,
1<p<oo,

(3.19) Tp 1= / |T(1,8)[t~ /P dt < .
0
Then the integral operator generated by T,
(Th)(z) := / T(xz,t)h(t) dt,
0

is bounded in LP(R4), and its norm is |T|| < 7.
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A typical example which will be of particular interest for us is

1T(2), t>ua;
_ t t) - ’
(3.20) T(x,t) = { 0, <z

where T is a polynomial. Now
1
Tp = /0 T (w)|[ut/P~ du < 0o, p>1.

Theorem 3.9. Let (const #)f € ®,, with Schoenberg’s measure vy, m € N.

Assume that f € ®pi05, 7 € N, with Schoenberg’s measure v = vpy4o;. Then the
following relations hold:
(l) Vm € ACIJOC(R+)'

(i) If v is absolutely continuous, v = ppy42; dx, and pmyo; € LP(Ry) for some
1<p< oo, then

(3.21) *p)(z) e LP(Ry),  k=0,1,...,5—1.
Moreover,
1 .
(3.22) pg,’f)(x)—o(w), T — 00, k=0,1,...,5—1.
(iii) Let v satisfy
> v(d
(3.23) I ::/ v(du) < 0.
0 u
Then
(3.24) pm(0) = lim pn(z) =0, m=>2,  p(0)=1.
x—0+
Furthermore,
(3.25) *pF(z) e L*(Ry), k=0,1,...5—1.

Proof. (i) For m,j € N we put

um—l(l _u2)j—1

Pm . = s 9

3t B(7%.J)

(3.26) . 9pm—1 72 j—1
Qm,](‘f?t) ::_Pm,j (t) B(%’J)tm < t2) 5

and

(3.27)

Lk k x .
Qm.jr(z,t) = kaI;QmJ-(x,t) = gk 1P1513 (?) , ke{l,2,...,5—1},
Qm,j,O = Qm,j~

It is easily seen that the kernel ¢ = @y, ; is homogeneous of degree —1 and meets
the hypothesis of Corollary 3.8 So, Corollary applied to relation ([B) provides
pm € ACI 1 (R,) and

loc

329 @) = [ Quaserld),  E=0L..j-L
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(ii) It is clear that the kernels Qp, jx, k € {0,...,7 — 1}, are homogeneous of
degree —1, and ([BI9) holds for all 1 < p < oco. By the HLP theorem, the integral
operators

(Qm,j,kh)(x) = / Qm,j,k(xat)h(t) dtv k= 07 s ,j - 17

are bounded in LP(R;) for all 1 < p < oco. The latter relation with A = pp,19;

leads directly to BZI) in view of (B28). Note that p,,42; € L' (R4) (so BZI)
holds automatically for p = 1) since v is a finite measure.

Next, it easily follows from ([B.26) and (3.27)) that

Cm.; t>ax
t b pu— 9

j—1
(3.29) D Qe m iz, 1)] <
k=0

and since the measure v is finite, we have from (B.28])

330 ) < Oy [ D < O | u(dt)-o(é), £~ 0,

= t T

for 1 <k <j—2. For k = j—1 the estimate is a consequence of ([329)), (328]) and

B273), and so [B3.22) follows.
(iii) Limit relations ([3.24)) follow easily from (B.1]), the bound

$2 %_1 r\m—1

and the Dominated Convergence Theorem in view of assumption (B23).
Relations ([B20) arise directly from ([B:24]) and [22]). The proof is complete. O

We turn now to the case k = oo in Theorem [B.1l Recall that

P = Fjl D,,.

A theorem of Schoenberg states that f € &, if and only if there is a positive
measure ¢ on Ry with the total mass 1 such that

(3.31) Fr) = /0 T e o (ds).

Proposition 3.10. Let (const #)f € ®,,, and let v, be its Schoenberg measure.
Then [ € O, if and only if there is a finite positive Borel measure o on Ry of the
total mass 1 such that

(3.32)

xm—l [e%¢) xQ
Vm(dx) = pm,o(x) dz, pm,a(x) = m /0 (28)_m/2 exp <_4_8) O'(ds).

