
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 1, January 2018, Pages 357–391
http://dx.doi.org/10.1090/tran/6948

Article electronically published on September 8, 2017

AN EXAMPLE OF PET. COMPUTATION OF THE HAUSDORFF

DIMENSION OF THE APERIODIC SET

NICOLAS BÉDARIDE AND JEAN-FRANÇOIS BERTAZZON

Abstract. We introduce a family of piecewise isometries. This family is simi-
lar to the ones studied by Hooper and Schwartz. We prove that a renormaliza-
tion scheme exists inside this family and compute the Hausdorff dimension of
the discontinuity set. The methods use some cocycles and a continued fraction
algorithm.

1. Introduction

1.1. Background. A piecewise isometry in Rn is defined in the following way:
consider a finite set of hyperplanes; the complement X of their union has several
connected components. The piecewise isometry is a map T from X to Rn locally
defined on each connected set as an isometry of Rn. Now consider the pre-images of
the union of the hyperplanes by T : it is a set of zero Lebesgue measure. Thus almost
every point of X has an orbit under T , and we will study this dynamical system
(X0, T ) where X \X0 is of zero measure. This class of maps has been well studied
in dimension one with the example of the interval exchange maps; see [8]: the map
is bijective, equal to the identity outside a compact interval, and the isometries
which locally define T are translations. Remark that the case with nonoriented
interval exchange is more difficult (and called interval exchange with flips). The
strict case of the dimension two began ten years ago with the paper [1]. Since then,
different examples have been examined in order to exhibit different behaviors; see
for example [4]. The first general result has been obtained by Buzzi, proving that
every piecewise isometry has zero entropy; see [7]. An important class of piecewise
isometries is the outer billiard. This map has known a lot of developments in
recent years with the work of Schwartz: [18], [19], [20] and [21]. He describes
the first example of a piecewise isometry of the plane with an unbounded orbit.
In his recent papers he defines a new type of piecewise isometry, called Polytope
Exchange Transformation (PET for short) and shows that these maps describe the
compactification of the outer billiard outside a kite. Independently, Hooper has
studied renormalization in some piecewise isometries (see [11]) and in [10] shows
some pictures of a discontinuity set which seems very close to Schwartz’s work.
Finally let us mention the work of [13] which is also close to our example.

In the present paper we describe a family of piecewise isometries. We prove
that a renormalization scheme exists inside this family and compute the Hausdorff
dimension of the discontinuity set.
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1.2. An informal definition of our dynamical system. Here we study a dy-
namical system closely related to a PET. We want to exchange one square and one
rectangle. Let C be the square [0, 1]2, and let θ ∈ [0, 1[ be a real number. Consider
the rectangle Rθ = [1, 1 + θ]× [0, 1] and let Xθ = C ∪ Rθ. See the following figure:

0 1 1 + θ
0

1

C Rθ

Definition of Xθ.

We want to define a piecewise isometry which globally exchanges the square and
the rectangle as described below:

0 1 1 + θ
0

1

−−−−−−−→

0 1θ
0

1

For a fixed θ, there are exactly 24 transformations which isometrically exchange
these two pieces, and some of them are conjugated via the orthogonal reflection
through y = 1/2. In fact there are only two of them for which the dynamical
behavior is interesting, and we will consider them in this paper. These two maps
are parametrized by ω = (θ, ε) with ε = ±1.

1.3. Outline. In Section 2 we give a precise definition of our dynamical system
denoted (Xω, Tω). We define the coding of this map and the associated symbolic
dynamical system. In Section 3, we introduce the renormalization and we study the
map Tω and show that an induction process exists: there exists a subset of Xω where
the first return map of Tω is conjugated to TS(ω) for some map S. Then in Section
4 we study the map S. This map can be seen as a continued fraction algorithm. We
study this continued fraction in Proposition 4.2 and compute an invariant measure.
These results can be seen as an application of the theory developed by Arnoux-
Schmidt in [3]. In Section 5, we describe the relation between the dynamics on the
aperiodic set and a Sturmian subshift. The next step is to obtain a formula for
the Hausdorff dimension of the set of aperiodic points in (Xω, Tω). The idea is to
give a formula for the Hausdorff dimension in terms of a Lyapunov exponent of a
cocycle. To obtain it, we need to use Oseledets’ theorem. The problem is that the
invariant measure of S does not have good properties. Thus we need to prove that
an accelerated map is ergodic; see Section 4.4. Then in Section 6, we explain the
relation between the Hausdorff dimension and a cocycle. Finally in Section 7 we
deduce some approximations of the Hausdorff dimension. Some technical parts are
left for the Appendix.

2. Definition of the dynamical system and first properties

2.1. Definition of the dynamical system. Let us define ω = (θ, ε) ∈ Ω =
[0, 1[×{−1, 1} and denote the segments on the boundary of the square and the
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rectangle by Dθ = ∂C ∪ ∂Rθ. Now let us define two maps fε from [0, 1] into itself
by

[0, 1] → [0, 1]

x �→ fε(x) =

{
x if ε = −1,

1− x if ε = 1.

Consider the map Tω defined by

C̊ ∪ R̊θ → C ∪Rθ

z = (x, y) �→
{(

1 + θ − y, fε(x)
)

if (x, y) ∈ C̊,
(x− 1, 1− y) if (x, y) ∈ R̊θ.

0 1 1 + θ
0

1

−−−−−−−→
ε=−1

0 1θ
0

1

0 1 1 + θ
0

1

−−−−−−−→
ε=1

0 1θ
0

1

Lemma 2.1. The map Tω is the product of the following isometries:

• For ε = −1, the restriction of the map to the square is the product of the
rotation of angle π

2 and center (1/2, 1/2) and the translation by (θ, 0).
• For ε = 1, the restriction of the map to the square is the composition of the
orthogonal reflection through y + x = 1 and the translation by (θ, 0).

• The restriction of the map to the rectangle does not depend on ε: it is the
product of the translation by (−1, 0) and the orthogonal reflection through
y = 1

2 .

The proof is left to the reader.

Definition 2.2. We define the set of discontinuities by Dω =
⋃

k∈N
T−k
ω (Dθ).

We also define Xω = Xθ \ Dω.

Lemma 2.3. For every point z in Xω the orbit of z under Tω is well defined. The
set Xω is of Lebesgue measure 1.

Proof. First of all, Dω is a countable union of segments; thus it is of zero Lebesgue
measure. Now remark that the orbit of a point z under Tω is not defined if and
only if there exists an integer n such that Tn

ω (z) ∈ Dθ. By definition Xω is the
complement of this set. �

Remark 2.4. We can be more precise: let n be an integer; the set T−n
ω Dθ is a finite

union of horizontal or vertical segments. We deduce that Xω is the union of dense
open sets.
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Figure 1. Representation of Dω for the following values for ω:(
3
5 ,−1

)
,
(
13
21 ,−1

)
and

(√
5−1
2 − 1,−1

)
.

Figure 2. Representation of Dω of ω =
(
3
5 , 1

)
, ω =

(
13
21 , 1

)
and

for ω =
(√

5−1
2 − 1, 1

)
.

We introduce notation for the restriction of the defined sets to the square and
the rectangle by:

• Dc
ω = Dω ∩ C and Dr

ω = Dω ∩Rθ (they are of zero Lebesgue measure);
• Cω = C ∩ Xω and Rω = Rθ ∩ Xω.

Proposition 2.5. We have Tω(Xω)=Xω. Moreover the dynamical system (Xω, Tω)
is a bijective piecewise isometry, with the Lebesgue measure as an invariant measure.

Proof. Each isometry involved in the definition of Tω is clearly a bijection. The
following map from Tω(Xω) into Xω is thus well defined:

(x, y) �→ T−1
ω (x, y) =

{(
fε(y), 1 + θ − x

)
if (x, y) ∈ Tω

(
Cω
)
,

(x+ 1, 1− y) if (x, y) ∈ Tω

(
Rω

)
.

To prove the result we just have to analyze the discontinuity set of this map and
prove that it coincides with Dω. We define D−1

θ = ∂Tω(C) ∪ ∂Tω(Rθ), D−1
ω =⋃

n∈N
T−n
ω (D−1

θ ) and Fω as the union Dθ ∪ D−1
θ . It is clear that z ∈ Dω (resp.

z ∈ D−1
ω ) if and only if there exists an integer n such that Tn

ω z ∈ Dθ (resp. Tn
ω z ∈

D−1
θ ).
Remark that Fω is invariant by the map

Symω : (x, y) �→
(
1 + θ − x, fε(y)

)
.

