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ON THE ALGEBRAIC RELATIONS

BETWEEN MAHLER FUNCTIONS

JULIEN ROQUES

Abstract. In the last years, a number of authors have studied the algebraic
relations between the generating series of automatic sequences. It turns out
that these series are solutions of Mahler type equations. This paper is mainly
concerned with the difference Galois groups of Mahler type equations (these
groups reflect the algebraic relations between the solutions of the equations).
In particular, we study in detail the equations of order 2 and compute the
difference Galois groups of classical equations related to the Baum-Sweet and
to the Rudin-Shapiro automatic sequences.
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1. Introduction

A number of authors have studied the algebraic relations between the generating
series of certain p-automatic sequences. For instance, the generating series of the
so-called Baum-Sweet and Rudin-Shapiro sequences (see sections 9.1 and 9.2) were
studied by Nishioka and Nishioka in [NN12]: they are algebraically independent
over Q(z).1 It turns out that the generating series f(z) =

∑
k≥0 skz

k of any p-

automatic sequence (sk)k≥0 ∈ Q
N
(and, actually, of any p-regular sequence) satisfies
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1For the relevance of the algebraic properties of the generating series coming from combina-

torics, we refer for instance to Bousquet-Mélou’s paper [BM06].
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a functional equation of the form

an(z)f(z
pn

) + an−1(z)f(z
pn−1

) + · · ·+ a0(z)f(z) = 0

with coefficients a0(z), . . . , an(z) ∈ Q(z); see Becker’s paper [Bec94] and the ref-
erences therein, especially to the works of Dumas and Randé. Such a functional
equation is called a p-Mahler equation, in honor of the work of Mahler in [Mah30b,
Mah30c,Mah30a].2 So, the study of the algebraic relations between the generat-
ing series issued from p-automatic sequences is a special case of the study of the
algebraic relations between solutions of Mahler equations.

The principal aim of the present work is to study the algebraic relations between
the solutions of p-Mahler equations of order n = 2 via difference Galois theory.

We shall now describe more carefully the content of this paper. Section 2 contains
general prerequisites and complements on difference Galois theory. In section 3,
we establish fundamental properties of the difference Galois groups of the Mahler
equations. In section 4, we study the factorization of the Mahler operators on the
field of Puiseux series, and we define and study the notion of local exponents at 0
and ∞ (this will be used several times in the rest of this paper: for the algorithmic
aspects studied in section 6, and also for the calculation of the difference Galois
groups of the Baum-Sweet and of the Rudin-Shapiro equations, and of their direct
sum, in section 9). Section 5 is an aside on a special type of Mahler equation, called
regular singular, for which one can describe explicitly the universal Picard-Vessiot
ring over the field of Puiseux series. We then focus our attention on the Mahler
equations of order n = 2: in section 6, we give an algorithm to determine whether or
not the difference Galois group of a given Mahler equation of order 2 is irreducible,
and, in the irreducible case, whether or not it is imprimitive. This is inspired by
the analogue of Kovacic’s algorithm introduced by Hendricks in [Hen97, Hen98].
Note that in the irreducible and not imprimitive case, the Galois group, which can
be determined explicitly, contains SL2(Q). For instance, the Baum-Sweet and the
Rudin-Shapiro equations (see sections 9.1 and 9.2) are Mahler equations of order
2, and hence the algorithm applies in these cases. It would lead to the fact that
these Galois groups are μ4 SL2(Q) and GL2(Q) respectively, where μ4 ⊂ C× is the
group of 4th roots of the unity. However, in section 9, we give a shorter way (which
could be of interest for other equations) to compute these groups. We also compute
the Galois group of the “direct sum” of the Baum-Sweet and of the Rudin-Shapiro
equations (via the Goursat-Kolchin-Ribet lemma), which turns out to be equal
to the direct product of the Galois groups of the Baum-Sweet and of the Rudin-
Shapiro equations. For instance, this gives a Galoisian proof of the following result
obtained by Nishioka and Nishioka in [NN12]: if we let f1(z) = f(z) (resp. g(z)) be
the generating series of the Rudin-Shapiro (resp. Baum-Sweet) sequence, then the
series f1(z) = f(z), f2(z) = f(−z), g(z) and g(z2) are algebraically independent
over Q(z).

2. Difference Galois theory: Reminders and complements

2.1. Generalities on difference Galois theory. For details on what follows, we
refer to [vdPS97, Chapter 1].

2For an introduction to this aspect of Mahler’s work, we refer to Pellarin’s [Pel09] and to
Nishioka’s [Nis96]. We also point out the recent paper [Ph15] by Philippon (which uses difference
Galois theory).
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A difference ring is a couple (R, φ) where R is a ring and φ is a ring automorphism
of R. An ideal of R stabilized by φ is called a difference ideal of (R, φ). If R is a
field, then (R, φ) is called a difference field.

The ring of constants Rφ of the difference ring (R, φ) is defined by

Rφ := {f ∈ R | φ(f) = f}.

Two difference rings (R, φ) and (R̃, φ̃) are isomorphic if there exists a ring iso-

morphism ϕ : R → R̃ such that ϕ ◦ φ = φ̃ ◦ ϕ.
A difference ring (R̃, φ̃) is a difference ring extension of a difference ring (R, φ)

if R̃ is a ring extension of R and φ̃|R = φ; in this case, we will often denote φ̃ by φ.

Two difference ring extensions (R̃1, φ̃1) and (R̃2, φ̃2) of a difference ring (R, φ) are

isomorphic over (R, φ) if there exists a ring isomorphism ϕ : R̃1 → R̃2 such that

ϕ|R = IdR and ϕ ◦ φ̃1 = φ̃2 ◦ ϕ.
A difference ring (R, φ) is a difference subring of a difference ring (R̃, φ̃) if (R̃, φ̃)

is a difference ring extension of (R, φ).

We now let (k, φ) be a difference field. We assume that its field of constants
C := kφ is algebraically closed and that the characteristic of k is 0.

In what follows, we will frequently denote the difference ring (R, φ) by R.

Consider a difference system

(1) φY = AY with A ∈ GLn(k).

According to [vdPS97, §1.1], there exists a difference ring extension R of (k, φ)
such that

1) there exists U ∈ GLn(R) such that φ(U) = AU (such a U is called a
fundamental matrix of solutions of (1));

2) R is generated, as a k-algebra, by the entries of U and det(U)−1;
3) the only difference ideals of R are {0} and R.

Such a difference ring R is called a Picard-Vessiot ring for (1) over (k, φ). It is
unique up to isomorphism of difference rings over (k, φ). It is worth mentioning
that Rφ = C; see [vdPS97, Lemma 1.8].

The corresponding difference Galois group G over (k, φ) of (1) is the group of
the k-linear ring automorphisms of R commuting with φ :

G := {σ ∈ Aut(R/k) | φ ◦ σ = σ ◦ φ}.

The Picard-Vessiot ring R is not a domain in general. According to [vdPS97,
Corollary 1.16], we can decompose R as a direct product of rings

R =
⊕
x∈X

Rx with Rx = Rex

where

• X = Z/tZ for some integer t ≥ 1,
• for all x ∈ X, ex is an idempotent element of R,
• for all x ∈ X, Rx is a domain,
• for all x ∈ X, φ(ex) = ex+1X and, hence, φ(Rx) = Rx+1X .
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Let us consider the total quotient ring K of R, which can be described as

K =
⊕
x∈X

Kx

where Kx is the field of fractions of Rx. It is easily seen that φ admits a unique
extension into a ring automorphism ofK. Therefore,K is a difference ring extension
of R, called the total Picard-Vessiot ring of (1) over (k, φ). We have Kφ = C. The
action of G on R extends to K.

A straightforward computation shows that, for any σ ∈ G, there exists a unique
C(σ) ∈ GLn(C) such that σ(U) = UC(σ). According to [vdPS97, Theorem 1.13],
one can identify G with an algebraic subgroup of GLn(C) via the faithful represen-
tation

σ ∈ G �→ C(σ) ∈ GLn(C).

If we choose another fundamental system of solutions U , we find a conjugate rep-
resentation.

Remark 1. To the difference equation

(2) anφ
n(y) + · · ·+ a1φ(y) + a0y = 0,

with a0, . . . , an ∈ k and a0an 	= 0, we associate the difference system

(3) φY = AY, with A =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

− a0

an
− a1

an
· · · · · · −an−1

an

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ GLn(k).

By “Galois group of the difference equation (2)” we will mean “Galois group of the
difference system (3)”.

The Galois correspondence [vdPS97, Theorem 1.29] reads as follows.

Theorem 2. Let F be the set of difference subrings F of K such that k ⊂ F and
such that every non-zero divisor of F is actually a unit of F . Let G be the set of
algebraic subgroups of G. Then:

• for any F ∈ F , the set G(K/F ) of elements of G which fix F pointwise is
an algebraic subgroup of G;

• for any algebraic subgroup H of G, KH := {x ∈ K | ∀σ ∈ H,σ(x) = x}
belongs to F ;

• the maps F → G, F �→ G(K/F ) and G → F , H �→ KH are each other’s
inverses.

The Galois group G reflects the algebraic relations between the entries of any
fundamental matrix of solutions U ∈ GLn(R) of (1). The point is that Spec(R)
is a G-torsor over k; see [vdPS97, Theorem 1.13]. This implies that there exists a
finite extension k′ of k such that the Spec(k′)-schemes Gk′ := G×Spec(C) Spec(k

′)
and Spec(R) ×Spec(k) Spec(k

′) are isomorphic, i.e. such that there is a k′-algebra
isomorphism

(4) R ⊗k k
′ ∼= C[G]⊗C k′.
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Therefore, equation (4) holds true when k′ is replaced by an algebraic closure k of
k. Note that if G is connected and k is a C1-field,3 then we can take k′ = k; i.e.
there is a k-algebra isomorphism

R ∼= C[G]⊗C k.

For instance, if n = 2, G = SL2(C) and k is a C1-field, then there is a k-algebra
isomorphism

R ∼= k[Xi,j | 1 ≤ i, j ≤ 2]/(det(Xi,j)1≤i,j≤2 = 1);

in other words, the ideal of polynomial relations with coefficients in k between the
entries of U is generated by det(Xi,j)1≤i,j≤2 = 1.

We shall now introduce a property relative to the base difference field (k, φ)
which appeared in [vdPS97].

Definition 3. We say that the difference field (k, φ) satisfies property (P) if the
following properties hold:

• the field k is a C1-field;
• if L is a finite field extension of k such that φ extends to a field endomor-
phism of L, then L = k.

The following result is due to van der Put and Singer. We recall that two
difference systems φY = AY and φY = BY with A,B ∈ GLn(k) are isomorphic
over k if there exists T ∈ GLn(k) such that φ(T )A = BT .

Theorem 4. Assume that (k, φ) satisfies property (P). Let G ⊂ GLn(C) be the
difference Galois group over (k, φ) of

(5) φY = AY, with A ∈ GLn(k).

Then, the following properties hold:

• G/G◦ is cyclic, where G◦ is the identity component of G;
• there exists B ∈ G(k) such that (5) is isomorphic to φY = BY over k.

Let G̃ be an algebraic subgroup of GLn(C) such that A ∈ G̃(k). The following
properties hold:

• G is conjugate to a subgroup of G̃;

• any minimal element in the set of algebraic subgroups H̃ of G̃ for which

there exists T ∈ GLn(k) such that φ(T )AT−1 ∈ H̃(k) is conjugate to G;

• G is conjugate to G̃ if and only if, for any T ∈ G̃(k) and for any proper

algebraic subgroup H̃ of G̃, one has that φ(T )AT−1 /∈ H̃(k).