The density pm o can be extended as an analytic function to the sector {]argz| <

Tt
Proof. We argue in the same manner as in Theorem [B.Il The only difference is that
we use ([B.31]) instead of Schoenberg’s representation in @, and the equality

2

e ! /00 Qp(ru) ur ! e v du
21T (¢ + 1) Jo (25)n/2 PUT s

in place of Sonine’s integral. O
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Remark 3.11. Let f € @, with Schoenberg’s measure v, [B32). It is clear that
B31) holds then for f. The following problem arises naturally. Given f € @, is
it possible to obtain (332) as a limit case of (B]) as k — oo, proving thereby the
result of Schoenberg (B.31))?

3.2. Second approach.

Proposition 3.12. Let f € @, with m > 3; i.e., f admits representation (L2)
with the measure o,,. Then it admits the representation

(3.33) f(r) = /000 Qm_o(rz) opm—2(dx)

with the measure o,,—o given by

(3.34) Om—2(x) = 1/03c u™ 3 du /:O Im(dt) dx.

tm72

Conversely, if f admits representation B.33) with 0,,—o of the form [B34]), then
fedv,.

Proof. Our considerations rely on the following identity [I8, Section I11.3.2]:

(3.35) % ((raz)mT_QJ¥ (m)) = 1(r2) T s (r2).
We let
(3.36) amir)=— [ 22 <0

Recall that

T — O0.

(3.37) J(z)=0(@"), =0 and J,(z)= 0(%),

Using the first of these relations and applying the Dominated Convergence Theorem
to the function (z/t)™~2 as x — 0 with the majorant 1 € L' (R, do,), we get from

. m=—2 ~ T m—2-~
ill)%x 7 Jmoa (ra)om,(z) = ill)%x Om(x)
(3.38) 1\ m—2
= — lim (—) om(dt) =0, m > 2.
z—=0 [, t
Further, G,,,(z) = o(-3=). Therefore,
(3.39) lim 27 Juz (rz)om(z) = lim 277 6, (z) = 0.

Tr—r00 2 T—r 00
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Transformation of (2] in view of (330 and integration by parts taking (B35,
B38), and (339) into account give

(3.40)
o 9\ T 272 [ (rz) "% Ju_2 (ra)
f(r) = /0 (E) Jm74 (re)om,(de) = 2 /0 o om(dz)
275 [P s R
=— / (rx)" 2z Jm—2(rz)o,(dx)
r 0 2
277" -
= e (r2) 7 Jm2 (r2)om(2)|,
2m2 : o m—2
_7‘7”—_2/0 @,Aa:)%((rx) 2 J%(m:))d:z:
97> [ 4-m
=—— / pm3 |:(T$)TJ;4 (rw)} 2™ 735, (1) d.
rm 0 2
Setting
1 x
(3.41) Tm-ale)i= —3 [ "Gt (2 0)
0

we note that o,,_o is a nonnegative increasing bounded function. Indeed,

1 [ o (dt
Om—2(00) = = ™ 3dx Im(dt)
2 0 - tm—2

I O N O I A | *

Therefore we can rewrite representation ([3.40) in the form (3.33]). O

(3.42)

Corollary 3.13. Let f € @4, i.e.,

(3.43) f(r)= /000 cos(rx)doy(x).

Then f € ®3 if and only if o1 is upper convexr. In the latter case it admits a
representation

(3.44) 1) = [ uatra)ina(o) = [ doy (o)
where
(3.45) o3(x) = 03(0) — /o tdo’ (t)d.

In particular, o3 is a monotonically decreasing, bounded function, which is abso-
lutely continuous with respect to oy. In fact, the measures dos and do’| are equiva-

lent: dof(z) = —5=dos(x).

Proof. Necessity. 1t follows from 341l with m = 3 that
1 (%,

(3.46) o) = 5 / (—=53(t)) dt.

0

On the other hand, according to ([B38) o5(> 0) decreases. Hence oy (-) is upper

convex (see [10]).
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Sufficiency. Let o7 in representation (B.43]) be upper convex. Then it is locally
absolutely continuous, hence admits a representation oy(z) = 01(0) + [, dof(t)dt
with an increasing function o/ (-) (see [10]). Since o1 monotonically increases and is
bounded, the Fatou theorem applies and gives [, o (z)dz < 01(+00) —01(0) < oo.
Using decaying of o7 we get

(3.47) 0 < lim zoj(z) < lim 2/ o1 (t)dt = 0.