Since this map fulfills Tω ◦ Symω = Symω ◦ T−1
ω we deduce that Tω(Xω) = Xω.

The rest of the proof is easy since all the maps are isometries, and therefore the
Lebesgue measure is an invariant measure. �

2.2. Symbolic dynamics of a piecewise isometry. We need to introduce some
notions of symbolic dynamics; see [16]. Let A be a finite set called an alphabet,
let a word be a finite string of elements in A, and let its length be the number of
elements in the string. The set of all finite words over A is denoted A∗. A (one
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sided) sequence of elements of A, u = (un)n∈N, is called an infinite word. A word
v0 . . . vk appears in u if there exists an integer i such that ui . . . ui+k+1 = v0 . . . vk. If
u = u0 . . . un is a finite word, we denote by ū the infinite word u0 . . . unu0 . . . un . . . .
This word is periodic of period u. For an infinite word u, the language of u
(respectively the language of length n) is the set of all words (respectively all words
of length n) in A∗ which appear in u. We denote it by L(u) (respectively by Ln(u)).
We endow the set of sequences AN with the product topology, then we define for a
finite word v the cylinder [v] = {vu, u ∈ AN}. The set of cylinders forms a basis
of clopen sets for the topology.

A substitution σ is an application from an alphabet A to the set A∗ \ {ε} of
nonempty finite words on A. It extends to a morphism of A∗ by concatenation,
that is, σ(uv) = σ(u)σ(v).

Now we define an application φ : R2 �→ {a; b} by

φ(x, y) = a if x < 1 and φ(x, y) = b otherwise.

For ω = (θ, ε) ∈ Ω and z ∈ Xω we have

φ(z) = a ⇐⇒ z ∈ Cω and φ(z) = b ⇐⇒ z ∈ Rω.

Let Φω : Xω �→ {a; b}N be the coding map defined by

Φω(z) = (un)n∈N such that un = φ
(
Tn
ω (z)

)
.

The image by the coding map of the points in Xω defines a language. For a finite
(or infinite) word u in this language, a cell is the set of points which are coded by
this word: Ou = {z ∈ Xω,Φω(z) = u}. The cells Oū, where u is a finite word, are
called periodic cells, and the period is defined as the period of the word ū.

Lemma 2.6. If z is a periodic point of Tω, then Φω(z) is a periodic word and the
cell is a rectangle. The restriction of Tω to a periodic cell is either a rotation of
angle −π

2 , π or π
2 or an orthogonal reflexion. In all cases, every point of a periodic

cell has a periodic orbit.

The reader should take care not to confuse the period of a periodic cell and the
period of the points. In Corollary 3.5 we will see that this result can be improved.

Proof. Let z be such that Tn
ω (z) = z, and let v = Φ(z). By definition of z, the

word v is periodic of period n. Let us denote by u = u0 . . . un−1 its period; thus
we have v = u . . . u . . . . We define Pa = Cω and Pb = Rω. We deduce that
Oū =

⋂
0≤k≤n−1 T

−k
ω Puk

. Remark that T−k
ω Puk

is a convex set for every integer
k. Then Oū is a decreasing intersection of convex sets; thus it is a convex set.
Moreover Dθ is the union of vertical and horizontal segments. Then its image by
Tω is a horizontal or vertical edge; thus every segment of Dω is horizontal or vertical:
we conclude that Oū is a rectangle. Moreover the restriction of Tω to this rectangle
has a periodic point. �

Definition 2.7. For ω ∈ Ω and n ∈ N, let us denote by Iω(n) the union of periodic
cells of period less than n.

Consider the dynamical system (Xω, Tω). Denote the periodic points in this
system by Iω. A natural question seems to look at the complement of this subset.
It is nonempty, but we do not know its size. Can we compute it? This question
appears naturally in several papers such as [18]. Thus we define for each positive
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Figure 3. Example for ω =
(√

2− 1,−1
)
. The sets Kc

ω(n) are
included in the blue part, and Kr

ω(n) is inside the red part. The
periodic island of period one is in green, the islands of period five
are in yellow, and in black are the periodic islands of period 21.

integer n:

Kω(n) = Xω \ Iω(n) and Kω =
⋂
n∈N

Kω(n).

As above we also define

Kr
ω(n) = Kω(n) ∩Rθ, Kc

ω(n) = Kω(n) ∩ C,

Kr
ω =

⋂
n∈N

Kr
ω(n) and Kc

ω =
⋂
n∈N

Kω(n)
c.

From Remark 2.4 we have Kω(n) = Xθ \ I̊ω(n). The set Kω is called the aperi-
odic set.

Lemma 2.8.

• For ε = −1, the set Iω(1) is a square: its Lebesgue measure is equal to
(1− θ)2, and the coding associated to a point of Iω(1) is ā.

• For ε = 1, the set Iω(1) is empty, and Iω(2) is the union of two squares.
Its area is equal to 2θ2, and the coding associated to the points of Iω(2) is
ab or ba.

Proof. The proof is left to the reader. See the following figure, which represents in
blue Iω(1) for ε = −1 and Iω(2) for ε = 1.

0 1 1 + θθ
0

1

θ

0 1 1 + θθ
0

1

θ

1− θ

�

Lemma 2.9. Let ω ∈ Ω.

(1) The point z belongs to Kω if and only if z has a nonperiodic orbit under
Tω.

(2) Kω ⊂ D̄ω.

Proof. The first point can be deduced from Lemma 2.6.
Let z ∈ Kω∩Xω. We will show that z belongs to Dω. We argue by contradiction:

suppose we have inf{d(Tnz,Dθ) | n ∈ N} = δ > 0, and consider a square centered in
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z of diameter δ/2. The orbit of this square never intersects a segment of Dω. Thus
every point inside this square has the same coding, and this coding is nonperiodic
by assumption. Thus the cell of a nonperiodic word has nonempty interior, which
is impossible. �

To finish this section let us briefly sum up the notation used here:

Dω Iω Kω

Discontinuities Periodic points Aperiodic points

The notationDω(n) will be used for the same object restricted to the n first elements
of an orbit.

2.3. Results of the paper. To start with, we prove the following:

• The map Tω has a renormalization scheme (Section 3, Proposition 3.2).
• The dynamical system (Kω, Tω) is conjugated to a rotation of angle θ (Sec-
tion 5, Proposition 5.3).

Moreover we compute the Hausdorff dimension of the aperiodic set and show that:

Theorem 2.10. There exists a real number s such that for almost all ω, the Haus-
dorff dimension of Kω is equal to s.

Corollary 2.11.

• We have 1.07 ≤ s ≤ 1.55.
• Moreover we obtain for n ∈ N :

dimH(Kω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− ln(2n+

√
4n2 + 1)

ln
(√

n2 + 1− n
) if ω =

(√
n2 + 1− n,−1

)
,

− ln(2n+ 1 + 2
√
n2 + n)

ln
(
n+ 1−

√
n(n+ 2)

) if ω =
(√

n(n+ 2)− n, 1
)
.

This number s is obtained via the Lyapunov exponent of a cocycle introduced
in Section 6. Remark that the computation of the Hausdorf dimension can be seen
as a generalization of the classical case where the fractal set is the solution of an
iterated function system.

3. Induction

3.1. Notation. Consider ω = (θ, ε) ∈]0, 1[×{−1, 1}. We denote nω =
⌊

1
fε(θ)

⌋
where 
.� denotes the floor function. We define a map S by

(1)
]0, 1[×{−1, 1} → Ω

(θ, ε) �→ S(θ, ε) =
(

1
fε(θ)

− nω, (−1)nω+1
)
.

Now let ψω be a similitude defined by

R2 → R2

(x, y) �→ ψ(θ,−1)(x, y) =
1
θ (y, x)

(x, y) �→ ψ(θ,1)(x, y) =
1

1−θ (x, y − θ).

Remark that this similitude has a ratio r(ω) = 1
fε(θ)

and that the inverse of this

map is given by

ψ−1
(θ,−1)(x, y) = θ(y, x) and ψ−1

(θ,1)(x, y) =
(
(1− θ)x, θ + y(1− θ)

)
.
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Figure 4. Induction zone for the parameters (θ,−1) and (θ, 1).

Figure 5. Induction scheme for ε = −1 with θn = 1√
n(n+1)

where

n = 1, 2, 4.

Figure 6. Induction scheme for ε = 1 with θn = 1 − 1√
n(n+1)

where n = 1, 2, 4.

The main objects of the paper are the following sets; the notation will be ex-
plained in Proposition 3.2.