Proof. The proof of [vdPS97, Propositions 1.20 and 1.21] in the special case where
k := C(z) and φ is the shift φ(f(z)) := f(z + h) with h ∈ C× extends mutatis
mutandis to the present case. �

3Recall that k is a C1-field if every non-constant homogeneous polynomial P over k has a
non-trivial zero provided that the number of its variables is more than its degree. For instance,
the function field of any algebraic curve over an algebraically closed field is a C1-field by virtue of
Tsen’s theorem [Lan52].
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2.2. Base difference field extensions. Let (k′, φ) be a difference field extension
of (k, φ) such that (k′)φ = C. We shall first explain how one can see the differ-
ence Galois group G′ of the difference system (1) over (k′, φ) as a subgroup of the
difference Galois group G of the difference system (1) over (k, φ).

Let R′ be a Picard-Vessiot ring over (k′, φ) for the difference system (1). Let
U ∈ GLn(R

′) be a fundamental matrix of solutions of (1). We consider the sub-k-
algebra R of R′ generated by the entires of U and by det(U)−1. It is clear that R
is a difference subring of R′.

Lemma 5. An element of R is a zero divisor of R if and only if it is a zero divisor
of R′.

Proof. It is obvious that if a ∈ R is a zero divisor of R, then it is a zero divisor of
R′. Conversely, let a ∈ R be a zero divisor of R′. As recalled in section 2.1, we can
decompose R′ as follows:

R′ =
⊕
x∈X

R′
x,

where

• X = Z/tZ,
• for all x ∈ X, R′

x is a domain,
• for all x ∈ X, φ induces an isomorphism from R′

x to R′
x+1X

.

Consider the corresponding decomposition a =
∑

x∈X ax. The fact that a is a zero

divisor of R′ ensures that ax = 0 for some x ∈ X. It follows that aφ(a) · · ·φt−1(a) =
0. Therefore, there exists i ∈ {0, . . . , t − 1} such that φi(a) is a zero divisor of R.
Since φi is a ring automorphism of R, we get that a is a zero divisor of R, as
expected. �

Thanks to Lemma 5, one can see the total quotient ring K of R as a difference
subring of the total quotient ring K ′ of R′:

K ⊂ K ′.

Proposition 6. The difference ring (R, φ) is a Picard-Vessiot ring over (k, φ) for
(1). Therefore, the difference ring (K,φ) is a total Picard-Vessiot ring over (k, φ)
for (1).

Proof. According to [vdPS97, Corollary 1.24], in order to prove that R is a Picard-
Vessiot ring over (k, φ) for (1), it is sufficient to prove that the following properties
hold true:

• R has no nilpotent elements;
• the ring of constants of K is C;
• there is a fundamental matrix of solutions of (1) in GLn(R);
• R is minimal with respect to the previous properties.

The first property follows from the facts that R ⊂ R′ and that R′ has no nilpotent
elements (recall thatR′ is a direct product of domains). The second property follows
from the facts that K ⊂ K ′ and that (K ′)φ = C (because K ′ is a total Picard-
Vessiot ring). The third property follows from the fact that U is a fundamental
matrix of solutions of (1) in GLn(R). The minimality property of R is obvious. �

Consider the Galois group G′ of (1) over (k′, φ) given by

G′ = {σ ∈ Aut(R′/k′) | φ ◦ σ = σ ◦ φ}
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and the Galois group G of (1) over (k, φ) given by

G = {σ ∈ Aut(R/k) | φ ◦ σ = σ ◦ φ}.
Then, the restriction map σ �→ σ|R gives a closed immersion

G′ ⊂ G.

We shall now focus our attention on the case when k′ is an algebraic extension
of k.

Theorem 7. Assume that k′ is an algebraic extension of k. Then, G′ and G have
the same identity component.

Proof. As recalled in section 2.1, the scheme Gk′ := G×Spec(C) Spec(k′) is isomor-

phic to Spec(R) ×Spec(k) Spec(k′), and the scheme G′
k′ := G′ ×Spec(C) Spec(k′) is

isomorphic to Spec(R′)×Spec(k) Spec(k′). Therefore, the dimension of G, which is

equal to the dimension of Gk′ , is equal to the dimension of Spec(R)×Spec(k)Spec(k′),
which is itself equal to the dimension of Spec(R). Similarly, the dimension of G′ is
equal to the dimension of Spec(R′). But the ring extension R ⊂ R′ is integral, so
Spec(R) and Spec(R′) have the same dimensions. Hence G and G′ have the same
dimensions. So, we have a closed immersion G′ ⊂ G of algebraic groups with the
same dimensions. It follows that G and G′ have the same identity component. �

With the notation and hypotheses of Theorem 7, one can ask the following
question: Is G′ a normal subgroup of G? Let us study this question in detail. Since
G′ is an algebraic subgroup of G, the Galois correspondence [vdPS97, Theorem
1.29] ensures that there exists a difference subring F of K containing k such that
every non-zero divisor of F is a unit of F and such that

G′ = {σ ∈ Aut(K/F ) | φ ◦ σ = σ ◦ φ}.
By Galois correspondence again,

F = KG′
= (K ′)G

′ ∩K = k′ ∩K.

Using [vdPS97, Corollary 1.30], we obtain the following result.

Proposition 8 (Normality criterion). The algebraic group G′ is normal in G if
and only if the set of elements of k′ ∩K which are fixed by the natural action of the
group

{σ ∈ Aut(k′ ∩K/k) | φ ◦ σ = σ ◦ φ}
is reduced to k.

We shall now give an example illustrating the fact that G′ is not a normal
subgroup of G in general, in contrast with the differential case [Kat87, Proposition
1.4.5].

We consider the difference field (l, φ) which is given by

l =
⋃
d≥1

Q(z1/d) and φ
(
f(z1/d)

)
= f(zp/d).

We consider the difference subfields k and k′ of l given by

k =
⋃
m≥0

Q(z1/p
m

)
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and

k′ = k(z
1

p2−1 ) =
⋃
m≥0

Q(z
1

pm(p2−1) ).

Consider the difference system

φY = AY, A ∈ GL2(k)

associated to the difference equation φ2y = zy. A total Picard-Vessiot ring over
(k′, φ) for this system is given by the difference ring (K ′, φ) defined as follows:

• as a ring, K ′ = k′ ⊕ k′ is the direct sum of two copies of k′;
• the action of φ on (a, b) ∈ K ′ is given by φ(a, b) = (φ(b), φ(a)).

Note that k′ is seen as a difference subfield of K ′ via a ∈ k′ �→ (a, a) ∈ K ′. A total
Picard-Vessiot ring over (k, φ) is given by K := K ′. Therefore, we have k′∩K = k′,
and it is easily seen that

{σ ∈ Aut(k′ ∩K/k) | φ ◦ σ = σ ◦ φ} = {Id}.
The above normality criterion implies that G′ is not a normal subgroup of G.

2.3. Iterations. Let d ≥ 1 be an integer and consider the iterated difference system

(6) φdY = AdY with Ad = φd−1(A)φd−2(A) · · ·A ∈ GLn(k).

The aim of this section is to study the relations between the difference Galois groups
of this difference system and of the original difference system (1) and to generalize
van der Put and Singer’s [vdPS97, Corollary 1.17] (which is concerned with the
case d = t with the notation introduced below).

Let R be a Picard-Vessiot ring over (k, φ) for the difference system (1). As
recalled in section 2.1, we can decompose R as a direct product of rings

R =
⊕
x∈X

Rx with Rx = Rex

where

• X = Z/tZ for some integer t ≥ 1,
• for all x ∈ X, ex is an idempotent element of R,
• for all x ∈ X, Rx is a domain,
• for all x ∈ X, φ(ex) = ex+1X and, hence, φ(Rx) = Rx+1X .

We denote by Y the quotient of X by its ideal generated by d1X . For all y ∈ Y ,
we introduce the ring

Sy =
⊕
x∈y

Rx.

We have

R =
⊕
y∈Y

Sy and, for all y ∈ Y , φ(Sy) = Sy+1Y .

In particular, if r = |Y | = gcd(d, t), then, for all y ∈ Y ,

φr(Sy) = Sy and, hence, φd(Sy) = Sy.

Therefore, (Sy, φ
d) (resp. (Sy, φ

r)) is a difference ring extension of (k, φd) (resp.
(k, φr)), when k is identified with k1Sy

.

Proposition 9. The difference ring (S0Y , φ
d) is a Picard-Vessiot ring over (k, φd)

for the difference system (6).
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Proof. Let U ∈ GLn(R) be a fundamental matrix of solutions of (1). We can
decompose U as follows:

U =
∑
y∈Y

Uy

where, for all y ∈ Y , Uy ∈ GLn(Sy). We have

φd(U) =
∑
y∈Y

φd(Uy) and φd(U) = AdU =
∑
y∈Y

AdUy.

Since φd(Uy) ∈ GLn(Sy) and AdUy ∈ GLn(Sy), it follows that, for all y ∈ Y ,
φd(Uy) = AdUy.

Since R is generated as a k-algebra by the entries of U and detU−1, we get that,
for all y ∈ Y , Sy is generated as a k-algebra by the entries of Uy and detU−1

y .

It remains to prove that (S0Y , φ
d) is a simple difference ring. Let I be a minimal

non-zero difference ideal of (S0Y , φ
d). Since φd(I) is a non-zero difference ideal of

(S0Y , φ
d) included in I, we get that φd(I) = I. Since S0Y =

⊕
x∈0Y

Rx, we can
decompose I as follows:

I =
⊕
x∈0Y

Ix

where, for all x ∈ 0Y , Ix is an ideal of Rx. Since I is non-zero, there exists
x ∈ 0Y such that Ix is non-zero. But φd(I) ⊂ I and, for all integer j ≥ 0,
φjd(Rx) ⊂ Rx+jd1X , so φjd(Ix) ⊂ Ix+jd1X . Therefore, for any x ∈ 0Y , Ix is non-
zero. Using the fact that, for all j ∈ N, φjr induces a permutation of {Rx | x ∈ 0Y },
we see that

φjr(I) =
⊕
x∈0Y

Ij,x

where, for all integers j ≥ 0 and x ∈ 0Y , Ij,x is a non-zero ideal of Rx.
We now consider

J0 =
⋂
j∈N

φjrI =

d/r−1⋂
j=0

φjr(I) ⊂ S0Y ,

which is a difference ideal of (S0Y , φ
r). The decomposition

J0 =
⊕
x∈0Y

d/r−1⋂
j=0

Ij,x,

together with the fact that a finite intersection of non-zero ideals of a domain is
non-zero, shows that J0 is non-zero.

We set

J =
r−1⊕
k=0

φk(J0) ⊂
⊕
y∈Y

Sy,

which is a non-zero difference ideal of (R, φ). Therefore, J = R. So, J0 = S0Y and,
hence, I = S0Y as expected. �

We will also use the iterated difference system

(7) φrY = ArY with Ar = φr−1(A)φr−2(A) · · ·A ∈ GLn(k).

The following result is the particular case d = r of the previous proposition.
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Proposition 10. The difference ring (S0Y , φ
r) is a Picard-Vessiot ring over (k, φr)

for the difference system (7).