Integration by parts in 8.43]) in view of ([B47), definition ([B:45), and the inclusion
o1 € AC)1he(Ry) gives

f(r)= /000 cos(rx)ol(z)dx = %/000 oy (z)dsin(rx)
(3.48) inre °° sin(rz * sin(rz
=@l - [ o) = [ o),

It remains to show that o3(c0) < oo. Integrating by parts in ([B45) and tending
x — 00, by taking ([B47) into account, we derive

o3(00) — 03(0) = —/ tdoy(t) = —to} (t)’go —|—/ o (t)dt < o1(00) — 01(0) < o0.
0 0
Thus o3(-) is bounded and the inclusion f € ®3 is proved. O

Remark 3.14. In the case k = 2 equation (B34 is equivalent to the differential
equation

d 1 d 1
(349) m (W%) O'mfg(x) = —W, m e N,
subject to certain boundary conditions. For m = 3 this equation is just Krein’s
string equation with respect to the unknown monotone function ¢,,_o and the mass
distribution function o,.

3.3. How reachable is the set of transition measures? We put a function
f € ®,,, into the subclass ®%° if its Schoenberg representing measure v, = v, (f)
is absolutely continuous v, (dz) = pm(z) dz, pm(-) € L*(Ry). We equip ®%¢ with
the L'-norm by setting

(3.50) lvmlleae = |pmllLr &, )-

Clearly, the set ®%¢ constitutes a “positive” conus in L!'(R;). In accordance with
Theorem Bl for each k € N the embedding ®@,,,4 — P2 holds.

In what follows we identify the representing measure v, = vy, (f) of f € pyk
as a function from ®,,, with its density p.,.

Denote by My, m+k the set of (necessarily absolutely continuous) representing
measures of functions f € ®,,, considered as functions from ®,,.

Proposition 3.15. The set My, -+ forms a closed nowhere dense subset in ®L°.

Proof. (i) Let us prove that M, ,,,+ is a closed subset of ®%¢ assuming for simplicity
that £k = 2. Let f; € ®pqie C O, j € N, and let oy, ;(dx) = pp j(z)dz be a
sequence of the corresponding representing Schoenberg measures (see (L2)).
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Assume that the sequence {p,, ;(-)}jen converges in L'(R,); i.e., there exists
Pm(-) € LY(Ry) such that

(3.51) Jli{l;o IPm.; — Pmllzr(®,) = 0.
This relation ensures existence of a subsequence py, j, such that

(3.52) len;Opm7jk () = pm(z) for ae. xR,

hence p(-) € L (Ry). It follows from (3.51) that

(3.53) om,j(x) :/ Dim,; (t)dt —>/ Dm(t)dt =10 (z) asj — o0, x€R,.
0 0

Clearly, ¢,,,(+) is a bounded monotonically increasing function.
Further, according to representation (334,

1 /®  Omo(dt
Om (1‘) _ = umfldu g +2J( )
7 2 0 u tm

1 xT o T\ ™M
3.54 =— m—2,;(dt (—) m2,;(dt)] .
350 =g | [ omensta [T (5) omas(an)]
Moreover, ([B.51]) ensures the existence of N € N such that

[Pmjller @) < IPmllor@yy +1 for j = N.
Combining this estimate with (8.54]) and assuming for definiteness that 0,42 (0) =
0,7 € N, we derive
(3.85) Omq2,j(x) <2(m —2)om(z) < |Pmllor@,y +1, zeRy, for j>N.

So, the system {om42;(-)}72; of monotone functions is uniformly bounded, and
according to the second Helly theorem, there exist a subsequence {o,, 42 5, (-)}22
and a (necessarily bounded) monotone function 7, y2(-) such that

(3.56) klim Om+2,jx () = Omya(z) for each xR,
—00
Note that for each fixed 2 € Ry one has limy (7)™ = 0; hence the function (x/t)™

is continuous at infinity. Therefore, by the second Helly theorem, one can pass to
the limit in (354) as jr — oo to obtain

Gol(z) = m U: Gmsa(dt) + /:o (%)mgmﬁ(dt)]

x
(357) = 5/ ’U,Tn_ld’LL/ t?&m+2(dt)
0 u

The latter means that 7,,(-) € My, m+2 and the set My, ;42 is closed in Ll+ (Ry).