Definition 3.1. For ω ∈ Ω we define the induction zones by

Cind
ω = ψ−1

ω (CSω), Rind
ω = ψ−1

ω (RSω) and X ind
ω = Cind

ω ∪Rind
ω .

Remark that ψω(X ind
ω ) = XSω by definition.

3.2. First return map to the induction zone. The first return time of z ∈
X ind

ω = Cind
ω ∪ Rind

ω is defined as n(z) = min{k ≥ 1, T k
ω (z) ∈ X ind

ω }. Then we define
T ind
ω as the map of X ind

ω into itself defined as z �→ T n(z)(z). It is the first return
map of T ind

ω onto X ind
ω .

Proposition 3.2 (Induction). The maps n and T ind
ω are well defined on X ind

ω , and
we have for all z ∈ XSω:

ψω ◦ T ind
ω ◦ ψ−1

ω (z) = TS(ω)(z).
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3.3. Induction, proof of Proposition 3.2.
• Let us start with ε = −1 for a parameter θ ∈]0, 1[.
Let (x, y) be a point in the interior of Cind

ω . This means 0 < x < θ and 0 < y < θ.
Then we have

T 2(x, y) = T
(
1 + θ − y, x

)
=
(
θ − y, 1− x

)
.

Remark that we have 0 < θ − y < θ and 1− θ < 1− x < 1.
Now we compute T 3(x, y) for some (x, y) such that 0 < x < θ and y > θ:

T 3(x, y) = T 2
(
1 + θ − y, x

)
= T

(
1 + θ − x, 1 + θ − y

)
=
(
θ − x, y − θ

)
.

Thus we remark that a point inside {(x, y), y > θ, x < θ} remains under the
action of T 3 inside this set and its second coordinate decreases.

0 1 1 + θθ
0

1

a
θ

−−−−−−−−−→
T 3

ε=−1

0 1 1 + θθ
0

1

a− θ

1− θ

We deduce that

(2) T ind
ω (z) =

{
T 3(nω−1)T 2(z) if z ∈ Cind

ω ,

T 3(z) if z ∈ Rind
ω .

Then, if we denote s(x) = θ − x we obtain

(3) T ind
ω (x, y) =

{(
snω−1(θ − y), 1− x− θ(nω − 1)

)
if z ∈ Cind

ω ,(
snω (y), 1− x− θ(nω − 1)

)
if z ∈ Rind

ω .

To finish the proof we compute the conjugation of T ind
ω :

ψωT
ind
ω ψ−1

ω (x, y) =

{(
1− y + 1

θ − nω, f(−1)nω+1(x)
)
,

(x− 1, 1− y).

Finally we have proven

ψωT
ind
ω ψ−1

ω (x, y) = TSω(x, y).

• Now we treat the case ε = 1. The computations are based on the same method;
thus we just give the result:

T ind
ω (z) = T 3(nω−1)T (z) if z ∈ Cind

ω and T ind
ω (z) = T 3(z) if z ∈ Rind

ω .

Then, for z = (x, y):

T ind
ω (z) =

{(
1 + θ − y − (1− θ)(nω − 1), snω−1(1− x)

)
if z ∈ Cind

ω ,(
θ + x− 1, 1 + θ − y

)
if z ∈ Rind

ω .
(4)
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Thus we obtain TSω(x, y) = ψωT
ind
ω ψ−1

ω (x, y).

0 1 1 + θ1− θ a0

1

1− θ −−→
T 3

ε=1

0 1 1 + θθa− θ
0

1

1− θ

3.4. Some important corollaries of Proposition 3.2. Let us define two sub-
stitutions

(5) σ(θ,−1) :

{
a → ab(aab)nω−1,
b → aab,

and σ(θ,1) :

{
a → a(aab)nω−1,
b → aab.

Corollary 3.3 (Language and substitution). For z ∈ X ind
ω = Cind

ω ∪Rind
ω , we have

Φω(z) = σω ◦ ΦS(ω) ◦ ψω(z).

Proof. By Proposition 3.2, we have

ψω ◦ T ind
ω (z) = TS(ω) ◦ ψω(z).

If z ∈ Cind
ω we obtain by equation (2)

ψω ◦ T 3(nω−1)T 2(z) = TS(ω) ◦ ψω(z).

The infinite word ΦS(ω) ◦ ψω(z) begins with a, and the proof of Proposition 3.2

shows that Φω(z) begins with ab(ab)nω−1. Since the same argument works if z
belongs to Rind

ω we deduce the result. �

These substitutions define linear maps by abelianization. These linear maps have
matrices in M2(Z), called the incidence matrices and denoted by

M(θ,−1) =

(
2nω − 1 2

nω 1

)
and M(θ, 1) =

(
2nω − 1 2
nω − 1 1

)
.

In Section B.3 we will return to the cocycle generated by the map ω → M(ω).
We denote these matrices and their coefficients as M(ω) = (mi,j(ω))1≤i,j≤2. The

vector space R2 is equipped with norm ‖ · ‖1. This defines a norm on M2(R) by

‖
(
a b
c d

)
‖1 = max{|a|+ |c|, |b|+ |d|}.

Definition 3.4. Let θ be an irrational number and ω = (θ, ε). For each positive
integer i we denote ωi = (θi, εi) = Si(θ, ε) (we will see in Proposition 4.2 that Si(ω)
exists for each integer i). Let us define also

M (k)(ω) = M(ω)× · · · ×M(ωk) =

(
m

(k)
1,1(ω) m

(k)
1,2(ω)

m
(k)
2,1(ω) m

(k)
2,2(ω)

)
.

Then we define a sequence of numbers (pi)i∈N by

pi =
∥∥∥M (i−1)(ω)× ki

∥∥∥
1
, where ki =

(
1

1
2 (1 + εi)

)
.(6)
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Corollary 3.5 (Periodic points). We deduce the following:

(1) Let I be a periodic cell for TS(ω) associated to the periodic word u. Then

ψ−1
ω (I) is a periodic cell for Tω associated to the word σω(u). Moreover its

period is given by

(7)

∥∥∥∥M(ω)×
(
|u|a
|u|b

)∥∥∥∥
1

where by definition u contains |u|a letters a and |u|b letters b.
(2) Conversely if I is a periodic cell of period n for Tω (n ≥ 2 for T(θ,−1) and

n ≥ 3 for T(θ,1)), then there exists an integer 0 ≤ k ≤ n − 1 such that

ψω

(
T k
ω (I)

)
is a periodic cell for TS(ω).

(3) If I is a periodic cell, there exists an integer n such that its period is pn,
and its area is equal to

n∏
k=1

1

r(ωk)
.

(4) Each periodic cell is a square.
(5) The set K(θ,ε) is nonempty if and only if θ /∈ Q.

Proof.

(1) We use the relation ψω ◦ T ind
ω ◦ ψ−1

ω = TS(ω). If m is a periodic point for

TSω of period k, we obtain that ψ−1
ω (m) is periodic for T ind

ω . Now equation
(2) gives that T ind

ω is some power of Tω. The periodic word associated to
this cell is obtained with the first point of Corollary 3.3.

(2) Consider a periodic cell I of Tω of period n. We claim that there exists
k ≤ n − 1 such that T k

ωI ∈ Cind
ω ∪ Rind

ω . This fact is proven by remarking
that

for ε = −1 :
(
Cind
ω ∪ TωCind

ω ∪ · · · ∪ T 3nω−2
ω Cind

ω

)
∪
(
Rind

ω ∪ TωRind
ω ∪ T 2

ωRind
ω

)
,

for ε = 1 :
(
Cind
ω ∪ TωCind

ω ∪ · · · ∪ T 3nω−3
ω Cind

ω

)
∪
(
Rind

ω ∪ TωRind
ω ∪ T 2

ωRind
ω

)
,

cover Xω except the cells of period one (ε = −1) or two (ε = 1). By
the proof of Proposition 3.2, we know that these sets are disjoint. Then we
compute the area:

• If ε = −1 we obtain

(3n− 1)|Cind
ω |+ 3|Rind

ω | = (3n− 1)θ2 + 3θ(1− nθ) = 3θ − θ2.

Now we compute the area of Xθ \ Iω(2). We obtain 1+ θ− (1− θ)2 =
3θ − θ2.

• If ε = 1 we obtain:

(3n−2)|Cind
ω |+3|Rind

ω | = (3n−2)(1−θ)2+3(1−θ)
(
1−n(1−θ)

)
= (1−θ)(1+2θ).

Now we compute the area of Xθ \ Iω(1). We obtain 1 + θ − 2θ2.
Thus in all the cases we have shown that the complement of the cells of
period at most two is equal to the first return sets of the induction zone.