Let K be the total quotient ring of R over (k, φ). So K =
⊕

x∈X Kx with
Kx = Frac(Rx). Then, (K,φ) is a total Picard-Vessiot ring for the difference
system (1). For any y ∈ Y , we set Ly =

⊕
x∈y Kx, which is the total quotient

ring of Sy. According to Proposition 9 (resp. Proposition 10), (L0Y , φ
d) (resp.

(L0Y , φ
r)) is a total Picard-Vessiot ring for the difference system (6) over (k, φd)

(resp. (7) over (k, φr)).
We consider the difference Galois group over (k, φ) of the difference system (1)

given by
G = {σ ∈ Aut(K/k) | φ ◦ σ = σ ◦ φ},

the difference Galois group over (k, φd) of the difference system (6) given by

G′ = {σ ∈ Aut(L0Y /k) | φd ◦ σ = σ ◦ φd}
and the difference Galois group over (k, φr) of the difference system (7) given by

G′′ = {σ ∈ Aut(L0Y /k) | φr ◦ σ = σ ◦ φr}.

Proposition 11. We have G′ = G′′.

Proof. We have an obvious closed immersion of algebraic groups G′′ ⊂ G′ (because
r divides d). By Galois correspondence for the difference system (7), we have

LG′′

0Y = k. By Galois correspondence again, but for the difference system (6), we get
that the inclusion of algebraic groups G′′ ⊂ G′ is actually an equality. �

We consider the map α : G′′ → G defined as follows. For all σ ∈ G′′, α(σ) :
K → K is the unique k-linear endomorphism of K such that, for all y = j1Y ∈ Y ,
α(σ)|Ly

= φjσφ−j . The map α(σ) is well-defined because

• φj induces a ring isomorphism between L0Y and Lj1Y = Ly;

• if j, j′ ∈ Z are such that y = j1Y = j′1Y , then φjσφ−j = φj′σφ−j′ (indeed,

in this case, we have j ≡ j′ mod r and, hence, φjσφ−j = φj′σφ−j′ because
σ commutes with φr).

The fact that α(σ) is an element of G is straightforward.
We consider the map β : G → Y defined as follows. It is easily seen that any σ ∈

G induces a permutation of {ex | x ∈ X}. More precisely, if σ(e0X ) = e�1X , then,
for all x′ ∈ X, σ(ex′) = ex′+�1X (indeed, if x′ = j1X , then ex′ = ej1X = φj(e0X ), so
σ(ex′) = σ(φj(e0X )) = φj(σ(e0X )) = φj(e�1X ) = e�1X+j1K = ex′+�1X ). Therefore,
σ induces a permutation of {1Ly

=
∑

x∈y ex | y ∈ Y }. We denote by β(σ) the

unique element of Y such that σ(1L0Y
) = 1Lβ(σ)

. Note that, for any y ∈ Y , we have

σ(1Ly
) = 1Ly+β(σ)

. Equivalently, one can define β(σ) as the unique element of Y
such that

σ(L0Y ) = Lβ(σ).

Moreover, for any σ ∈ G and y ∈ Y , we have

σ(Ly) = Ly+β(σ).

It is easily seen that α and β are morphisms of algebraic groups.

Theorem 12. We have the following exact sequence of algebraic groups:

0 −→ G′ = G′′ α−→ G
β−→ Y −→ 0.
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Proof. The fact that α is injective is obvious.
For any σ ∈ G′′, we have α(σ)(1L0Y

) = σ(1L0Y
) because 1L0Y

∈ L0Y . And,

σ(1L0Y
) = 1L0Y

because σ is a ring endomorphism of L0Y . Therefore, β◦α(σ) = 0Y .

Consider σ ∈ kerβ. Then, σ′ := σ|L0Y
leaves L0Y globally invariant and belongs

to G′. It is easily seen that σ = α(σ′) ∈ im(α).
It remains to prove that β is surjective. Consider x =

∑
y∈im(β) 1Ly

. For all

σ ∈ G, we have σ(x) =
∑

y∈im(β) 1Ly+β(σ)
= x (the last equality follows from the

fact that β(σ) belongs to the group im(β)). According to Galois correspondence,
we have x ∈ k. But x is idempotent, so x = 0K or 1K . Since x 	= 0K , we get
x = 1K . Therefore, im(β) = Y . �

2.4. Systems, equations and modules. In linear algebra, it is usual to work
either with matrices with entries in a field k, with endomorphisms of a finite di-
mensional k-vector space or with k[X]-modules of finite type. This can be imitated
in the context of difference algebra, as we shall now explain.

One can rewrite the difference system

(8) φY = AY with A ∈ GLn(k)

as the fixed point equation ΦA(Y ) = Y where ΦA : kn → kn is defined by ΦA(Y ) =
A−1φ(Y ) (here φ acts component-wise on the elements of kn, which are seen as
column vectors). The map ΦA is a φ-linear automorphism of the k-vector space
kn, i.e. ΦA(X + λY ) = ΦA(X) + φ(λ)ΦA(Y ) for all X,Y ∈ kn and λ ∈ k. This
leads to the following concept: a difference module is a pair (V,Φ) where V is a
finite dimensional k-vector space and Φ : V → V is a φ-linear automorphism of V .
So, we have attached the difference module (kn,ΦA) to the difference system (8).
Conversely, we can attach a difference system to any difference module (V,Φ) by
choosing some basis of V .

Here is an alternate description of the difference modules. Consider the Öre
algebra Dk = k[φ, φ−1] of non-commutative Laurent polynomials with coefficients
in k such that φa = φ(a)φ for all a ∈ k. By “Dk-module” we will mean “left Dk-
module of finite length” (it is equivalent to require that the k-vector space obtained
by restriction of scalars has finite dimension). There is a natural correspondence
between difference modules andDk-modules. Indeed, we can attach to the difference
module (V,Φ) the Dk-module M whose underlying abelian group is the underlying
group of V and such that L =

∑
aiφ

i ∈ Dk acts on m ∈ M as Lm =
∑

aiΦ
i(m).

Conversely, we can attach to the Dk-module M the difference module (V,Φ) where
V is the k-vector space obtained from M by restriction of scalars and where Φ(v) =
φv, for any v ∈ V .

The following result, known as the cyclic vector lemma, ensures that any Dk-
module (and, hence, any difference system and difference module) “comes from”
an equation.

Proposition 13. Let M be a Dk-module. There exists L ∈ Dk such that M ∼=
Dk/DkL.

The category of Dk-modules is a C-linear rigid tensor category. The dual of a
Dk-module M will be denoted by M∨ and the tensor product by the usual symbol
⊗. For details, we refer to [vdPS97, §1.4].
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2.5. Tannakian duality. For details on what follows, see [vdPS97, §1.4]. For
tannakian categories in general, we refer to Deligne and Milne’s [DM82]. We let
〈M〉 be the smallest full subcategory of the category of Dk-modules containing M
and closed under all constructions of linear algebra, namely direct sums, tensor
products, duals and subquotients. We let (R, φ) be a Picard-Vessiot ring of M
over (k, φ) and we let G be the corresponding difference Galois group over (k, φ).
There is a C-linear equivalence of categories between 〈M〉 and the category of
rational C-linear representations of the linear algebraic group G which is compatible
with all constructions of linear algebra (this is called tannakian duality). Such an
equivalence is given by a functor sending an object N of 〈M〉 to the representation

ρN : G → GL(ω(N))

σ �→ (σ ⊗ IdN )|ω(N)

where
ω(N) = ker(φ⊗ φ− 1 : R⊗k N → R⊗k N).

The difference Galois group of N over (k, φ) can be identified with the image of ρN .
We now focus on a specific situation that we will encounter later in this paper.

If N1 and N2 are objects of 〈M〉, then the Galois group of N1⊕N2 can be identified
with

(ρN1
⊕ ρN2

) (G) ⊂ G1 ×G2,

where G1 (resp. G2) is the difference Galois group of N1 (resp. N2) over (k, φ)
identified with ρN1

(G) (resp. ρN2
(G)). We have the following result.

Proposition 14. Assume that:

• N1 and N2 have rank 2,
• G1 (resp. G2) contains SL(ω(N1)) (resp. SL(ω(N2))),
• for any object N of rank one of 〈N1 ⊕ N2〉, N1 is isomorphic to neither
N ⊗N2 nor N ⊗N∨

2 .

Then, the Galois group of N1 ⊕ N2, seen in G1 × G2, contains SL(ω(N1)) ×
SL(ω(N2)).

Proof. Indeed, this is a direct consequence of Goursat-Kolchin-Ribet’s [Kat90,
Proposition 1.8.2] (applied to ρ1 := ρN1

and ρ2 := ρN2
) and tannkian duality. �

Note that if G1 ×G2 contains SL(ω(N1))× SL(ω(N2)), then

G = {(σ1, σ2) ∈ GL(ω(N1))×GL(ω(N2)) | (detσ1, detσ2) ∈ H},
where H is the Galois group of detM1 ⊕ detM2.

3. Difference Galois theory: More specific results

for Mahler equations

We consider the field of Puiseux series with coefficients in Q given by

K̂ =
⋃
d≥1

K̂d with K̂d = Q((z1/d)).

We will use the notation zd = z1/d. We endow K̂ with the field automorphism φp

defined by

φp

(
f(z1/d)

)
= f(zp/d).

This makes K̂ a difference field with field of constants K̂φp = Q.
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We also consider the difference subfield of K̂ given by

K =
⋃
d≥1

Kd with Kd = Q(z1/d).

The corresponding Öre algebras D
̂K and DK (see section 2.4) will be denoted

by D̂ and D. An element of such an algebra will be called a Mahler operator. A
Mahler equation, system or module is a difference equation, system or module over
one of the above difference fields.

The following result will be useful.

Proposition 15. The difference field (K, φp) satisfies property (P) (see Defini-
tion 3). Therefore, the conclusions of Theorem 4 are valid for (K, φp).

The proof of this proposition, given below, will use the following geometric result.

Proposition 16. Let X be of smooth projective curve over Q with genus g ≥ 2.
Then, the following properties hold:

(1) any non-constant endomorphism of X is an automorphism;
(2) the group of automorphisms of X is finite, of order at most 84(g − 1).

Proof. Let ϕ : X → X be a non-constant endomorphism of X. Hurwitz’s formula
(see [Har77, Corollary 2.4]) ensures that

−2(N − 1)(g − 1) =
∑
P

(eP − 1)

where N ≥ 1 is the degree of ϕ and where the sum is taken over the ramification
points P of ϕ with ramification index eP ≥ 1. The fact that the right hand side of
this equality is ≥ 0 implies that N = 1, i.e. that ϕ has degree 1 and hence is an
automorphism.

The fact that the group of automorphisms of X is finite and has order at most
84(g − 1) is a classical result due to Hurwitz [Hur92]. �

Proof of Proposition 15. Since K =
⋃

d≥1 Kd! is the increasing union of the fields

Kd!, the fact that K is a C1-field follows from Tsen’s theorem [Lan52] (according
to which the function field of any algebraic curve over an algebraically closed field,
e.g. Kd!, is C1).

Let L be a finite extension of K such that φp extends to a field endomorphism
of L; we have to prove that L = K. The primitive element theorem ensures that
there exists u ∈ L such that L = K(u). Let d ∈ Z≥1 be such that

• u is algebraic over Kd,
• φp(u) ∈ Kd(u).

Then, Kd(u) is a finite extension of Kd, and φp induces an endomorphism of Kd(u).