(ii) Let us show that M, 42 has no interior points. Indeed, any fixed p,,(-) €
M,,.m+2 admits representation (B.6); hence the function p,,(x)/z™ ™! necessarily
monotonically decreases. For any € > 0 and zy € R} we put

~ ) pm(x), ERL\ (20,70 + 1),
Pm(2) = {aps(:c), x € (xg,x0 + 1).

Moreover, we choose ¢.(-) in such a way that p,,(x)/x™ ! is not monotonically
decreasing and

Hﬁm _pm||L1(R+) <e.
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Clearly, p(-) € Mpm,m+2- In other words, in any small neighborhood of p,,(-) €
M, m+2 there exist points not belonging to My, m42; i.€., pm(+) is not an interior
point. Since P, (-) € My, m42 is arbitrary, M, .,+2 has no interior points. O

4. PRODUCTS OF SCHOENBERG’S KERNELS

We demonstrate here a power and capability of the transition formula from
Theorem B by applying it to products and squares of the Schoenberg kernels €Q,,.

Theorem 4.1 (=Theorem [L3(i)). For any pair of points {a,b} C Ry, a # b, we
have the function

Qn(a,b;t) = Q(at) - Q,(bt) € Pp\Pprpq.

Proof. The case ab = 0 is trivial, so we let a,b > 0. Clearly, Q,(a,b) € ®,, since
the Schur (entrywise) product of two nonnegative matrices is again a nonnegative
matrix. Next, by ([[4) Q,(a,b;|-|) is the Fourier transform of the convolution of
the Lebesgue measures on the spheres S7~1 and Sghl. As is well known (see, e.g.,
[11, Theorem 6.2.3]) the support of a convolution equals a closure of the algebraic
sum of the supports for the components, so the support of the convolution in
question is the spherical annulus {z € R" : |a — b| < |z| < a + b}. The Schoenberg
measure of Q,,(a, b; |-|) comes up as the spherical projection of the above convolution
of two Lebesgue measures on the spheres, so its support is the interval [|a —b|, a+b],
disjoint from the origin (for an explicit expression of this measure see [12]). An
application of Theorem 3.1l completes the proof. O

Remark 4.2. Given two functions fi, fo € ®,\®,,41, let their Schoenberg measures
v(f1) and v(f2) have disjoint supports

suppv(f;) C laj,b;], 7=1,2, a1 < by < ag < bs.
The same argument shows that fi fa € ©,\ Py 4.
The case a = b is much more delicate.
Theorem 4.3 (= Theorem [L3[ii)). Q2 € ®a,_1\Pap, n € N.

Proof. Assume first that n > 2. We begin with the known formula from the Hankel
transforms theory (see, e.g., [3, (22), p. 24]):

2 dx T 9
(4.1) /0 Jy(m)\/ﬁm = 5\/ZJV/Q(@, v>—1.

Now put v =n — 2, so in terms of s,

00 =1(2) (2) a0 s =ra-1(2)" 1w,

2 Y Y
and hence
(4.2) ) ) 2( )
n— 2 (2
QQt :/ Qn— tx e xdm, n—olx :C'nx—7 Cn:72
n(t) 7 2(t) pan—2(x) p2n—2(2) N 7l'(n —1)

We see thereby that f = Q2 € ®g, .
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The algorithm we apply now may be called “one step backward and two steps
forward”. First we find the Schoenberg measure v, _3(f) from the 1-step transition
formula (BI) with m = 2n — 3:

pon_3(x) = 224 ? pona(wdu 22— 4/ W du .
" . u2r—4u2 — g2 Cn Vw2 = 2?)(4 —u?)

The latter integral can be computed by means of the change of variables u? =
4 — (4 —2%)v and so

1 2 1-n
4—=x 2 du
n_s(z) =27 "C 2?1 / <1 — v) )
pan—3(2) ; 1 o0 0)

Recall the Euler formula for the hypergeometric function [I, Theorem 2.2.1]

1 1 b 1(1 o ’U)C b—1
4.3 F(a,b;c;z) = dv, >b>0,
(43) (a,b:¢52) B(b,c—b)/o 1 —vz)e 0 €
which gives
-1 1  4—22
_ 2n—4 .
(4.4) Pon_s(@) = Clx F( 5l )