Then by the claim consider the cell T k
ωI. It is clearly a periodic cell for

T ind
ω . By the first point of the corollary we deduce that their iterations by

ψω form a periodic orbit for TSω.
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(3) Let I be a periodic cell of Tω of period p. We apply the preceding result
and deduce that for some k ≤ p − 1 the cell ψω(T

k
ωI) is a periodic cell

for TSω. The period of this cell is strictly less than p since the orbit of I
under Tω does not stay inside X ind

ω . We apply this argument recursively
and at some step n we obtain a cell of period 1 or 2. The first point of
the corollary allows us to deduce that p = pn. The cell is thus given as the
image of a square by the composition of the similitudes ψω, ψω1

, . . . , ψωn
.

The formula of the area follows.
(4) By the previous point, the cell is the image by a similitude of a square.
(5) We use Proposition 4.2. �

3.5. Aperiodic set. Consider an irrational number θ. Here we describe a partition
of the aperiodic set which will be used in Section 5.

Lemma 3.6. For every integer �, the set Kω(p�) has a partition (up to a set of
zero measure) defined by ⋃

1≤k≤‖M(�)(11)‖1

P(l)
k

such that:

• Each set P(l)
k for 1 ≤ k ≤

∥∥M (�)
(
1
0

)∥∥
1
is the image by a similitude of Cω�

.

• Each set P(l)
k for

∥∥M (�)
(
1
0

)∥∥
1
< k ≤

∥∥M (�)
(
1
0

)∥∥
1
+
∥∥M (�)

(
0
1

)∥∥
1
is the image

by a similitude of Rω�
.

• Each similitude has a ratio equal to
∏�

k=1
1

r(ωk)
.

Proof. We fix ω = (θ, ε) ∈ Ω with θ an irrational number and for each integer
�, S�ω = ω� = (θ�, ε�). By definition Kω(p1) is the closure of the complement
of Iω(p1). The proof of Proposition 3.2 shows that the orbit of X ind

ω is equal to
X \ Iω(p1). We deduce that Kω(p1) is the closure of the orbit of X ind

ω . By equality
(2) we deduce that

for ε = −1 : Kω(p1) =
(
Cind
ω ∪ TωCind

ω ∪ · · · ∪ T 3nω−2
ω Cind

ω

)
∪
(
Rind

ω ∪ TωRind
ω ∪ T 2

ωRind
ω

)
,

for ε = 1 : Kω(p1) =
(
Cind
ω ∪ TωCind

ω ∪ · · · ∪ T 3nω−3
ω Cind

ω

)
∪
(
Rind

ω ∪ TωRind
ω ∪ T 2

ωRind
ω

)
.

We recall that Cind
ω = ψ−1

ω (CSω) and Rind
ω = ψ−1

ω (RSω). In each case,

Kω(p1) =

m1,1(ω)+m2,1(ω)−1⋃
i=0

T i ◦ ψ−1
ω C

⋃ m1,2(ω)+m2,2(ω)−1⋃
i=0

T i ◦ ψ−1
ω Rθn .

The formula is proven for � = 1. We can repeat this to find the formula for each
integer � by using Corollary 3.5:

Kω(p�) =

m
(�)
1,1(ω)+m

(�)
2,1(ω)−1⋃

i=0

T i ◦ ψ−1
ω�

◦ · · · ◦ ψ−1
ω C(8)

∪
m

(�)
1,2(ω)+m

(�)
2,2(ω)−1⋃

i=0

T i ◦ ψ−1
ω�

◦ · · · ◦ ψ−1
ω Rθ� .

And the union is disjoint by Corollary 3.5. �
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Remark 3.7. We prefer to work with the set Kω rather than Dω, in particular
because we should add a finite union of segments in equation (8).

4. The renormalization map

The definition of the map S in Section 3.1, equation (3.1), invites us to study
the continued fraction expansion generated by this map. We will study the invari-
ant measures for S and will see that we should accelerate this map to get a nice
dynamical system. We use an action by homography of GL2(R) on the real line R

defined by (
a b
c d

)
.x =

ax+ b

cx+ d
.

4.1. Periodic points of S and continued fractions. In order to do this we
begin with the following remark: The map S is clearly nonbijective, but it defines
a continued fraction algorithm based on the fact that the equality{

S(θ, 1) =
(
{ 1
1−θ}, (−1)n+1

)
,

S(θ,−1) =
(
{ 1
θ}, (−1)n+1

)
yields {

θ = 1− 1
n+θ1

= n−1+θ1
n+θ1

,

θ = 1
n+θ1

,
where S(θ, ε) = (θ1, ε1) and n = nθ.

Thus we will speak about S-continued fraction expansion. The sequence
(θn, εn)n∈N defined by (θn, εn) = Sn(θ, ε) is called the S-expansion of (θ, ε). A
point (θ, ε) is called an ultimately periodic point for the continued fraction
algorithm if there exists an integer n such that Sn+m(θ, ε) = Sn(θ, ε) for every
integer m.

Example 4.1.

S3

(
3

8
,−1

)
= S2

(
2

3
,−1

)
= S

(
1

2
, 1

)
= (0,−1),

S3

(√
2

2
,−1

)
= S2

(√
2− 1, 1

)
= S

(√
2

2
, 1

)
= (

√
2− 1, 1).

In the first case we say that the S-continued fraction expansion is finite, and in
the second we have an ultimately periodic S-continued fraction expansion:

√
2 =

1√
2/2

=
1
1

1+
√
2−1

=
1
1

1+1− 1
1+

√
2/2

.

Proposition 4.2. Let ω = (θ, ε) be an element of Ω.

• The point ω ∈ Ω has a finite S-expansion if and only if θ ∈ Q ∩ [0, 1].
• The point ω ∈ Ω has an ultimately periodic S-expansion if and only if θ is
a quadratic number.
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4.2. Proof of Proposition 4.2. First of all remark that we have

1

1−
(
1 n− 1
1 n

)
.x

= x+ n.

• If θ is a rational number it is clear that its expansion is finite. Now consider
r ∈ Q∩]0, 1[, and denote S(r, ε) = (r1, ε1). Then r1 is a rational number with a
denominator strictly less than that of r. Thus if (r, ε) has an infinite S expansion
we obtain an infinite strictly decreasing sequence of integers, a contradiction.

• Assume (θ, ε) has an ultimately periodic S expansion. Our algorithm can be
written ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(θ, 1) =

((
n 1− n

−1 1

)
.θ, (−1)n+1

)
,

S(θ,−1) =

((
−n 1

1 0

)
.θ, (−1)n+1

)
.

Now we remark that(
n 1− n
−1 1

)−1

=

(
1 n− 1
1 n

)
,

(
−n 1
1 0

)−1

=

(
0 1
1 n

)
,

(θ, ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
1 n− 1

1 n

)
.θ1, ε1

)
,

((
0 1

1 n

)
.θ1, ε1

)
.

This formulation is better to obtain a left action of GL2(Z).
By assumption Sn(θ, ε) = Sn+m(θ, ε); thus there exist two integer matricesM,N

such that

MN.θ = Nθ.

We obtain a quadratic polynomial equation. Thus θ is a quadratic number.
• Assume that θ is a quadratic number. Now remark that(

1 n− 1
1 n

)
=

(
0 1
1 1

)
.

(
0 1
1 n− 1

)
.

Thus we can write

(θ, ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
0 1

1 1

)
.

(
0 1

1 n− 1

)
.θ1, ε1

)
,

((
0 1

1 n

)
.θ1, ε1

)
.

This means that our algorithm can be seen as the usual algorithm where we add the
number 0 as a digit (if n = 1). Consider the classical expansion of θ. By Lagrange’s
theorem, θ has an ultimately periodic expansion for the classical continued fraction
algorithm. If we add zero, we also have an ultimately periodic expansion.
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Figure 7. Graph of the map S.

4.3. Dynamical properties of the renormalization map. First we define a
bijection from Ω to ]0, 2[ by (θ, ε) → x = θ + 1

2 (ε+ 1). This allows us to pass from
the system (Ω, S) to the new system defined on ]0, 2[ and we keep the notation S
for simplicity.

Remark 4.3. In what follows we will denote by Mx or Mω the same class of objects,
depending on the previous bijection.

On ]0, 2[, S can be expressed as

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1

x

}
+

(−1)nx−1 + 1

2
if 0 < x < 1,

{
1

2− x

}
+

(−1)nx−1 + 1

2
if 1 ≤ x < 2.