Consider a morphism of smooth projective curves ϕ : X → P1(Q) whose induced
morphism of function fields “is” the inclusion Kd ⊂ Kd(u). Then φp induces an
endomorphism f of X such that the following diagram is commutative:

X
f ��

ϕ

��

X

ϕ

��
P1(Q)

z �→zp
�� P1(Q).
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Observe that

• X has genus g = 0 or 1 (this follows from Proposition 16 since f has infinite
order);

• f has degree p (take degrees in the above commutative diagram);
• f−1(ϕ−1(0)) ⊂ ϕ−1(0) and f−1(ϕ−1(∞)) ⊂ ϕ−1(∞) (immediate from the
above commutative diagram);

• f is totally ramified above any point of Z = ϕ−1(0)∪ϕ−1(∞) (indeed, since
f is not constant, it is surjective and, for cardinality reasons, the inclusion
f−1(ϕ−1(0)) ⊂ ϕ−1(0) implies that the fiber of f above any element of
ϕ−1(0) has exactly one element).

Assume that g = 0, so that we can replace X by P1(Q). Hurwitz’s formula
(see [Har77, Corollary 2.4]) applied to f yields the equation

−2 = −2p+
∑
P

(eP − 1) = −2p+
∑
Q∈Z

(
p− 
f−1(Q)

)
︸ ︷︷ ︸
=	Z·(p−1)≥2(p−1)

+
∑
Q 
∈Z

(
p− 
f−1(Q)

)
,

where the sum in the middle term is taken over the ramification points P of f with
ramification index eP ≥ 1. This implies that 
Z = 2, so 
ϕ−1(0) = 
ϕ−1(∞) = 1,
and that f is unramified above X \ Z. Let c be an automorphism of P1(Q) such
that c(ϕ−1(0)) = 0 and c(ϕ−1(∞)) = ∞. Then, cfc−1 is totally ramified at 0 and
∞, unramified elsewhere, of degree p, and fixes 0 and ∞, so cfc−1(z) = zp. It
follows from the commutative diagram

P1(Q)
cfc−1

��

ϕc−1

��

P1(Q)

ϕc−1

��
P1(Q)

z �→zp
�� P1(Q)

that ϕc−1(z) = zN for some N ∈ Z≥1. That is, ϕ = cN and f(z) = c−1(c(z)p). It

follows that Kd(u) = Q(z
1/N
d ). In particular, u belongs to K and hence L = K.

Assume that g = 1, i.e. that X is an elliptic curve. Then f is unramified (as any
non-constant endomorphism of an elliptic curve) of degree p. Considering cardinals
in the inclusion f−1(ϕ−1(0)) ⊂ ϕ−1(0), we get that the degree of f is equal to 1,
so p = 1, which is excluded. �

We will mainly work with the base fields K and K̂; however, we will also use the

difference subfield of K̂ given by

K̂p∞ =
⋃
d≥0

Q((z1/p
d

))

and its difference subfield given by

Kp∞ =
⋃
d≥0

Q(z1/p
d

).
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We will use the following result.

Proposition 17. Let L be a finite field extension of Kp∞ such that φp extends to
an endomorphism of L. Then, there exists α ∈ L such that αn = z for some integer
n ≥ 1, and L = Kp∞(α).

Proof. Same arguments as for the proof of Proposition 15. �

4. Factorization, triangularization and local exponents

4.1. Factorization of Mahler operators. In order to avoid heavy notation, we
work in this section with

L =
n∑

i=0

aiφ
i
p where n ≥ 1, a0, . . . , an ∈ Q((z)) and a0an 	= 0.

The extension of the results below to an arbitrary L ∈ D̂ is straightforward.
We shall now introduce some notation and terminology. Let a, r be elements of

some difference field extension of K̂ such that φp(r) = ar. We will denote by L[r]

the operator defined by

L[r] := r−1Lr =

n∑
i=0

aφp(a) · · ·φi−1
p (a)aiφ

i
p,

so that L[r](f) = 0 if and only if L(rf) = 0. In particular:

• for any μ ∈ Q, we consider θμ such that φp(θμ) = zμθμ so that

L[θμ] =

n∑
i=0

z(1+p+···+pi−1)μaiφ
i
p;

• for any c ∈ Q
×
, we consider ec such that φp(ec) = cec so that

L[ec] =
n∑

i=0

ciaiφ
i
p.

We define the Newton polygon N (L) of L as the convex hull in R2 of

{(i, j) ∈ Z× R | j ≥ vz(an−i)}

where vz : K̂ → Q∪ {+∞} denotes the z-adic valuation. This polygon is delimited
by two vertical half lines and by k vectors (r1, d1), . . . , (rk, dk) ∈ N∗ × Q having
pairwise distinct slopes, called the Newton-slopes of L. For any i ∈ {1, . . . , k}, ri
is called the multiplicity of the Newton-slope di

ri
.

Lemma 18. There exists a unique μ1 ∈ Q such that the greatest Newton-slope of
L[θμ1

] is 0.

Proof. The fact that the greatest Newton-slope of L[θμ1
] is 0 means that, for all

i ∈ {1, . . . , n},
vz(ai) + (1 + p+ · · ·+ pi−1)μ1 ≥ vz(a0)

and that this inequality is an equality for some i ∈ {1, . . . , n}. It is easily seen that
there exists a unique μ1 ∈ Q with these properties. �
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Definition 19. The rational number μ1 given by Lemma 18 will be called the first
theta-slope of L. Set L[θμ1

] =
∑n

i=0 biφ
i
p. The characteristic polynomial associ-

ated to the first theta-slope μ1 of L is
∑n

i=0

(
biz

−vz(b0)
)
|z=0

Xi ∈ Q[X]; this is a

polynomial of degree ≥ 1 with non-zero constant coefficient.

Lemma 20. Let μ1 be the first theta-slope of L and let c1 be a root of the corre-
sponding characteristic polynomial. Let d1 ∈ Z≥1 be a denominator of μ1. Then,

there exists f1 ∈ 1 + zd1
Q[[zd1

]] such that L(θμ1
ec1f1) = 0.

Proof. We set μ = μ1, c = c1 and d = d1. Note that the coefficients of L[θμ]

belong to Q((zd)). We set L[θμ] =
∑n

i=0 biφ
i
p with bi =

∑
j bi,jz

j
d ∈ Q((zd)).

Using the fact that the greatest Newton-slope of L[θμ] is 0, we see that, up to left
multiplication by some element of Q((zd))

×, we can assume that b0, . . . , bn ∈ Q[[zd]]
and b0,0 	= 0. The characteristic polynomial attached to the first theta-slope μ of

L is given, up to multiplication by some constant in Q
×
, by

∑n
i=0 bi,0X

i. For

f =
∑

k≥0 fkz
k
d ∈ 1 + zdQ[[zd]], we have

L(θμecf) = θμec
∑

i,j,k≥0

bi,jc
ifkz

j+kpi

d = 0

if and only if, for all � ∈ Z≥0,

(9)
∑

i,j,k≥0

j+kpi=�

bi,jc
ifk = 0.

This equation is automatically satisfied for � = 0 because∑
i,j,k≥0

j+kpi=0

bi,jc
ifk =

(∑
i

bi,0c
i

)
f0

and
∑

i bi,0c
i = 0 because c is a root of the characteristic polynomial. For � > 0,

equation (9) can be rewritten as∑
i,j,k≥0

k<�,j+kpi=�

bi,jc
ifk = −b0,0f�

so that the coefficients of f are (uniquely) recursively determined. �

Lemma 21. Maintaining the notation of Lemma 20, we can factorize L as

L = L2(φp − zμ1c1)f
−1
1

where L2 ∈ D̂ has coefficients in Q((z1/(p
md1))) for some m ∈ Z.

Proof. This follows by euclidean division of L by the operator (φp − zμ1c1)f
−1
1

which annihilates θμ1
ec1f1. �

A repeated application of the previous lemma leads to the following result.

Theorem 22. The operator L admits a factorization of the form

L = anφ
n
p (f1) · · ·φp(fn)(φp − zμncn)f

−1
n · · · (φp − zμ1c1)f

−1
1

where, for all i ∈ {1, . . . , n}, ci ∈ Q
×
, μi ∈ Q and fi ∈ 1 + zdQ[[zd]] for some

integer d ≥ 1.
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4.2. Triangularization and local exponents of the D̂-modules. We shall first

study the D̂-modules of rank one. For any α ∈ K̂×, we denote by Iα the D̂-module
of rank one defined by

Iα = D̂/D̂(φp − α).

In what follows, we will denote by cld(α) the coefficient of the term of lowest degree

of α ∈ K̂×. Note that cld : K̂× → Q
×

is a group morphism.

Proposition 23.

(i) For any α, β ∈ K̂×, the D̂-modules Iα and Iβ are isomorphic if and only if
cld(α) = cld(β).

(ii) For any α ∈ K̂×, the D̂-modules Iα and Icld(α) are isomorphic.

(iii) For any D̂-module M of rank one, there exists a unique c ∈ Q
×

such that
M is isomorphic to Ic.

Proof. It is easily seen that the set of D̂-module morphisms from Iα to Iβ is given
by

Hom(Iα, Iβ) = {ϕu | u ∈ K̂, αu = φp(u)β}
where ϕu : Iα → Iβ is defined by ϕu(P ) = Pu and that ϕu is an isomorphism if

and only if u ∈ K̂×. Therefore, Iα ∼= Iβ if and only if there exists u ∈ K̂× such that

αu = φp(u)β. But {φp(u)/u | u ∈ K̂×} = ker(cld : K̂× → Q
×
). So Iα ∼= Iβ if and

only if cld(α) = cld(β). This proves (i). The remaining assertions follow easily. �

Theorem 24. Let M be a D̂-module of rank n ≥ 1.

(i) The D̂-module M is triangularizable; i.e. there exists a filtration

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

by submodules of M such that, for all i ∈ {0, . . . , n − 1}, the quotient D̂-
module Mi+1/Mi has rank one.

(ii) For all i ∈ {0, . . . , n− 1}, we let ci ∈ Q
×

be such that Mi+1/Mi
∼= Ici . The

list c1, . . . , cn does not depend (up to permutation) on the chosen filtration.

Proof. According to the cyclic vector lemma (Proposition 13), there exists L ∈ D̂
such that M ∼= D̂/D̂L. Theorem 22 ensures that

L = c(φp − zμncn)f
−1
n · · · (φp − zμ1c1)f

−1
1

with c ∈ Q((zd)), ci ∈ Q
×
, μi ∈ Q and fi ∈ 1 + zdQ[[zd]] for some d ∈ Z≥1. We

deduce from this factorization a filtration

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that, for all i ∈ {0, . . . , n − 1}, Mi+1/Mi
∼= Izμici

∼= Ici has rank one. This
proves (i).

By the Jordan-Hölder theorem, if

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nm = M

is another filtration of M such that, for all i ∈ {0, . . . ,m − 1}, Ni+1/Ni has rank

one and hence is isomorphic to Idi
for some di ∈ Q

×
, then m = n and there exists

a permutation σ of {1, . . . , n} such that Mσ(i)+1/Mσ(i)
∼= Ni+1/Ni. Proposition 23

ensures that cσ(i) = di, whence (ii). �
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Definition 25. The exponents at 0 of the D̂-module M are the non-zero complex
numbers c1, . . . , cn introduced in Theorem 24.

It will be convenient to introduce the notion of exponents for Mahler operators.

Definition 26. The exponents at 0 of L ∈ D̂ are the exponents of the D̂-module

D̂/D̂L.