The first part of the algorithm is accomplished. We go now two steps forward
by using 2-step transition formula ([B:6) again with m = 2n — 3. Having in mind a
formula for the derivative

b
(4.5) F'(a,b;c;z):%F(a—I—l,b—i—l;c—i—l;z)
we put
o on—1 4 5 /n+13 4—2a?
pla) = —g—w F( 7 25Ty )
It is clear that p(z) = O(1) as ¢ — 2 — 0 and (see, e.g., [I, Theorem 2.1.3])
(4.6) o(r) = 22" 20(2™") = O(z"?), x— 040,
so ¢ is bounded and positive on [0,2]. By (@3]
_ 2
o(x) 7_iF(n 17£;1;4 x )’
x2n—3 dx 2 72 4
o [° p(u) " 2n—4
v z u2n—3 du = Cnp?n*?)(x) - .

Formula (3.8) now implies

2p2n—4 2 Von—1(du

(4.7) pan-s(x) = 2n—3 / n2 Eg ) ; Vap—1(du) = Anp(x)dz+ B, 6{2},
B(#3.1) u?n

where A,, B, are positive constants. So we see that Q2 € ®,, 1, and the corre-

sponding Schoenberg measure vs,,_1 has a singular component. But Theorem [3.1]

states that in this case Q2 ¢ ®,,,, as claimed.

Finally, let n = 1. Then
1 2 0 {2
Q(r) = costa = LE2 o) = MO

and again Q2 ¢ ®,. The proof is complete. O
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Remark 4.4. We are unaware of the analog of formula (2] for QF with &k > 3.
Our conjecture with regard to the powers of 2,, reads QZ € Ppp— 1\ PLrn—r42 (cf.
Remark 223]).

By Theorem [£3] each function

(4.8) Fr) = /O " 02 (rt)o(at)

belongs to the class ®9,,_2 whenever o is a probability measure on R;. We put f
in the subclass @51)_2 C Pgp,—o if it admits representation ().

The following result describes the class <I>(n) 5 in terms of the corresponding

Schoenberg measures.

Corollary 4.5. Let f € ®o, o and let vo,_o be its Schoenberg measure. Then
fe (1)5272 if and only if

(4.9) Von_a(du) = Cy, /u: @)”-2 % du,

where o is a probability measure on Ry. In particular, vo,_o is absolutely contin-
uous with respect to o, and ve,—2{(0,€)} > 0 for any € > 0.

Proof. Let f € <I>2n 5. Then according to (A2,
oo 2
1) = [ otat) [ Oan-a(rtalpa-afa) ds

= C / i icii an_z(rt.ﬁ) O'(dt)

—-c, /O otdt) | an,z(m) (%)Hdiu

412 — 2

0 © unn-2  g(dt)
=C, Qop d — —_.
/0 2n—2(Tu) u/u/z(t> T

This proves representation (9]
The converse statement is proved by reversing the reasoning. O

5. SCHOENBERG MATRICES WITH INFINITELY MANY NEGATIVE EIGENVALUES

In view of the above results it seems reasonable to introduce the following nota-
tion.

Given a finite set Y C R™, denote by £~ (g,Y) a number of negative eigenvalues
of the finite Schoenberg matrix Sy (g) counting multiplicity, and denote

ko (g9) :==sup{s~(g9,Y) : Y runs through all finite subsets of R"}.

Certainly, &, (g) =0 for g € ®,,, and £, is a nondecreasing function of n.

We turn to the case when the Schoenberg matrix Sx(g) can have arbitrarily
many negative eigenvalues. As we will see shortly, the cases n > 2 and n = 1
should be discerned.
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5.1. The case n > 2.

Theorem 5.1 (=Theorem [[4). Let g be a continuous function on Ry such that
the limit

(5.1) lim g(¢t) = g(o0) >0

t—o0
exists. If k= (g,Y) > 1 for some set Y € R™, then k. (g9) = +oo. In particular,
Kpy1(g9) = 400 for each g € ®,\ @y 1 with n > 2.