S can also be expressed as S(x) = A(x) · x where A(x) is defined for n ≥ 1 by

A(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
n′ − n 1

1 0

)
if x ∈

]
1

n+ 1
,
1

n

]
,

(
n− n′ 1 + 2(n′ − n)

−1 2

)
if x ∈

]
2− 1

n
, 2− 1

n+ 1

]
,

where n′ = n mod 2. Thus S is a piecewise Moebius map; see Appendix A.1.

Remark 4.4. In Proposition A.2 we describe a method in order to determine an
invariant measure for this map. We obtain for the density function:

ν(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

x+ 1
on [0, 1],

1

x(x− 1)
on ]1, 2].

We do not develop this part further because this measure is not of finite volume
and some important functions will not be L1 integrable with respect to ν. This
explains why we will consider the accelerated dynamical system described in the
next section.
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Figure 8. Graph of the map S.

4.4. Acceleration of the renormalization map and ergodic properties. The
point 1 is a parabolic repulsive fixed-point for S; that is why we decided to accelerate
the map in a neighborhood of this point. See [3] for a complete reference.

Remark 4.5. In order to simplify the notation, we will write in bold all the objects
which concern the accelerated map.

The acceleration of S is denoted by S and is given by S = Sm(x) with

m(x) =

{
1 if x ∈ [0, 1] ∪ [3/2, 2],

min{n ∈ N;Snx /∈ [1, 3/2]} otherwise.

We can compute m and get

m(x) =

{
1 if x ∈ [0, 1] ∪ [3/2; 2],

k − 1 if x ∈
[
1 + 1

k+1 , 1 +
1
k

]
with k ≥ 2.

We obtain S(x) = A(x) · x with

A(x) =

⎧⎪⎨
⎪⎩
A(x) if x ∈ [0, 1] ∪ [3/2; 2],

A(x)k−1 =

(
2− k k − 1

1− k k

)
if x ∈

[
1 + 1

k+1 , 1 +
1
k

]
with k ≥ 2.

We will show in the Appendix that the method described in Proposition A.2
gives the following formula for the density of an invariant measure:

ν(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

1 + x
on [0, 1],

1

x
on [1, 3/2],

1

x− 1
on [3/2, 2].

Remark 4.6. In Corollary 1 of [3] the authors define the notion of a map of first
return type and prove: “If T is of first return type and ΓA is of finite covolume,
then T is ergodic with respect to the measure ν.” Unfortunately, the map A is not
of first return type; thus we cannot apply this result.
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Figure 9. Graph of the map Q.

Thus we need to introduce another map in order to have some ergodic properties.

4.5. Another map. Consider the map defined on ]0, 1[ by

Q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1

x

}
, x ∈

[
1

2n+ 1
,
1

2n

]
, n ∈ N∗,

1−
{

1
x

}
, x ∈

[
1

2n+ 2
,

1

2n+ 1

]
, n ∈ N.

Now let us define the map p:

[0, 2] → [0, 1]

x �→
{
x if x ∈ [0, 1],

2− x if x ∈ [1, 2].

Remark that S(1−x) = S(1+x) for any x ∈ [0, 1[. Thus we have a commutative
diagram:

[0, 2[
S−−−−→ [0, 2[

p

⏐⏐" ⏐⏐"p

]0, 1[ −−−−→
Q

]0, 1[

We define the measure ν1 on [0, 1[ by the formula ν1(A) = ν(p−1(A)). By
definition this measure is Q-invariant. We will use this application Q to show the
following result.

Proposition 4.7. The dynamical system (Ω,S,ν) is ergodic.

4.6. Proof of Proposition 4.7. The map Q has the following properties:

• It is defined on a countable union of intervals In, with value on an interval
I.

• On each interval In the map Q is a diffeomorphism.
• The map Q has bounded distortion: there exists a constant K > 0 such
that

sup
In

sup
x,y∈In

|Q′′(x)|
|Q′(y)|2 < K.
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A classical result says that such a map is ergodic for the Lebesgue measure; see
[12].

Lemma 4.8. We have:

• The map Q is ergodic for the measure ν1.
• If (I,Q, ν1) is ergodic, then (Ω, S, ν) is ergodic.
• If S is ergodic, then (Ω,S,ν) is ergodic.

Proof.

• It is easy to see that the map Q has the bounded distortion property.
Indeed, the classical Gauss map G : x �→

{
1
x

}
has the bounded distortion

property and for x ∈ [0, 1], |G′(x)| = |Q′(x)|. Thus it is ergodic with respect
to the Lebesgue measure. Now the measure ν is absolutely continuous with
respect to the Lebesgue measure; see Subsection 4.3. Thus the system
(I,Q) is ergodic for some measure. This measure is in the same class as
the Lebesgue measure; thus the system (I,Q, ν1) is ergodic.

• Assume by contradiction that S is not ergodic. Then there exists a set A
with ν(A) > 0 such that S−1A = A. By symmetry, the set A is symmetric
with respect to x = 1. Then there exists a set A′ ∈ [0, 1) such that Q−1A′ =

A′. By definition we have ν1(A
′) = ν(A)

2 > 0, a contradiction.
• The last part is a classical result. �

4.7. Acceleration of the renormalization map as first return.

Definition 4.9. We consider the following substitutions σx = σx ◦ · · · ◦ σSm(x)x

associated to the matricesM (x) = M(x)×· · ·×M(Sm(x)x). We recall that x ∈]0, 2[
is in bijection with ω ∈ Ω. Thus σx denotes the same object as σω; see equation
(5).

• For n ≥ 1, on
[

1
n+1 ,

1
n

]
, m(x) = 1 and

σx :

{
a → ab(aab)n−1

b → aab
and M (x) =

(
2n− 1 2

n 1

)
.

• For n ≥ 2, on
[
1 + 1

n+1 , 1 +
1
n

]
, m(x) = n− 1 and

σx :

{
a → a
b → a2(n−1)b

and M (x) =

(
1 2(n− 1)
0 1

)
.

• For n ≥ 2, on
[
2− 1

n , 2−
1

n+1

]
, m(x) = 1 and

σx :

{
a → a(aab)n−1

b → aab
and M(x) =

(
2n− 1 2
n− 1 1

)
.

Let us also define

M (k)(x) = M (x)× · · · ×M (Skx) =

⎛
⎝m

(k)
1,1(x) m

(k)
1,2(x)

m
(k)
2,1(x) m

(k)
2,2(x)

⎞
⎠ .

Now let us define the normalization factors with the help of Subsection 3.1:

r(x) = r(x)× · · · × r(Sm(x)x).
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A simple calculation gives

r(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

x
if x ∈]0, 1],

1

n− (n− 1)x
if x ∈ [1, 3/2[ where n =

⌊
1

x− 1

⌋
,

1

2− x
if x ∈]3/2, 2].

5. Dynamics on the aperiodic set

5.1. Background on Sturmian substitutions.

Definition 5.1 ([16]). An infinite word u = u0 · · ·un · · · over the alphabet {a, b}
is a Sturmian word if one of the following conditions holds :

(1) there exist an irrational number α ∈ [0, 1] called the angle of u and β ∈ R

such that

∀n ∈ N, un = a ⇔ nα+β−
nα+β� ≤ 1 or ∀n ∈ N, un = a ⇔ nα+β−�nα+β� ≤ 1,

where 
·� and �·� are respectively the floor and the ceiling functions,
(2) the symbolical dynamical system associated to u is measurably conjugated

to a rotation on the circle by an irrational number,
(3) for each integer n, card

(
Ln(u)

)
= n+ 1.

A substitution σ is said to be Sturmian if the image of every Sturmian word by σ
is a Sturmian word.

5.2. One technical lemma. We have the following result.

Lemma 5.2.

(1) σ is a Sturmian substitution if and only if it is a composition of the basic
substitutions:

s1 :

{
a → ab
b → b,

s2 :

{
a → ba
b → b,

s3 :

{
a → a
b → ba,

s4 :

{
a → a
b → ab

and s5 :

{
a → b
b → a.

(2) If (σi)i∈N is a sequence of Sturmian substitutions such that σ1 ◦ · · · ◦ σ�(a)
converge to an infinite word u, then u is a Sturmian word if and only if the
sequence σi is ultimately constant equal to some si for i ∈ {1, 2, 3, 4}.

Proof. The first point is a consequence of [16]. Let us prove the second point: we fix
an integer n and a word u = lim�→+∞ σ1◦· · ·◦σ�(a). We want to count the number
of words of length n factors of u. First by minimality we can find an integer N such
that every word of length n appears in u1 . . . uN . Then there exists an integer m
such that u1 . . . uN is a factor of σ1 ◦ · · · ◦ σm(a) by definition of u. Now consider a
Sturmian word which begins with a. The word σi(a . . . ) is Sturmian by definition
of σi for every integer i ≤ �. We deduce that the number of factors of length n in
σ1 ◦ · · · ◦ σm(a) is bounded by n+ 1.