Note the following result.

Proposition 27. Let M be a D̂-module of rank n ≥ 1. Assume that M ∼= D̂/D̂L

for some L ∈ D̂ such that L = c(φp−αn) · · · (φp−α1) for some c, α1, . . . , αn ∈ K̂×.
Then, the exponents of L and of M at 0 are cld(α1), . . . , cld(αn).

Proof. Indeed, the factorization L = c(φp − αn) · · · (φp − α1) induces a filtration

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

of M such that, for all i ∈ {0, . . . , n− 1}, Mi+1/Mi
∼= Iαi

∼= Icld(αi). �
4.3. Focus on the operators of order 2. We shall now collect some results
about the operators of order 2, which will be used later in the paper. Consider an
operator of order 2:

L = φ2
p + aφp + b ∈ D̂ with a ∈ Q((z)) and b ∈ Q((z))×.

The proof of Lemma 18 shows that the first theta-slope μ1 of L is the unique
rational number such that

• (1 + p)μ1 ≥ vz(b),
• vz(a) + μ1 ≥ vz(b),
• either (1 + p)μ1 = vz(b) or vz(a) + μ1 = vz(b),

i.e.

μ1 = max

{
vz(b)

1 + p
, vz(b)− vz(a)

}
.

Let d1 ∈ Z≥1 be a denominator of μ1. Let c1 ∈ Q
×

be a root of the characteristic
polynomial of L associated to its first theta-slope μ1. Theorem 22 ensures that

(10) L = φ2
p(f1)φp(f2)(φp − c2z

μ2)f−1
2 (φp − c1z

μ1)f−1
1

for some f1 ∈ 1+ zd1
Q[[zd1

]], c2 ∈ Q
×
, μ2 ∈ Q and f2 ∈ 1+ zd2

Q[[zd2
]] (d2 ∈ Z≥1).

Equating the terms of degree 0 in (10), we get

c1z
μ1c2z

μ2φ2
p(f1)φp(f2)f

−1
1 f−1

2 = b.

Therefore, c1c2 = cld(b), μ1 + μ2 = vz(b) (so d1 is also a denominator of μ2) and
f2 ∈ 1 + zd1

Q[[zd1
]].

The following result will be used later in this paper.

Proposition 28. Let f ∈ K̂ be such that L(f) = 0. Then f ∈ Q((zd′
1p

j )) for some

j ∈ Z, where d′1 = (p− 1)d1.

We will give the proof after the following two lemmas.

Lemma 29. We can decompose L as follows:

(11) L = φ2
p(g1)φp(g2)(φp − c2)g

−1
2 (φp − c1)g

−1
1

for some g1, g2 ∈ Q((zd′
1
)).
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Proof. This follows from equation (10) by using the identity

φp − ciz
μi = φp(z

μi
p−1 )(φp − ci)(z

μi
p−1 )−1.

�

Lemma 30. Let f ∈ K̂ be such that (φp − c)(f) ∈ Q((zm)) for some m ∈ Z≥1 and

c ∈ Q
×
. Then, there exists j ∈ Z such that f ∈ Q((zmpj )).

Proof. Let f =
∑

k∈Z fkz
k
n ∈ Q((zn)) be such that

(12) (φp − c)(f) =
∑
k∈pZ

(fk/p − cfk)z
k
n −

∑
k∈Z\pZ

cfkz
k
n ∈ Q((zm)).

Consider k ∈ Z such that p � k and k/n 	∈ 1
mpZZ. In particular, we have p � k

and k/n 	∈ 1
mZ. Equation (12) ensures that fk = 0. Moreover, we have p | kp

and kp/n 	∈ 1
mZ. Equation (12) ensures that fk − cfkp = 0 and, hence, fkp = 0.

Repeating this argument, we obtain that fkpj = 0 for all integers j ≥ 0. So, we

have proved that fk = 0 if k/n 	∈ 1
mpZZ, whence the result. �

Proof of Proposition 28. Follows from the decomposition of L given by formula (11)
and Lemma 30. �

The following corollary will be essential for the algorithmic considerations of
section 6.

Corollary 31. Let us consider u, v ∈ K̂ such that L = (φp − v)(φp − u). Then

u, v ∈ Q((zd′
1
)).

Proof. Let c = cld(u) and α = vz(u), so that u ∈ czα(1 + znQ[[zn]]) for some n ∈
Z≥1. There exists f ∈ 1+ znQ[[zn]] such that y = ecz

α
p−1 f satisfies (φp−u)(y) = 0

so z
α

p−1 f is a solution of L[ec]. It follows from Proposition 28 (applied to L[ec]) that

z
α

p−1 f ∈ Q((zd′
1p

j )) for some j ∈ Z≥0. So α ∈ (p−1)
d′
1p

j Z = 1
d1pj Z and f ∈ Q((zd′

1p
j )).

Therefore, u =
φp(y)

y ∈ Q((zd′
1p

j )).

Now, a straightforward calculation shows that the equality L = (φp− v)(φp−u)

holds true if and only if uv = b and u(φp(u) + a) = −b. So u = −b
φp(u)+a ∈

Q (a, b, φp(u)) ⊂ Q (z, φp(u)). It follows that u ∈ Q((zd′
1
)) and v = b/u ∈ Q((zd′

1
)).
�

Note also the following result for further use.

Proposition 32. Let us consider u, v ∈ K̂ such that L = (φp − v)(φp − u). Then,
up to permuting u and v, we have cld(u) = c1 and cld(v) = c2 = cld(b)/c1.

Proof. This a particular case of Proposition 27. �

5. The regular singular systems

5.1. Definition.

Definition 33. We say that the system φpY = AY with A ∈ GLn(K̂) is regular

singular at 0 if there exists F ∈ GLn(K̂) such that φp(F )A = A0F for some

A0 ∈ GLn(Q).
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If A0 exists, then it is unique up to conjugation by an element of GLn(Q), and
its list of eigenvalues, counted with multiplicities, coincides with the list of the
exponents of φpY = AY at 0.

Proposition 34. If the z-adic valuations of the entries of A ∈ GLn(K̂) are ≥ 0
and if A(0) ∈ GLn(Q), then φpY = AY is regular singular at 0. Moreover, the
exponents of φpY = AY are the eigenvalues of A(0).

Proof. We claim that there exists a unique F ∈ In + zd Mn(Q[[zd]]) such that

φp(F )A = A(0)F , where d ∈ Z≥1 is such that A =
∑

j≥0 Ajz
j
d ∈ GLn(Q((zd))). In-

deed, for any F =
∑

k≥0 Fkz
k ∈ In + zd Mn(Q[[zd]]), we have φp(F )A =∑

�≥0

(∑
j,k≥0

kp+j=�
FkAj

)
z�d, so φp(F )A = A(0)F if and only if, for all � ∈ Z≥0,∑

j,k≥0

kp+j=�

FkAj = A(0)F�.

This equation is satisfied for � = 0, and the coefficients F�, � ≥ 1, are determined
inductively. Therefore, the system φpY = AY is regular singular, and its exponents
are the eigenvalues of A(0). �

5.2. Universal Picard-Vessiot ring and Galois group. Let (Xc)c∈Q
× and Y

be indeterminates over K̂, and consider the quotient ring

U := K̂[(Xc)c∈Q
× , Y ]/I

of the polynomial ring K̂[(Xc)c∈Q
× , Y ] by its ideal I generated by {XcXd −Xcd |

c, d ∈ Q
×} ∪ {X1 − 1}. Let ec (resp. �) be the image of Xc (resp. Y ) in U , so that

U = K̂[(ec)c∈Q
× , �].

We endow U with its ring automorphism φ such that φ|̂K = φp,

∀c ∈ C×, φ(ec) = cec and φ(�) = �+ 1.

Hence, (U , φ) is a difference ring extension of (K̂, φp).

Theorem 35. The difference ring U is the universal Picard-Vessiot ring for the

regular singular Mahler systems over K̂, i.e.:

• U is a simple difference ring extension of K̂;
• the ring of constants U φ of U is Q;

• every regular singular Mahler system with coefficients in K̂ has a funda-
mental matrix of solutions with entries in U ;

• no proper difference subring of U has the above three properties.

We shall first prove a series of lemmas.

Lemma 36. We let B = K̂[(ec)c∈Q
× ] ⊂ U = B[�]. The following properties hold:

(i) (ec)c∈Q
× is a basis of the K̂-vector space B;

(ii) � is transcendental over B.
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Proof. The relations eced = ecd and e1 = 1 ensure that B is generated as a K̂-

vector space by (ec)c∈Q
× . Let (λc)c∈Q

× ∈ K̂(Q
×
) be such that

∑
c∈Q

× λcec = 0.

This means that
∑

c∈Q
× λcXc ∈ I. For all m ∈ Z, taking the image of this relation

by the evaluation morphism K̂[(Xc)c∈Q
× , Y ] → Q defined by Xc �→ cm and Y �→ 0,

we get
∑

c∈Q
× λcc

m = 0. It follows that, for all c ∈ Q
×
, λc = 0 and hence (ec)c∈Q

×

is free over K̂. This proves (i).
The proof of claim (ii) is left to the reader. �

Lemma 37. Consider c ∈ Q
×

and λ ∈ K̂. If φ(λ) = cλ and c 	= 1, then λ = 0.

Proof. Up to replacing z by zd, for a suitable integer d ≥ 1, we can assume that
λ =

∑
k≥N akz

k ∈ Q((z)). We have

φ(λ)− cλ = −c
∑

k≥N,p�k

akz
k +

∑
k≥N,p|k

(ak/p − cak)z
k = 0.

So ak = 0 if p � k. Moreover, for k 	= 0, p | k, we have ak = c−1ak/p = · · · =
c−vp(k)ak/pvp(k) = 0, where vp denotes the p-adic valuation. Lastly, a0 − ca0 = 0

and hence a0 = 0. �
Lemma 38. Consider c ∈ Q and λ ∈ K̂. If φ(λ) = λ+ c, then c = 0.

Proof. Follows from the fact that the constant coefficient of φ(λ)− λ is 0. �

Proof of Theorem 35. We shall first prove that U φ = Q. Let y =
∑n

k=0 ak�
k

(ak ∈ B) be a non-zero element of U φ of minimal degree n in �. So, we have

(13) 0 = φ(y)− y =
n∑

k=0

φ(ak)(�+ 1)k −
n∑

k=0

ak�
k.

Identifying the coefficients of degree n in �, we obtain

φ(an)− an = 0.

Let (λn,c)c∈Q
× ∈ K̂(Q

×
) be such that an =

∑
c∈Q

× λn,cec. We have

φ(an)− an =
∑
c∈Q

×

(φ(λn,c)c− λn,c)ec = 0

so φ(λn,c)c − λn,c = 0. According to Lemma 37, we must have λn,c = 0 for c 	= 1

and we have λn,1 ∈ Q. So an ∈ Q
×
. If n = 0, then we get y ∈ Q

×
, as expected.

We shall now prove that we necessarily have n = 0. Assume to the contrary that
n ≥ 1. Equating the coefficients of degree n− 1 in � in equation (13), we get

φ(an−1)− an−1 = −nan.

Let (λn−1,c)c∈Q
× ∈ K̂(Q

×
) be such that an−1 =

∑
c∈Q

× λn−1,cec. We have

φ(an−1)− an−1 =
∑
c∈Q

×

(φ(λn−1,c)c− λn−1,c)ec = −nan = −nane1

so φ(λn−1,c)c−λn−1,c = 0 for c 	= 1 and φ(λn−1,1)− λn−1,1 = −nan. According to
Lemma 38, the last equation is impossible.