Proof. By the assumption there is a finite set Y = {y,}}_; C R™ so that Sy (g) has

at least one negative eigenvalue. Given an arbitrary positive integer N, consider a

collection of the shifts of Y of the form Y; =Y +w;, j =1,2,..., N, with
wj:(uj,O,...,O), O0=u; <ug <...<un;

u; are chosen later. Take X = (J,Y;. The Schoenberg matrix Sx (g) is now a block
matrix with p x p blocks

Sy(g) B12 B13 S BlN
Sx(g) = By Sy(9) B2z ... Ban

(5.2) =1 : :
By1 By2 Bwnsz ... Sy(g)

= diag(Sy (9), Sy (9),--.,Sv(9)) + A.

The block diagonal matrix in the right hand side of (5.2]) has at least N negative
eigenvalues.
Assume first that g(oco) = 0. Since the block entries of A are

Ars = lg(lyi —yj +wr —wslIF 20, T # s,
the appropriate choice of {u;} with large enough differences |u;;1 — u;| provides

A < e1. So
|Sx(9) — diag(Sy (9), Sy (9), .- -, Sy (9)] <&,

and Sx(g) has at least N negative eigenvalues, as claimed.
Now let g(c0) > 0. Then for h = g — g(o0) one has

Sy (h) = Sy (g) — g(o0) B < Sy (9)-
So Sy (h) has at least one negative eigenvalue, and lim; o h(t) = 0. By the above
argument k. (h) = 400, so for any large N there is a finite set Z = {z; é»:l such
that Sz(h) has at least N negative eigenvalues. But
Sz(9) = Sz(h) + g(0) E}.

The matrix F; is nonnegative and has rank one, so Sz(g) has at least N —1 negative
eigenvalues. Hence k. (g) = +00, as claimed.
To prove the second statement note that for n > 2,

Qn(z) :O(as%), T — 00,

in view of (L3) and the well-known asymptotic behavior of the Bessel function
Jy(z) = O(z71/2), 2 — co0. As Q,(0) = 1, by the Dominated Convergence Theorem

oo

lim g(z) = lim Oy (xt)v(dt) = v({0}) > 0.

r—00 T—>00 0

The result follows from the first statement. O
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Remark 5.2. It k= (g,Y) > 2 for some set Y € R™, then «,,(g) = +oo under
assumption (Bl) with an arbitrary value g(co).

5.2. The case n = 1. In the case n = 1 the Schoenberg representation of g € ®;

reads (see (L2) and (L))
+oo
(5.3) g(t) = /0 cos(tu) v(du), teRy,

with a finite positive Borel measure v = 4. Since Q;(s) = coss has no limit as
s — oo, condition (B.1]) is in general false, and Theorem [5.1] does not apply directly.
By using an ad hoc argument we are able to prove k5 (g) = 400 under certain
additional assumptions on v.

Let us begin with a simple (and perhaps well-known) result about spectra of
certain Toeplitz matrices.

Lemma 5.3. Let a = {a;}jez be an m-periodic sequence of complex numbers,

Wt = aj, Trp(a) := Hak,jHZj‘;:lO. Then the spectrum of T,,(a) is
(5.4) (T (@) = {Mkm}ior,  Aom = iaje—Q’fé’“j.
j=1
If in addition a; are real numbers and a_; = aj, then
(5.5) Aem = Em: a; cos %j .
j=1

Proof. It is easy to see that
Tm(a) =apt+a_14+ a_QZ2 + ...+ a,(mfl)Zmil,

where Z is the permutation matrix

o 1 ... 0 0 O
o o0 1 ... 0 O
7 _ 0O 0 0 1 0
o o o0 ... 0 1
1 ... ... ... 0 O

The spectrum of Z is well known, namely,

2mi

o(Z) ={e™

£ Vi

so by the Spectral Mapping Theorem the spectrum o(T,(a)) = {Aem } 7 18

m—1 m—1 m
2mik 2mik _ 2mik ;
Ao = a_jem = Am_re ™ | = E aje” m I,
1=0 1=0 j=1
as claimed. The second statement is obvious. O

It turns out that the spectrum of the Schoenberg matrix Sy (g) can be computed
explicitly when Y is a set of vertices of the regular m-gon on the complex plane.
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Proposition 5.4. Let Y,,(r) be the set of vertices of the regular m-gon of radius
r, that 1s,

2nik

(5.6) Yo (r) = {yr(r) } iy, yp = yr(r) i =rem , k=1,2,...,m.
Given an even continuous function g on R, let Sy, ,)(9) = |lg(ly; — yk|)||?7k:1 be
the corresponding Schoenberg matriz. Then for its spectrum one has

(57 0(Sym(@) = Pam (M)}, Akm<r>=Zg(2rsin%j) cos 5.