Now we use the fact that the basic substitutions are joined to classical Gauss
continued fractions. Then the word is periodic if and only if the frequency of letters
a and b are rational if and only if the expansion in continued fractions is finite. �
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5.3. Result. We proved in Proposition 4.2 that Sn(θ, ε) is well defined for each
integer n if and only if θ is an irrational number. We fix for this section an irrational
number θ in [0, 1], ε ∈ {−1, 1} and ω = (θ, ε). By definition of the substitutions
σx, we remark that a is a prefix of σx(a) for each substitution. This means that
the following word is well defined:

uω = lim
�→+∞

σω ◦ · · · ◦ σS�ω(a).

It is clearly an infinite word, because for each ω ∈]0, 1[×{−1}∪]1/2, 1[×{1} we
have |σω(u)| > |u| and ]0, 1/2[×{1} is not stable by S. Now we define Σω :=

{tnuω, n ∈ N}, where t is the shift map.
We can now state the main result of this section:

Proposition 5.3. The dynamical system (Kω, Tω) is conjugate to an irrational
rotation of the circle S1.

The proof is a consequence of Lemma 5.2 and the two following lemmas.

Lemma 5.4. The sequence uω is a Sturmian sequence.

Proof. With the previous lemma, we only have to verify that for each ω = (θ, ε) ∈ Ω
such that θ is irrational, σω is a Sturmian substitution.

Let n be an integer. We define

p :

{
a → ab
b → aab,

q :

{
a → a
b → aab

and rn :

{
a → abn

b → b.

It is clear that they are the composition of basic Sturmian substitutions and that
each substitution σω defined in (5) is of the form

p ◦ rn :

{
a → ab(aab)n

b → aab
and q ◦ rn :

{
a → a(aab)n

b → aab.
�

Remark 5.5. The relation between ω and the angle of the word uω is not obvious,
as seen on Figure 10. We refer to Theorem B.6 in Section B.2. The angle of uω is
the first coordinate of the vector zω where the sum of coordinates is equal to 1. It
is also equal to the frequency of one letter in the word uω. Thus we can express it

as lim
�

|(1,0)×M(�)(ω)(10)|
|(1,1)×M(�)(ω)(10)|

.

Lemma 5.6. The dynamical system (Kω, Tω) is conjugated to (Σω, t).

Proof. We will construct an explicit conjugation in Subsection 5.4. �

We also denote the following quantities:

(9)
N (�)

a = N (�)
a (ω) =

∥∥∥M (�)(ω)
(
1
0

)∥∥∥
1
, N

(�)
b = N

(�)
b (ω) =

∥∥∥M (�)(ω)
(
0
1

)∥∥∥
1

and N (�) = N (�)(ω) =
∥∥∥M (�)(ω)

(
1
1

)∥∥∥
1
.

By Lemma 5.4 the system (Σω, t) is uniquely ergodic. We denote by μ̃ω the
unique invariant probability measure of (Σω, t).
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Figure 10. Numerical representation of the map ω → angle(uω)
respectively for ε = −1 and ε = 1.

Lemma 5.7. For every positive integer � there exists a partition P� of Σω by the
following sets such that

P� = {P (�)
1 , . . . ,P

(�)

N
(�)
a (ω)

,P
(�)

N
(�)
a (ω)+1

, . . . ,P
(�)

N(�)(ω)
}.

• The partition P�+1 is a refinement of the partition P�.

• The function n �→ μ̃ω(P
(�)
n ) is constant on the intervals {1, . . . ,N (�)

a } and

{N (�)
a + 1, . . . ,N (�)}.

Proof. Let v = v0 . . . vn . . . be an element of Σω and let � be an integer.

We denote by σω ◦ · · · ◦ σS�ω = σ
(�)
ω . By unique desubstitution, there exists an

integer n and a unique word t0 . . . tn−1 such that

(10) v = t0 . . . tn−1σ
(�)
ω (v�) where v� ∈ ΣS�ω

and t0 . . . tn−1 is a suffix of σ
(�)
ω (a) or σ

(�)
ω (b).

The word σ
(�)
ω (a) has length equal to N (�)

a (ω). Thus its number of suffixes is

equal to N (�)
a (ω). Let n ∈ {1, . . . ,N (�)

a (ω)}. We denote by P (�)
n the set of words

of the form (10) where t0 . . . tn−1 is the suffix of σ
(�)
ω (a) of length n. Similarly we

define for n ∈ {1 + N (�)
a (ω),N (�)(ω)} P (�)

n as the set of words of the form (10)

where t0 . . . tn−1 is the suffix of σ
(�)
ω (b) of length n.

These sets are disjoint up to a measure zero set. Indeed the result is clear

for two sets Pi, Pj with i, j ≤ N (�)
a (ω). If v belongs to the intersection of some

P
(�)

N
(�)
a (ω)+k

,P
(�)
i it means that the infinite word v� can be extended to the left by

two letters a, b. The set of these words is of zero measure.
Thus we deduce that

Σω =
⋃

1≤n≤N
(�)
a (ω)

P (�)
n ∪

⋃
1≤k≤N

(�)
b (ω)

P
(�)

N
(�)
a (ω)+k

.

Remark that σ
(�+1)
ω (a) = σ

(�)
ω (σS�ω(a)). Thus in the sequences of such partitions,

each partition refines the previous one. Moreover, notice that the image of P (�)
n by

the shift map is equal to P
(�)
n−1 (analogously for Q

(�)
n ). Since the measure μ̃ω is shift

invariant, the result follows. �
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Definition 5.8. Let us denote these measures by α� and β�. Remark thatN (�)
a α�+

N
(�)
b β� = 1.

5.4. Correspondance between (Tω,Kω) and the symbolic dynamical sys-
tem. Consider an irrational number ω. First we define a metric d̄ on Σω. Two

infinite words u, v fulfill d̄(u, v) = R−i if i = max{k ∈ N, ∃n ∈ N, u, v ∈ P
(k)
n }.

We leave it to the reader to check, with the help of Lemma 5.7, that d̄ is a metric,
compatible with the topology on Σω. Remark that the ball of center u and radius

Ri is equal to P
(i)
n for some integer n.

We prove Lemma 5.6 in the following form.

Proposition 5.9. There exists a map h : Σω → Kω which is

• continuous,
• almost everywhere injective and onto,
• such that Tω ◦ h = h ◦ t.

Proof. We use the preceding lemma and equation (10).
Let � be an integer and v ∈ Σω. Then we define the set B� by

B�(v) =

{
Tn ◦ ψ−1

ω ◦ · · · ◦ ψ−1
S�ω

(C) if σ
(�)
ω (v�) = a . . . ,

Tn ◦ ψ−1
ω ◦ · · · ◦ ψ−1

S�ω
(R) if σ

(�)
ω (v�) = b . . . .

By Proposition 3.2, the restriction of the map Tn to the set ψ−1
ω ◦ · · · ◦ ψ−1

S�ω
(C)

is an isometry. The same property is true for the restriction to the set ψ−1
ω ◦ · · · ◦

ψ−1
S�ω

(R). Each map ψSkω is a similitude of ratio r(Skω). We deduce that each set

B�(v) is included in a square of size R(�) = 1
r(ω) · · ·

1
r(ω�)

.

By Proposition 4.2, the sequence (ω�)�∈N is not periodic. By Lemma 6.4 and

equation (B.8) we deduce that lim+∞ R(�) = 0 for almost all ω. The sequence
(B�(v))N is thus a decreasing sequence of compact sets whose diameters converge
to zero, and therefore there is a unique element in the intersection. We denote it
by

h(v) =
⋂
�

B�(v).

• We claim that h is a continuous function: consider η > 0 and u, v infinite words
in Σω such that d̄(u, v) ≤ η. By the preceding lemma this means that there exists
an integer � such that u and v are in the same atom Pi of the partition for i ≤ �.
Then h(u) and h(v) belong to the same ball B�. Thus the distance between h(u)

and h(v) is bounded by the diameter of B�(u), which is bounded by R(�). Since
this number decreases to zero when � goes to infinity, we deduce the continuity of
h.

• The map is onto: remark that Lemma 3.6 implies that

Kω(p�) =
⋃

n≤N(l)

⋃
v∈P

(l)
n

Bl(v).

Since Kω is obtained as the intersection of these sets, the surjectivity of the map is
clear.