Note that φ induces a ring automorphism of B, so that (B, φ) is a difference
ring (simply denoted by B). We shall now prove that B is a simple difference ring.
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Let J be a non-zero difference ideal of B. Let b =
∑

c∈Q
× λcec ((λc)c∈Q

× ∈ K̂(Q
×
))

be a non-zero element of J such that the cardinality of the support of (λc)c∈Q
×

is minimal. Let c0 ∈ Q
×

be such that λc0 	= 0; up to replacing b by b/λc0 we
can assume that λc0 = 1. Then, considering the cardinality of the support of
b − φ(b) ∈ J , we get 0 = b − φ(b) =

∑
c∈Q

×(λc − φ(λc)c)ec. Therefore, for all

c ∈ Q
×
, λc − cφ(λc) = 0, so, according to Lemma 37, λc = 0 for c 	= 1 and λ1 ∈ Q.

It follows that b = λ1 ∈ U × and hence J = B.
We shall now prove that U is a simple difference ring. Let J be a non-zero

difference ideal of U . Let n be the minimal degree in � of the non-zero elements
of J . The set E made up of the coefficients of �n in the elements of J of degree
≤ n in � is a non-zero difference ideal of B. Therefore, E = B. So, there exists a

non-zero element y = �n +
∑n−1

k=0 ak�
k ∈ U = B[�] (ak ∈ B) of degree n in �, which

is unitary in �. Considering the degree in � of φ(y) − y ∈ J , we get φ(y) − y = 0,
i.e. y ∈ U φ = Q. As y 	= 0, we deduce that J = U , as expected.

In order to prove that any regular singular difference system φpY = AY over K̂
has a fundamental matrix of solutions with entries in U , it is clearly sufficient to
consider the case that A ∈ GLn(Q). Using Dunford decomposition, we are reduced
to the cases n = 1 or A unipotent of maximal unipotent index. Here are explicit
constructions of fundamental systems of solutions in these two cases:

• for c ∈ Q
×
, ec is a fundamental solution in U of φpy = cy;

• for A = U ∈ GLn(Q) unipotent,

eA := exp(� log(U)) =

n∑
k=0

(
�

k

)
(U − In)

k,

where In ∈ GLn(Q) is the identity matrix, is a fundamental matrix of
solutions in U of φpY = UY .

The minimality property of U is easy to deduce from what precedes, and the
details are left to the reader. �

We shall now describe the corresponding universal difference Galois group

G := {σ ∈ Aut(U /K̂) | φ ◦ σ = σ ◦ φ}.
We have φ(σ(ec)) = σ(φ(ec)) = σ(cec) = cσ(ec). It follows that there exists

h(c) ∈ Q
×

such that σ(ec) = h(c)ec. Since σ(ecd) = σ(ec)σ(ed) = h(c)ech(d)ed =

h(c)h(d)ecd, we have h(cd) = h(c)h(d). In other words, h = Q
× → Q

×
is a group

morphism. Moreover, φ(σ(�)) = σ(φ(�)) = σ(� + 1) = σ(�) + 1. It follows that
σ(�) = �+ a, for some a ∈ Q.

It follows clearly that G is made up of the K̂-algebra morphism σ : U → U
such that

∀c ∈ Q
×
, σ(ec) = h(c)ec and σ(�) = �+ a

for some group morphism h = Q
× → Q

×
and some a ∈ Q.

6. Difference Galois groups of the Mahler equations of order 2:
Algorithmic aspects

Consider the Mahler equation

(14) φ2
p(y) + aφp(y) + by = 0 with a ∈ Q(z) and b ∈ Q(z)×
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and denote by

φpY = AY with A =

(
0 1
−b −a

)
∈ GL2(Q(z))

the associated Mahler system.

Remark 39. We consider Mahler equations with coefficients in Q(z) (instead of K)
in order to avoid heavy notation. What follows can be easily extended to equations
with coefficients in K.

We let G ⊂ GL2(Q) be the difference Galois group over (K, φp) of equation (14).

According to Proposition 15, G is an algebraic subgroup of GL2(Q) such that the
quotient G/G◦ of G by its identity component G◦ is cyclic. A direct inspection of
the classification, up to conjugation, of the algebraic subgroups of GL2(Q) given in
[NvdPT08, Theorem 4] shows that G satisfies one of the following properties:

• The group G is reducible (i.e. conjugate to some subgroup of the group of
upper-triangular matrices in GL2(Q)). If G is reducible, we distinguish the
following subcases:

– The group G is completely reducible (i.e. is conjugate to some sub-
group of the group of diagonal matrices in GL2(Q)).

– The group G is not completely reducible.
• The group G is irreducible (i.e. not reducible) and imprimitive (see section
7 for the definition).

• The group G is irreducible and is not imprimitive, and, in this case, there

exists an algebraic subgroup μ of Q
×

such that G = μ SL2(Q). Therefore,

G = {M ∈ GL2(Q) | det(M) ∈ H} where H = det(G) ⊂ Q
×
. In order to

determine H, one can use the fact that H = det(G) is the difference Galois
group of φpy = (detA)y = by (this follows for instance from tannakian
duality).

Our first task, undertaken in the present section, is to study the reducibility of
G. The imprimitivity of G will be considered in section 7.

6.1. Riccati equation and irreducibility. A straightforward calculation shows
that, for u ∈ K, φp − u is a right factor of φ2

p + aφp + b if and only if

(15) u(φp(u) + a) = −b.

This non-linear difference equation is called the Riccati equation associated to equa-
tion (14).

Lemma 40. The following statements hold:

(1) If (15) has one and only one solution in K, then G is reducible but not
completely reducible.

(2) If (15) has exactly two solutions in K, then G is completely reducible but

not an algebraic subgroup of Q
×
I2.

(3) If (15) has at least three solutions in K, then it has infinitely many solutions

in K and G is an algebraic subgroup of Q
×
I2.

(4) If none of the previous cases occur, then G is irreducible.
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Proof. The proof of this lemma is identical to that of [Hen98, Theorem 4.2]. How-
ever, we give a sketch of the proof here because some details will be used later in
this paper.

(1) We assume that (15) has one and only one solution u ∈ K. A straightforward
calculation shows that

φp(T )AT−1 =

(
u ∗
0 b/u

)
for T :=

(
1− u 1
−u 1

)
∈ GL2(K).

We deduce from this and from Proposition 15 that G is reducible.
Moreover, if G were completely reducible, then, according to Proposition 15,

φp(T )AT−1 would be diagonal for some T := (ti,j)1≤i,j≤2 ∈ GL2(K). Equating the
entries of the antidiagonal of φp(T )AT−1 with 0, we find that − t21

t22
,− t11

t12
∈ K

are solutions of the Riccati equation (15). Since det(T ) 	= 0, these solutions are
distinct, whence a contradiction.

(2) Assume that (15) has exactly two solutions u1, u2 ∈ K. We have

φp(T )AT−1 =

(
u1 0
0 u2

)
for T :=

1

u1 − u2

(
−u2 1
−u1 1

)
∈ GL2(K).

We deduce from this and from Proposition 15 that G is completely reducible.

Moreover, if G were an algebraic subgroup of Q
×
I2, then, according to Proposi-

tion 15, there would exist u ∈ K and T = (ti,j)1≤i,j≤2 ∈ GL2(K) such that

φp(T )AT−1 = uI2.

This equality implies that t21 and t22 are non-zero and that, for all c, d ∈ Q with
ct2,2 + dt1,2 	= 0,

−ct21 + dt11
ct22 + dt12

∈ K

is a solution of (15). It is easily seen that we get in this way infinitely many solutions
of the Riccati equation. This is a contradiction.

(3) Assume that (15) has at least three solutions: u1, u2, u3 ∈ K. The proof of
assertion (2) of the present lemma shows that φpY = AY is isomorphic over K to

φpY =

(
ui 0
0 uj

)
Y for all 1 ≤ i < j ≤ 3. Therefore, there exists T ∈ GL2(K) such

that

φp(T )

(
u1 0
0 u2

)
=

(
u1 0
0 u3

)
T.

Equating the second columns in this equality, we see that there exists f ∈ K× such

that either u1 =
φpf
f u2 or u3 =

φpf
f u2; up to renumbering, one can assume that

the former case holds true. It follows that φpY = AY is isomorphic over K to

φpY = (u1I2)Y

and, according to Proposition 15, G is an algebraic subgroup of Q
×
I2. We have

shown during the proof of statement (2) that this implies that the Riccati equation
(15) has infinitely many solutions in K.

(4) Assume that G is reducible. According to Proposition 15, there exists T =
(ti,j)1≤i,j≤2 ∈ GL2(K) such that φp(T )AT−1 is upper triangular. Then t22 	= 0
and − t21

t22
∈ K is a solution of Riccati equation (15). This proves claim (4). �
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6.2. Irreducibility over K: An algorithm. We know that G is reducible if and
only if the Riccati equation

(16) u(φp(u) + a) = −b

has a solution in K. We shall now describe an algorithm that decides whether or
not equation (16) has a solution in K.

Let u ∈ K be a hypothetic solution of equation (16).
Thanks to Corollary 31, we can find an explicit N ∈ Z≥1 such that u ∈ K ∩

Q((zN )) = Q(zN ).

Let c ∈ Q
×

and let n, d be coprime non-zero monic elements of Q[zN ] such that
u = cn/d. Let r be the greatest common divisor4 of φ−1

p (n) and d in Q[zNp] and

consider the coprime monic elements of Q[zNp] given by s = n/φp(r) and t = d/r.
Then, we have

u = c
φp(r)

r

s

t
with gcd(s, φp(t)) = gcd(φp(r)s, rt) = 1.

According to Proposition 32, we have c = cld(u) ∈ {c1, cld(b)/c1} where c1 is a
root of the characteristic polynomial associated to the first theta-slope of L.

Let k be a number field such that a, b ∈ k(z). Let p1, p2, p3 ∈ k[z] be such that

a =
p1
p3

and b =
p2
p3

.

Then, the Riccati equation (15) becomes

p3c
φpr

r

s

t
φp

(
c
φpr

r

s

t

)
+ p1c

φpr

r

s

t
= −p2,

i.e.

(17) c2p3φ
2
p(r)sφp(s) + cp1φp(r)sφp(t) = −p2rtφp(t).

Let l1 be the field obtained from k by adjoining the splitting fields of p2 and φ−1
p (p3)

seen as elements of k[zNp]. Equation (17) shows that s and t are divisors in l1[zNp]
of p2 and φ−1

p (p3) respectively.
So far, c, s and t are fixed (among finitely many possible cases), and it remains

to decide whether or not equation (17) has a solution r ∈ Q[zNp]. But, this is a
linear Mahler equation in r, which can be interpreted as a system of linear equations
with coefficients in l = l1(c), whose unknowns are the coefficients of r. Note that
this implies that if there is a solution r in Q[zNp], then there is also a solution in
l[zNp] and hence the Riccati equation has a solution in l(zN ). In order to determine
whether or not such an r exists, it remains to have a bound on the degree of the
potential solutions r of (17) (i.e. a bound on the number of unknowns of the system
of linear equations we are interested in). Rewriting equation (17) as

c2 = −cp1φp(r)sφp(t) + p2rtφp(t)

p3φ2
p(r)sφp(s)

and taking degrees, we get

0 ≤ max{d1 + p deg r, d2 + deg r} − (d3 + p2 deg r)

where d1 = deg p1 + deg s + p deg t, d2 = deg p2 + (p + 1) deg t and d3 = deg p3 +
(p+ 1) deg s. We deduce from this an explicit constant C such that deg r ≤ C.