Jj=1

In particular,

m N 1 2w t
(5.8) lim At (1) =g(k,r): / 9(27“ sin 5) cos kt dt.
0

m— 00 m T or

Proof. Tt is clear that the Schoenberg matrix Sy, (»)(g) is of the type considered in
Lemma

m LT k _j
Sy (@) = 915 () — (DT = Hg<2r sin TF =3 ') .
m Jok=1

Hence the result is immediate from (B). Equality (&71) divided by m gives an
integral sum for the integral in (5.8]). The proof is complete. O

m

Given a sequence of (not necessarily different) numbers o = {ax}._, C R,
I € NU {00}, we denote by x_(«) a number of negative entries in a counting
multiplicity. Similarly, given a symmetric matrix A we denote by k_(A) a number
of its negative eigenvalues counting multiplicity.

Corollary 5.5. Let K(r):={g(k,7)}ken. If sup,qr—(K(r))=-+o0, then k; (g) =
+oo. In particular, if k_(K(ro)) = o0 for some 1o > 0, then k5 (g) = +00.

Proof. By the assumption, for an arbitrary N € N there is » > 0 so that K(r)
contains at least N negative numbers {fq\(kj,r)}jyzl. By Proposition (.4 for large
enough m

Meym <0, j=1,2,...,N,
so there are at least N negative eigenvalues counting multiplicity of the Schoenberg
matrix Sy, (»)(9) = [19(|y; — yk)IT%=1. Hence 5 (9) = +o0, as claimed. O

Clearly, if the measure v in ([@.3)) is absolutely continuous, v(du) = p(u)du, then
by the Riemann-Lebesgue Lemma g(t) — 0 as t — 00. So, Theorem B Tlapplies and
kg (g) = +0o0 as long as g ¢ Po. In what follows we will focus upon the opposite
case when v contains a singular component.

We begin with the simplest case v = §{s}.

Proposition 5.6. Let g5(r) = cossr, s > 0. Then k; (gs) = +00.

Proof. To apply Corollary we compute the cosine Fourier coeflicients of the

function g, (2r sin %) Fortunately, this can be done explicitly. Precisely, we have

(see [18 p. 21))

™

e t
9s(k,r) = 2—/ cos <2sr sin 5) cos kt dt
(5.9) 0

1 s
= —/ cos(2srsin @) cos 2k0 df = Jo(2sr).
0

™
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According to Corollary the problem is reduced to the study of a number of
negative terms in the sequence {Jox(2)}72, for > 0 large enough. Our argument
relies heavily on the well-known identity [I8] p. 17]

(5.10) Jp-1(2) + Jps1(x) _ 2Jy(2)
. p x
Write (m) withp=2k—1,p=2k+1:

Jor—2(x) | Jop(x)  2Jop_1(x)

2k—1  2k—1 z
Jok(x) | Jaksa(x) 2]k (2)
2k +1 2k +1 x ’

take their sum, and apply again (5.I0) with p = 2k to obtain

(5.11)
Jgk,Q(.’E) 4]6 J2k+2(.’[) o 2
i1 T ooy @+ 5 = 5 (a(@) + T (@),
Jok—2(x) 1 2 Jort2(x) _

o1 P\ g ) @ iy =0

Denote by Z a set of all positive roots of at least one function Joi, kK € N. We
assume later on that ¢ Z, so Jar(x) # 0 for all k (note that Z is a countable
subset of R, ).

Given N e Nput z = 9N +epn, 0 < ey < 1, so that = ¢ Z. Tt is clear that

1 2
m-;>0, k—1,2,...,3N,
so by (EII) at least one of the numbers Jog_2(z), Ja(x), Jari2(x) is negative.
There are exactly N such triples in the set {Jop,(2)}3Y,, so
(5.12) ke ({Jop(2)}321) > N.
Hence, by Corollary 5.5, x5 (gs) = +00, as claimed. O

Remark 5.7. It is easy to see that the same conclusion holds for the function

1 2
9?(7“) = cos?sr = 1 cos2sr C;)S T

Indeed, the Schoenberg matrix Sx (g2) is the rank one perturbation of the Schoen-
berg matrix Sx(gs), and the latter can have arbitrarily many negative eigenvalues
for an appropriate choice of the set X C R2.