The injectivity comes from the definition and the fact that there is only one
point which has a prescribed symbolic aperiodic coding.

• The relation between the maps h, Tω and t is clear from the definition of h. �
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Definition 5.10. As a by-product of the result, this map defines a measure μ on
Kω by the formula μ(A) = μ̃ω

(
h−1(A)

)
.

6. Hausdorff dimension of the aperiodic set

6.1. Background on Hausdorff dimension. We recall some usual facts about
Hausdorff dimensions; see [15].

Definition 6.1. Let F be a compact set of Rn and s a positive real number:

Hs
δ (F) = inf

{
+∞∑
i=1

diam(Ui)
s | diam(Ui) ≤ δ and F ⊂

+∞⋃
i=1

Ui

}
.

We introduce Hs(F) = lim
δ→0

Hs
δ (F) ∈ R+ ∪ {+∞}. Then there exists a unique

positive real number s0 such that Hs(F) = +∞ if s > s0 and Hs(F) < +∞ if
s < s0. This real number s0 is called the Hausdorff dimension of F and is
denoted dimH(F).

Definition 6.2. Let F be a compact set of Rn. For r > 0, we denote by Numb(r)
the minimal number of balls of radius r needed to cover F . Then the lower and
upper box-counting dimensions are respectively defined by

dimB(F) = lim inf
r→0

− lnNumb(r)

ln r
and dimB(F) = lim sup

r→0
− lnNumb(r)

ln r
.

If these numbers are equal we speak about box-counting dimension.

We recall a classical result also called the Frostman Lemma.

Lemma 6.3 ([15], Thm 4.4). Assume there exists a measure μ̃ such that μ̃(F∞) > 0
and such that for almost every x in F∞,

lim inf
ln
(
μ̃
(
B(x, r)

))
ln(r)

≥ a.

Then we have dimH(F∞) ≥ a.

6.2. Technical lemmas. Let ω = (θ, ε) ∈ Ω with θ an irrational number. By an

abuse of notation, we will use the symbol ω� to denote S
�ω andR(�) = 1

r(ω) · · ·
1

r(ω�)
.

Lemma 6.4. With the notation (9), for ν-almost all ω, there exist λ(ω) and R(ω)
such that

lim
�→+∞

1

�
lnN (�) = λ(ω),(11)

lim
�→+∞

1

�
lnN (�)

a = lim
�→+∞

1

�
lnN

(�)
b = lim

�→+∞

1

�
lnN (�) = λ(ω),(12)

lim
�→+∞

1

�
lnR(�)(ω) = lnR(ω).(13)

Consider the number s(ω) defined ν-almost everywhere by

s(ω) =
λ(ω)

lnR(ω)
.

Then the functions λ(ω), lnR(ω) and s(ω) are almost everywhere constant for the
measure ν.
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In this proof we will use Definition B.1 and Theorem B.2. Consider the cocycle
defined by

Ω× N → GL2(Z) ∩M2(N)

(ω, n) �→ tM (Snω)× · · · × tM (ω) = tM (n)(ω).

Remark 6.5. By Lemma B.7, the map ω → ln ‖M(ω)‖ does not belong to L1(ν).
Thus we cannot apply Oseledets’ theorem; see Theorem B.2. This explains the
necessity to define the acceleration of the map S.

Proof. By Lemma B.8 the functions ω → ln ‖M(ω)‖, ω → ln ‖M−1(ω)‖ and
ln ◦ r belong to L1(ν). Thus the same is true for ω → ln ‖ tM (ω)‖ and ω →
ln ‖ tM−1(ω)‖.

By Theorem B.2 of Oseledets, we obtain the convergence for almost every ω of

1

�
ln

∥∥∥∥ tM (�)(ω)

(
1

1

)∥∥∥∥
1

.

Now an easy computation shows that for each integer �:∥∥∥∥ tM (�)(ω)

(
1

1

)∥∥∥∥
1

=
∥∥∥(1, 1)× tM (�)(ω)

∥∥∥
1

=

∥∥∥∥ t

(
M (�)(ω)

(
1

1

))∥∥∥∥
1

=

∥∥∥∥M (�)(ω)

(
1

1

)∥∥∥∥
1

.

This expression is equal to m
(�)
1,1(ω) +m

(�)
1,2(ω) +m

(�)
2,1(ω) +m

(�)
2,2(ω).

By Proposition 4.7 the dynamical system is ergodic. From (18) and from the
Furstenberg-Kesten Theorem and its Corollary B.4, the sequences of equality (11)
converge for almost every ω and

lim
�→+∞

1

�
lnN (�) = lim

�→+∞

1

�
ln

∥∥∥∥M (n)(ω)

(
1

1

)∥∥∥∥
= lim

�

1

�

∫
ln ‖ tM (�)‖dν = lim

�

1

�

∫
ln ‖M (�)‖dν.

The convergence of expression (13) is a direct application of the Birkhoff Theo-
rem.

It remains to prove the convergence of the terms in equation (12). Let us equip
R2 with the partial order defined by z = (x, y) ≤ z′ = (x′, y′) if x ≤ x′ and y ≤ y′.
By Definition 4.9 the matrices M(ω) have positive coefficients. Thus if 0 ≤ z ≤ z′,
we obtain for all ω: ‖M(ω)z‖1 ≤ ‖M (ω)(z′)‖1. We deduce immediately that for
each �: ∥∥∥∥M (�)(ω)

(
1

0

)∥∥∥∥
1

≤
∥∥∥∥M (�)(ω)

(
1

1

)∥∥∥∥
1

and∥∥∥∥M (�)(ω)

(
0

1

)∥∥∥∥
1

≤
∥∥∥∥M (�)(ω)

(
1

1

)∥∥∥∥
1

.

(14)

Now we use the correspondence between x ∈ [0, 2] and ω ∈ Ω. Let us consider three
cases:

• If x ∈ (0, 1], then with n =
⌊
1
x

⌋
≥ 1 :

M (x)

(
1

0

)
=

(
2n− 1

n

)
≥
(
1

1

)
and M (x)

(
0

1

)
=

(
2

1

)
≥
(
1

1

)
.
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• If x ∈ (1, 3/2), then with n =
⌊

1
x−1

⌋
≥ 2 :

M(x)

(
0

1

)
=

(
2(n− 1)

1

)
≥
(
1

1

)
, but we also have M (x)

(
1

0

)
=

(
1

0

)
.

• If x ∈ (3/2, 2], then with n =
⌊

1
2−x

⌋
≥ 2 :

M (x)

(
1

0

)
=

(
2n− 1

n− 1

)
≥
(
1

1

)
and M (x)

(
0

1

)
=

(
2

1

)
≥
(
1

1

)
.

By definition of S we remark that if x ∈ [1, 3/2], then S(x) /∈ (1, 3/2). We deduce
from the two preceding inequalities that

M(Sx)M(x)

(
1

0

)
≥ M(Sx)

(
1

0

)
≥
(
1

1

)
.

With equation (14), we deduce for all integers � ≥ 2 that∥∥∥M (�−2)(ω)
(
1
1

)∥∥∥
1
≤
∥∥∥M (�)(ω)

(
1
0

)∥∥∥
1
≤
∥∥∥M (�)(ω)

(
1
1

)∥∥∥
1
,∥∥∥M (�−2)(ω)

(
1
1

)∥∥∥
1
≤
∥∥∥M (�)(ω)

(
0
1

)∥∥∥
1
≤
∥∥∥M (�)(ω)

(
1
1

)∥∥∥
1
.

Finally we have

1

�
ln

∥∥∥∥M (�−2)(ω)

(
1

1

)∥∥∥∥
1

≤ 1

�
ln

∥∥∥∥M (�)(ω)

(
1

0

)∥∥∥∥
1

≤ 1

�
ln

∥∥∥∥M (�)(ω)

(
1

1

)∥∥∥∥
1

,(15)

1

�
ln

∥∥∥∥M (�−2)(ω)

(
1

1

)∥∥∥∥
1

≤ 1

�
ln

∥∥∥∥M (�)(ω)

(
0

1

)∥∥∥∥
1

≤ 1

�
ln

∥∥∥∥M (�)(ω)

(
1

1

)∥∥∥∥
1

.(16)

Since the left and right terms converge to λ(ω), we deduce the convergence of the
terms of equation (12).

The ergodicity of the map, by Proposition 4.7, allows to conclude that the func-
tions λ(ω), lnR(ω), and s(ω) are almost everywhere constant. �

Definition 6.6. We denote respectively by λ, lnR the constant functions associ-
ated to λ(ω), lnR(ω). We also denote s = λ

lnR . We finally define Ω′ as the subset
of Ω for which the previous expressions converge.