4By “greatest common divisor” we mean the “monic greatest common divisor”.
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If we are able to compute l, then what precedes gives an algorithm to decide
whether or not the Riccati equation has a solution in K and to compute such a
solution if there is one.

We shall now prove that it is actually sufficient to work (at worst) in the quadratic
extensions of k contained in l.

Lemma 41. If the Riccati equation (16) has a solution in K, then it has a solution
in l′(zN ) for some extension l′ of k of degree at most 2 contained in l.

Proof. This proof is a straightforward modification of the proof of [Hen98, Theo-
rem 4.2]. We have seen above that if the Riccati equation (16) has a solution in K,
then it has a solution in l(zN ). We distinguish three cases.

(a) Assume that the Riccati equation (15) has a unique solution u in l(zN ). For
any σ ∈ Gal(l(zN )/k(zN )), σ(u) ∈ l(zN ) is a solution of (15), so σ(u) = u. Since
l(zN ) is a Galois extension of k(zN ), we get u ∈ k(zN ).

(b) Assume that the Riccati equation (15) has exactly two solutions u, v in
l(zN ). The kernelH of the natural group morphism Gal(l(zN )/k(zN )) → S({u, v}),
with values in the group of permutations S({u, v}) of {u, v}, has index ≤ 2 in
Gal(l(zN )/k(zN )). Since u and v are fixed by H, they belong to l′(zN ) for some
extension l′ of k of degree 2 contained in l.

(c) Assume that the Riccati equation (15) has at least three solutions in l(zN ).
The proof of assertion (3) of Lemma 40 shows that there exist T = (ti,j)1≤i,j≤2 ∈
GL2(l(zN )) and some solution u ∈ l(zN ) of the Riccati equation (15) such that

(18) φp(T )AT−1 = uI2.

For any σ ∈ Gal(l(zN )/k(zN )), we have

φp(σ(T ))Aσ(T )−1 = σ(u)I2.

Therefore, we have

φp(S)u = σ(u)S, with S := σ(T )T−1 ∈ GL2(l(zN )).

It follows that there exists gσ ∈ l(zN )× (namely, one of the non-zero entries of S)
such that

σ(u) =
φp(gσ)

gσ
u.

Note that gσ is uniquely determined by this equation if we require that it is monic,
as we shall now assume. Then, the map σ �→ gσ is a 1 cocycle for the action
of Gal(l(zN )/k(zN )) over l(zN ). Hilbert’s 90 Theorem [Ser68, §10.1] ensures that
there exists m ∈ l(zN )× such that, for all σ ∈ Gal(l(zN )/k(zN )),

gσ =
m

σ(m)
.

A straightforward calculation shows that

ũ :=
φp(m)

m
u

is invariant under the action of Gal(l(zN )/k(zN )) and hence belongs to k(zN )×.
Moreover, we have

φp (T
′)A (T ′)

−1
= ũI2, with T ′ := mT.

Applying σ ∈ Gal(l(zN )/k(zN )) to this equality, we get

φp (σ(T
′))A (σ(T ′))

−1
= ũI2.
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It follows that
Cσ := T ′σ

(
T ′−1

)
∈ GL2(l(zN ))

satisfies φp(Cσ) = Cσ and hence that its entries belong to l. Identifying
Gal(l(zN )/k(zN )) with Gal(l/k), we can see that σ �→ Cσ has a 1-cocyle for the
natural action of Gal(l/k) on GL2(l). Since l is a Galois extension of k, Hilbert’s 90
Theorem [Ser68, §10.1] ensures that this cocycle is trivial, i.e. that there exists
C ∈ GL2(l) such that, for all σ ∈ Gal(l(zN )/k(zN )), Cσ = Cσ(C−1). Then,
T ′′ = C−1T ′, which is a priori an element of GL2(l(zN )), is invariant by the action
of Gal(l(zN )/k(zN )) and hence has entries in k(zN ). Note that

φp (T
′′)A (T ′′)

−1
= ũI2.

It follows that u1 :=
−t′′11
t′′12

and v1 :=
−t′′21
t′′22

are solutions in k(zN ) of the Riccati

equation (15) (this was already used in the proof of assertion (2) of Lemma 40).
Since detT ′′ 	= 0, we get that u1 and v1 are distinct solutions in k(zN ) of the Riccati
equation (15). �

It is explained in [Hen97, after Theorem 14] how to find the (finitely many)
extensions of k of degree at most 2 and contained in l. Now, for any such extension
l′, a straightforward modification of the foregoing discussion gives an algorithm to
determine whether or not the Riccati equation (16) has a solution in l′(zN ), whence
an algorithm to determine whether or not the Riccati equation (16) has a solution
in K.

7. Imprimitivity of the difference Galois group

We want to determine whether G is imprimitive, that is, whether G is conjugate
to a subgroup of{(

α 0
0 β

)
| α, β ∈ Q

×
}
∪
{(

0 γ
δ 0

)
| γ, δ ∈ Q

×
}
.

Theorem 42. Assume that G is irreducible and that a 	= 0. Then, G is imprimitive
if and only if there exists u ∈ K such that

(19)

(
φ2
p(u) +

(
φ2
p

(
b

a

)
− φp(a) +

φp(b)

a

))
u = −φp(b)b

a2
.

Proof. Same proof as [Hen98, Theorem 4.6]. �

Remark 43. If a = 0, then G is imprimitive by virtue of Proposition 15.

Note that the equation (19) is a Riccati type equation, with respect to φ2
p =

φp2 instead of φp. Therefore, using section 6.2, one can determine algorithmically
whether or not the equation (19) has a solution in K.

8. A connectedness criterion

Consider a Mahler equation

(20) anφ
n
p (y) + · · ·+ a1φp(y) + a0y = 0,

with a0, . . . , an ∈ Q(z). We denote by

L = anφ
n
p + · · ·+ a1φp + a0

the corresponding Mahler operator.
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8.1. Over K̂ and K. We let R̂ be a Picard-Vessiot ring for L over K̂ and R ⊂ R̂

be a Picard-Vessiot ring for L over K (see section 2.2). We denote by Ĝ and G the

corresponding difference Galois groups, and we see Ĝ as a subgroup of G (see section
2.2). The following result is inspired by Gabber and Katz’s [Kat87, Proposition
1.2.5] and van der Put and Singer’s [vdPS97, Proposition 12.1].

Proposition 44. The morphism Ĝ/(Ĝ)◦ → G/G◦ induced by the natural inclusion

Ĝ ⊂ G is surjective.

Proof. Let H be the subgroup of G generated, as an abstract group, by G◦ and Ĝ.
Note that H has finite index in G (because G◦ ⊂ H ⊂ G) and hence is an algebraic
subgroup of G. We have to prove that H = G. By Galois correspondence, it is

equivalent to prove that RH = K. We have RH ⊂ R̂H ⊂ R̂
̂G = K̂. Moreover

RH ⊂ RG◦
and, according to [vdPS97, Corollary 1.31], RG◦

is a finite dimension

vector space over K. So RH ⊂ K̂ is a finite field extension of K, endowed with an
endomorphism ϕ such that ϕ|K = φp. Proposition 15 ensures that RH = K. �

Corollary 45. If Ĝ is connected, then G is connected.

Corollary 46. Let c1, . . . , cn be the exponents of L at 0. If the algebraic group
generated by diag(c1, . . . , cn) in GLn(Q) is connected, then G is connected.

Proof. Up to renumbering the ci, there exist g1, . . . , gn ∈ K̂ such that, for all
i ∈ {1, . . . , n}, cld(gi) = ci and

L = (φp − gn) · · · (φp − g1).

Let Tn (resp. Dn) be the group of upper-triangular (resp. diagonal) matrices in

GLn(Q). The above factorization of L allows us to see Ĝ as a subgroup of Tn such

that the image Ĝ′ of the morphism

Ĝ → Dn

(ai,j)1≤i,j≤n �→ diag(a1,1, . . . , an,n)

is the Galois group over K̂ of φpY = diag(g1, . . . , gn)Y (follows from tannakian du-

ality for instance). The connectedness of Ĝ is equivalent to that of Ĝ′. But Ĝ′ is the

intersection of the kernels of the characters χ : Dn → Q
×

which are trivial on Ĝ′.

By tannakian duality, a character χ : Dn → Q
×
, given by χ(diag(x1, . . . , xn)) =

xm1
1 · · ·xmn

n for some m1, . . . ,mn ∈ Z, is trivial on Ĝ′ if and only if gm1
1 · · · gmn

n =

u/φp(u) for some u ∈ K̂. This is equivalent to cm1
1 · · · cmn

2 = 1. So, Ĝ′ is the alge-
braic subgroup of Dn generated by diag(c1, . . . , cn) which is connected. Therefore

Ĝ is connected, and the result follows from Corollary 45. �

8.2. Over K̂p∞ and Kp∞ . We shall now give results analogous to those stated in

section 8.1 but with K̂ replaced by K̂p∞ and K replaced by Kp∞ (these difference
fields are defined at the end of section 3).

We let R̂ be a Picard-Vessiot ring for L over K̂p∞ and R ⊂ R̂ be a Picard-Vessiot

ring for L over Kp∞ (see section 2.2). We denote by Ĝ and G the corresponding

difference Galois groups, and we see Ĝ as a subgroup of G (see section 2.2).

Proposition 47. The morphism Ĝ/(Ĝ)◦ → G/G◦ induced by the natural inclusion

Ĝ ⊂ G is surjective.



ON MAHLER FUNCTIONS 349

Proof. Same proof as Proposition 44, using Proposition 17 instead of Proposition 15
at the end of the proof. �

Corollary 48. If Ĝ is connected, then G is connected.

Corollary 49. Assume that there exist g1, . . . , gn ∈ K̂p∞ such that

L = (φp − gn) · · · (φp − g1).

Let I = {(m1, . . . ,mn) ∈ Zn | gm1
1 · · · gmn

n = u/φp(u) for some u ∈ K̂p∞}. Assume

that {(x1, . . . , xn) ∈ (Q
×
)n | xm1

1 · · ·xmn
n = 1} is connected. Then, G is connected.

Proof. Similar to the proof of Proposition 46. �

9. Examples: The Baum-Sweet and the Rudin-Shapiro sequences

9.1. The Baum-Sweet sequence. The Baum-Sweet sequence (an)n≥0 is the au-
tomatic sequence defined by an = 1 if the binary representation of n contains no
block of consecutive 0 of odd length, and an = 0 otherwise. It is characterized by
the following recursive equations:

a0 = 1, a2n+1 = an, a4n = an, a4n+2 = 0.

Let g(z) =
∑

n≥0 anz
n be the corresponding generating series. The above recursive

equations show that Y (z) =

(
g(z)
g(z2)

)
satisfies

(21) φ2Y = AY where A =

(
0 1
1 −z

)
and, hence,

(22) φ4Y = BY where B = φ2 (A)A =

(
1 −z2

−z 1 + z3

)
.

We let G be the Galois group of (21) over K. We let G′ (resp. H) be the Galois
group of (21) (resp. (22)) over K2∞ (resp. K4∞).

Theorem 50. We have H = SL2(Q) and G = G′ = μ4 SL2(Q), where μ4 ⊂ Q× is
the group of 4th roots of the unity.