‘We show that the same conclusion remains valid within a certain class of Schoen-
berg’s measures.

Proposition 5.8. Suppose that for a function g [B.3)) the support of v is separated
from the origin, i.e., suppv C [a,00) for some a > 0. Next, assume that

(513)  U(v) =limsup |A(r)| >0, h(r) = 2;3/2 /Ooo cos (2\7;55— %) s,

Then k5 (g) = +o0.
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Proof. Tt follows from (B.3]) and (£.9) that

(5.14) glk,r) = % /000 Jor (2rs)v(ds).

We wish to show that the number of negative terms in the sequence {g(k,7)}ren
grows unboundedly as r — co.
Write the asymptotic expansion [Tl formula (4.8.5)]

2 s 2
Jgk(x):\/gcos (z—kﬁ—z)—kegk )k p—_ +52k( )s

and so

(5.15) glk,r) = (—)r M

N /OOO ear(2rs)v(ds).

The following uniform bound for the reminder eg is known [8] Theorem 10]:
k2
go(r) < e 37 x>0,

where ¢, below stands for some absolute constants. Hence

. k2 [ v(ds)
(5.16) Vrglk,r) = (~D*h)] e — | 5
By assumption (B.I3) there is a sequence of positive numbers {r;};>1 so that
l
lim r; = 400, |h(r;)] > i) > 0.
j—oo 2

Take large enough jo = jo(v) so that

Cw(ds)  UWv) 12 ..
02/ < —=r;"", 7= Jo-
u g3/2 4 I

It follows now from (G.I6]) that

. (v L
Vrak ) - (R0 < k=1 2,
and the number of negative terms in {g(k,r)}ren is at least 037“]1-/4, so it grows to

infinity as j — co. An application of Corollary completes the proof. (]

Remark 5.9. As a matter of fact, the assumption supp v C [a,0) can be relaxed
to

(5.17) /000 v(ds) < 00, /:O vids) =o(z7'), z—0.

$3/2

Example 5.10. Le
d - E i 0
3) . a/k;(s{sk;}, lrlii Sk > 5

with ar > 0, {ag}r>1 € ¢*(N). Then (5I3) is true since h is almost periodic on
R;.
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Remark 5.11. A similar problem for a general Bochner’s class P,, of positive-definite
functions on R™ can be easily resolved. Recall that a continuous function f on R™
belongs to P, if for an arbitrary finite set {z1,..., 2y}, 2x € R", and {&1,...,&n} €
C'In

Z flaw — 2))&€, > 0.
k,j=1
Each function from the Bochner class admits the integral representation

(5.18) f(z) = / ) e@Hn o (dt),

where o is a finite positive Borel measure on R™.
Although inclusion of the classes P, has no sense now, let us write f,11 €
P, _1\P, for a function f,, on R™ if f,, ¢ P, but its restriction on R*~1 is

fn,l(xl,xg, ... ,xn,l) = fn(xl,l'g, .. .,(Enfl,()) S Pnfl.

Let p be a finite positive Borel measure on R™ with the only atom at the origin
{0} > 0 and the Fourier transform f, (518). Put

(5.19) 1 = [ — €0q, 0<e<u{0}, a=(0,...,0,1) € R",

a finite charge (sign measure) on R™. By the construction, p is not a measure, so
the Fourier transform

(5.20) gn(T) = / @Wn yy (dt) = fo(x) —ee® ¢ P,.
So
gu1(e) = (@) e = [0 ) -
Rn—1

where [i is a projection of y on R"~!; that is, ji(E) = u(E x R) for each Borel
set £ C R""1. By the choice of ¢ (519) and {0} > u{0} we have g, € P,_1, so
gn € Pn—l\Pn-

Given a finite set Y = {y;}}_; C R™ and a function g on R", we define a finite
Schoenberg matrix by Sy (g9) = || f(y: —y;)|I);—; and define the values £~ (g,Y") and
k., (g) as in Section 1. It follows from (B.20) that Sy (g,) = Ty — Ta, where Ty > 0
and tk Ty = 1. So k(gn,Y) > 1, and for some particular choice of Y k(g,,Y) = 1.
Hence, &, (gn) = 1, as needed.
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