This theorem will follow from a series of simple lemmas.

Lemma 51. The Galois group H is connected.

Proof. We have B(0) = I2. So, the system (22) is equivalent to φ4Y = Y over K̂4∞ ,

and, hence, its Galois group over K̂4∞ is trivial. Corollary 48 yields the desired
result. �
Lemma 52. The system (22) is equivalent to the following equation:

(23) φ2
4 − (z9 + z6 + 1)φ4 + z6.

Proof. We have

B−1 =

(
1 + z3 z2

z 1

)
.

The vectors

e :=

(
0
1

)
and ΦB(e) = B−1φ4(e) =

(
z2

1

)
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form a K4∞ -basis of (K4∞)2 so that e is a cyclic vector for the system (22). More-
over, we have

Φ2
B(e) = B−1φ4

(
z2

1

)
=

(
z11 + z8 + z2

z9 + 1

)
= (z9 + z6 + 1)ΦB(e)− z6e.

�

Lemma 53. The Galois group H is irreducible.

Proof. This amounts to showing that the operator (23) is irreducible over K4∞ ,
that is, that the Riccati equation

(24) u(φ4(u)− (z9 + z6 + 1)) = −z6

does not have any solution u ∈ K4∞ . Assume to the contrary that it has a solution

u ∈ K4∞ . We have u ∈ Q(z), because u = −z6

φ4(u)−(z9+z6+1) ∈ Q(z, φ4(u)). Let s, t

be coprime elements of Q[z] such that u = s/t. We have

s(z)

t(z)

(
s(z4)− (z9 + z6 + 1)t(z4)

t(z4)

)
= −z6.

Using the fact that s is coprime to t, we see that

s(z)

t(z4)
∈ Q[z] and

s(z4)− (z9 + z6 + 1)t(z4)

t(z)
∈ Q[z].

Since their product is a monomial, these polynomials are monomials. Moreover, it
is easily seen that they cannot both vanish at 0, so one of the following properties
holds:

(i) either s(z)
t(z4) = cz6 and s(z4)−(z9+z6+1)t(z4)

t(z) = c′

(ii) or s(z)
t(z4) = c and s(z4)−(z9+z6+1)t(z4)

t(z) = c′z6

for some constants c, c′ ∈ Q
×
.

If (i) holds, then

s(z) = cz6t(z4) and s(z4) = (z9 + z6 + 1)t(z4) + c′t(z).

So

1 =
(z9 + z6 + 1)t(z4) + c′t(z)

s(z4)
=

(z9 + z6 + 1)t(z4) + c′t(z)

cz24t(z16)
.

Letting z → ∞, we get 1 = 0.
If (ii) holds, then

s(z) = ct(z4) and s(z4) = (z9 + z6 + 1)t(z4) + c′z6t(z).

So,

(25) ct(z16) = (z9 + z6 + 1)t(z4) + c′z6t(z).

But deg
(
(z9 + z6 + 1)t(z4)

)
= 9+ 4deg t(z) and deg(z6t(z)) = 6 + deg t(z), so the

degree of the right hand side of (25) is equal to 9+4 deg t(z). Moreover, the degree
of the left hand side of (25) is equal to 16 deg t(z). So, we obtain the equality
9 + 4 deg t(z) = 16 deg t(z), which is impossible.

In any case we get a contradiction. �
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Proof of Theorem 50. The fact that H is connected and irreducible implies that
H contains SL2(Q). Moreover, we have H ⊂ SL2(Q) because detB = 1. So
H = SL2(Q). Theorem 12 ensures that the Galois group over K4∞ of equation (21)
contains SL2(Q). Theorem 7 implies that G′ contains SL2(Q). But detA = −1, so
G′ = {M ∈ GL2(Q) | detM = ±1} = μ4 SL2(Q). Using Theorem 7, we see that
G = μ4 SL2(Q). �

For instance, we have the following consequence.

Corollary 54. The series g(z) and g(z2) are algebraically independent over K.

Proof. Let R be a Picard-Vessiot ring for the system (21) over K containing g(z)
and g(z2). Let U = (ui,j)1≤i,j≤2 ∈ GL2(R) be a corresponding fundamental matrix

of solutions whose first column is (g(z), g(z2))t. Let G′′ ⊂ GL2(Q) be the corre-
sponding difference Galois group over K. Theorem 50 and Theorem 7 ensure that
G′′ = SL2(Q). Let X = (Xi,j)1≤i,j≤2 be a matrix of indeterminates over K. Let I

be the ideal of relations in K[X, det(X)−1] between the entries of U . According to
the results recalled in section 2.1, Spec(R) is a trivial G′′-torsor over K. Therefore,

there exists d ∈ K
×
such that I is the ideal generated by det((Xi,j)1≤i,j≤2)− d. In

particular, we get I ∩K[X1,1, X2,1] = {0}, whence the result. �

9.2. The Rudin-Shapiro sequence. The Rudin-Shapiro sequence (an)n≥0 is the
automatic sequence defined by an = (−1)bn where bn is the number of pairs of
consecutive 1 in the binary representation of n. It is characterized by the following
recurrence relations:

a0 = 1, a2n = an, a2n+1 = (−1)nan.

We let f(z) =
∑

n≥0 anz
n be the corresponding generating function. We set

f1(z) = f(z) and f2(z) = f(−z). The recursive equations above show that the
vector

Y (z) =

(
f1(z)
f2(z)

)
satisfies the following Mahler system:

(26) φ2Y = AY where A =
1

2

(
1 1
1
z − 1

z

)
.

We let G (resp. H) be the Galois group of (26) over K (resp. over K2∞).

Theorem 55. We have G = H = GL2(Q).

This theorem will follow from a series of simple lemmas.

Lemma 56. The system (26) is equivalent to the equation

(27) φ2
2 − (1− z)φ2 − 2z.

Proof. We have

A−1 =

(
1 z
1 −z

)
.
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The vectors

e :=

(
1
0

)
and ΦA(e) = A−1φ2(e) =

(
1
1

)
form a K2∞ -basis of (K2∞)2 so that e is a cyclic vector for (26). Moreover, we have

Φ2
A(e) = A−1φ2

(
1
1

)
=

(
1 + z
1− z

)
= (1− z)ΦA(e) + 2ze.

�

Lemma 57. The Galois group H is irreducible.

Proof. This amounts to showing that the operator (27) is irreducible over K2∞ ,
that is, that the Riccati equation

(28) u(φ2(u)− (1− z)) = −2z

does not have any solution u ∈ K2∞ . Assume to the contrary that it has a solution
u ∈ K2∞ . We have u ∈ Q(z), because u = −2z

φ2(u)−(1−z) ∈ Q(z, φ2(u)). Let s, t be

coprime elements of Q[z] such that u = s/t. We have

s(z)

t(z)

(
s(z2)− (1− z)t(z2)

t(z2)

)
= −2z.

Using the fact that s is coprime to t, we see that

s(z)

t(z2)
∈ Q[z] and

s(z2)− (1− z)t(z2)

t(z)
∈ Q[z].

Since their product is a monomial, these polynomials are monomials. So, one of
the following properties holds:

(i) either s(z)
t(z2) = cz and s(z2)−(1−z)t(z2)

t(z) = c′

(ii) or s(z)
t(z2) = c and s(z2)−(1−z)t(z2)

t(z) = c′z

for some constants c, c′ ∈ Q
×
.

If (i) holds, then

s(z) = czt(z2) and s(z2) = (1− z)t(z2) + c′t(z).

So

1 =
(1− z)t(z2) + c′t(z)

s(z2)
=

(1− z)t(z2) + c′t(z)

cz2t(z4)
.

Letting z → ∞, we get 1 = 0.
If (ii) holds, then

s(z) = ct(z2) and s(z2) = (1− z)t(z2) + c′zt(z).

So

ct(z4) = (1− z)t(z2) + c′zt(z).(29)
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Let us first assume that deg t(z) > 0. We have deg
(
(1− z)t(z2)

)
= 1 + 2deg t(z)

and deg(zt(z)) = 1+deg t(z), so the degree of the right-hand side of (25) is equal to
1+2 deg t(z). Moreover, the degree of the left-hand side of (25) is equal to 4 deg t(z).
So we obtain the equality 1+2 deg t(z) = 4 deg t(z), which is impossible. It remains

to consider the case that t(z) = t ∈ Q
×

and hence s(z) = s ∈ Q
×
. The second

equation in (ii) above entails that s = t. So s(z)
t(z2) = 1 and s(z2)−(1−z)t(z2)

t(z) = z, so

s(z)

t(z2)

(
s(z2)− (1− z)t(z2)

t(z)

)
= z,

which is a contradiction.
In any case, we get a contradiction. �

Lemma 58. The Galois group G is connected.

Proof. The first theta-slope is 1 and we have

L[θ1] = z3φ2
2 − (1− z)zφ2 − 2z.

So

L = (φ2 − a)(φ2 − b) = φ2
2 − (a+ φ2(b))φ2 + ab

with b ∈ −2z(1 + zQ[[z]]). Since ab = −2z, we get a ∈ 1 + zQ[[z]].
Using Corollary 49, we get that G is connected. �

Proof of Theorem 55. The fact that H is connected and irreducible implies that H
contains SL2(Q). Moreover, detA = −2z, so the Galois group of φ2y = (detA)y is

Q
×
. It follows that H = GL2(Q). Using Theorem 7, we get G = GL2(Q). �

For instance, we have the following consequence, whose proof is similar to the
proof of Corollary 54.

Corollary 59. The series f1(z) and f2(z) are algebraically independent over K.

9.3. Galois group of Baum-Sweet ⊕ Rudin-Shapiro. Let N1 (resp. N2) be
the difference module over K corresponding to the Baum-Sweet equation (21) (resp.
to the Rudin-Shapiro equation (26)). We use the notation of section 2.5 for these
specific N1 and N2. We have seen that the difference Galois group G1 (resp. G2)
of N1 (resp. N2) over K is μ4 SL(ω(N1)) (resp. GL(ω(N2))). Let G ⊂ G1 ×G2 be
the difference Galois group of N1 ⊕N2 over K. The Baum-Sweet equation (21) is
regular singular at 0, and its exponents at 0 are the eigenvalues of(

0 1
1 0

)
,

i.e. ±1. On the other hand, we have seen during the proof of Lemma 58 that
the exponents at 0 of the Rudin-Shapiro equation (26) are 1 and −2. Let N be a
difference module of rank one over K, and denote by c its exponent at 0. Then,
the exponents of N ⊗N2 are c,−2c, and the exponents of N ⊗N∨

2 are c,−c/2. So
neither N ⊗N2 nor N ⊗N∨

2 has the same exponents at 0 as N1. Therefore, N1 is
isomorphic to neither N ⊗N2 nor N ⊗N∨

2 . Proposition 14 ensures that

G = {(σ1, σ2) ∈ GL(ω(N1))×GL(ω(N2)) | (detσ1, detσ2) ∈ H},
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where H is the Galois group of detM1 ⊕ detM2. But detM1 corresponds to the
equation φ2y = −1 and detM2 to φ2y = −2z. Therefore, the Galois group of

detM1 ⊕ detM2 is μ2 ×Q
×
. So,

G = μ4 SL(ω(N1))×GL(ω(N2)).

In particular, arguing as in the proof of Corollary 54, we see that the series
f1(z) = f(z), f2(z) = f(−z), g(z) and g(z2) are algebraically independent over
Q(z).
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