Remark that it is straightforward to check that the expressions converge if ω has
an ultimately periodic S expansion.

The main objective of the next two subsections is the computation of the Haus-
dorff dimension of Kω. We shall prove it is equal to s.

6.3. Minoration of the Hausdorff dimension in Theorem 2.10. We use the
measure μ on Kω of Definition 5.10.

Lemma 6.7. For ω ∈ Ω′, we have for each x ∈ Kω:

(17) lim inf
r→0

lnμ
(
B(x, r) ∩ Kω

)
ln r

≥ s.

Proof. Let x be an element of Kω and r > 0. The map h : Σω �→ Kω is onto by
Proposition 5.9; thus there exists an element u ∈ Σω such that x = h(u). Now

consider the integer � such that R(�) ≤
√
2 · r ≤ R(�−1). By Lemma 5.7 there

exists an element C ∈ P� such that u ∈ C. Moreover the set h(C) is included

either in a rectangle of sides (R(�), θ�R
(�)) or in a square of side R(�). This polygon
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contains x. Thus, in any case, it is included inside B(x,
√
2r). We deduce C ⊂

h−1
(
B(x,

√
2r) ∩ Kω

)
and

μ
(
B(x,

√
2r) ∩ Kω

)
= μ̃ω

(
h−1

(
B(x,

√
2r) ∩ Kω

))
≥ μ̃ω(C).

By definition of C, the result of Lemma 5.7 implies that μ̃ω(C) is equal to α� or
β�. We will consider two cases.
Assume first that μ̃ω(C) = α�. Then we have

ln
(
μ
(
B(x,

√
2r) ∩ Kω

))
ln(

√
2r)

≥ lnα�

lnR(�−1)
=

lnα�N
(�)
a

lnR(�−1)
− lnN (�)

a

lnR(�−1)

=
ln
(
1− β�N

(�)
b

)
lnR(�−1)

− lnN (�)
a

lnR(�−1)
.

Since 1− β�N
(�)
b < 1 and R(�−1) < 1 we deduce that

1

ln(
√
2r)

ln
(
μ
(
B(x,

√
2r) ∩ Kω

))
≥ − lnN (�)

a

lnR(�−1)
.

The same proof works if μ̃ω(C) = β�, and we obtain

1

ln(
√
2r)

ln
(
μ
(
B(x,

√
2r) ∩ Kω

))
≥ −min(lnN (�)

a , lnN
(�)
b )

lnR(�−1)
.

Finally we deduce that

lim inf
r→0

lnμ
(
B(x, r) ∩ Kω

)
ln r

≥ lim inf
�

−min(lnN (�)
a , lnN

(�)
b )

lnR(�−1)
.

Due to Lemma 6.4, if ω ∈ Ω′, the expressions converge to the same value s(ω). �

Then by Lemma 6.3 we obtain:

Corollary 6.8. For ω ∈ Ω′ we have dimH(Kω) ≥ s.

6.4. Majoration of the Hausdorff dimension in Theorem 2.10. We refer to
Appendix 6.1 for a quick background on the different notions and notation.

Lemma 6.9. For ω ∈ Ω′, dimH(Kω) ≤ dimB(Kω) ≤ dimB(Kω) ≤ s.

Proof. We want to obtain a majoration of − lim inf
r→0

lnNumb(r)

ln r
.

Remark that if 0 < r < s and Kω ⊂
⋃
B(xi, r), then Kω ⊂

⋃
B(xi, s), and thus

we have Numb(r) ≥ Numb(s). Let us fix r > 0 and denote by � the integer such

that R(�) ≤ r ≤ R(�−1). Now we claim the following fact (proved at the end):

Numb (R(�)) ≤ ln

∥∥∥∥M (S�ω)× · · · ×M(ω)

(
1

1

)∥∥∥∥
1

= lnN (�)(ω).

We deduce for R(�) ≤ r ≤ R(�−1) :

− lnNumb(r)

ln r
≤ − lnN (�)

lnR(�−1)
,

obtaining

dimB(Kω) ≤ − lim sup
lnN (�)

lnR(�−1)
.
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We finish with a proof of the claim. By Lemma 3.6 the set Kω(p�) can be

covered by m
(�)
1,1(ω) +m

(�)
2,1(ω) images of C and m

(�)
1,2(ω) +m

(�)
2,2(ω) images of Rθ�

by some similitudes of ratio R(�). Since Rθ� can be covered by one square of size

1, we deduce that Kω(p�) can be covered by N (�)(ω) squares of size R�. Each such
square is covered by one ball of the same radius, and we have Kω ⊂ Kω(p�). This
finishes the proof of the claim. �

6.5. Conclusion.

Proposition 6.10. For all ω ∈ Ω′, dimH(Kω) = s.

Proof. We have proved the lower bound in Corollary 6.8 and the upper bound in
Lemma 6.9. �

7. Numerical values

7.1. For ν-almost parameter.

Lemma 7.1. For ν-almost ω ∈ Ω,

λ ≤
∫

ln ‖M(ω)‖∞dν(ω) ≤ 3.8.

Proof. Let u ∈ (R+)
2 and ω ∈ Ω′ such that

1

�

�∑
k=0

ln ‖M (Skω)‖∞ →
∫

ln ‖M(ω)‖∞dν(ω) and
1

�
ln ‖M (�)(ω)u‖∞ → λ.

Then, for each �:

1

�
ln ‖M (�)(ω)u‖∞ ≤ 1

�
ln ‖u‖∞ +

1

�

�∑
k=0

ln ‖M (Skω)‖∞.

The limit of the different terms when � tends to infinity gives the result. We refer
to Lemma B.8 for the computation of the integrals. �

First we recall a result of [23] and [24] (Proposition 1.11, p. 25):

Lemma 7.2. Consider the function

f :
Ω → R

ω �→
√
m1,1(ω)m2,2(ω) +

√
m1,2(ω)m2,1(ω).

Then we have

λ = lim
�

1

�

∫
ln ‖M (�)(ω)‖dν(ω) ≥

∫
ln f(ω)dν(ω).

Corollary 7.3. For ν-almost ω ∈ Ω, we obtain

2.66 ≤
∫

ln f(ω)dν(ω) ≤ λ.

Proof. Due to Proposition 4.7 the system is ergodic. Then we apply the
Furstenberg-Kesten Theorem (Theorem B.3 and Corollary B.4) in order to get

λ(ω) = lim
�

1

�

∫
ln ‖M (�)(ω)‖dν(ω).

Now we use Lemma 7.2. The rest of the proof is a simple computation. �
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n 1 2 3 4 5

Hausdorff dimension of K(α2n,−1) 1.637 938 1.450 998 1.370 279 1.325 467 1.296 563

Hausdorff dimension of K(β2n+1,1)
1.338 499 1.300 488 1.276 470 1.259 479 1.246 613

Figure 11. Approximation of the Hausdorff dimensions.

Corollary 7.4. We obtain for ν almost all ω:

1.07 ≤ s ≤ 1.55.

Proof. Recall that by Definition 6.6 we have s = λ
lnR . We use Lemma 7.1; the

numerical values are obtained from equation (20) in Lemma B.8. We deduce that

s ≤
∫
ln ‖M(ω)‖∞dν(ω)∫
ln
(
R(ω)

)
dν(ω)

≤ 3.8

2.46
≤ 1.55.

Then Lemma 7.3 gives

1.07 ≤ 2.66

2.47
≤

∫
ln f(ω)dν(ω)∫

ln
(
R(ω)

)
dν(ω)

≤ s.

�

7.2. Self-similar points. A straightforward computation shows that the fixed
points of S and S are of the following forms:(√

n2 + 1− n,−1
)

and
(√

n(n+ 2)− n, 1
)

for n ∈ N.

Let us define the sequences αn =
√
n2+4−n

2 , βn =
1−n+

√
(n−1)(n+3)

2 . This allows
us to denote these fixed points as

(α2n,−1) and (β2n+1, 1).

Let us compute the Hausdorff dimension for the first family. We apply Theorem
2.10:

dimH(K(α2n,−1)) = lim
�

−
ln
∥∥M (�)(α2n,−1)

∥∥
� ln(α2n)

= lim
�

−
ln
∥∥M �(α2n,−1)

∥∥
� ln(α2n)

.

If λω is the dominant eigenvalue of the matrix M(ω) we obtain

dimH(Kω) = − ln |λω|
ln(α2n)

.

We conclude by the computation of the dominant eigenvalue of
(
2n−1 2

n 1

)
.

Figure 11 shows the numerical values of the dimension. We can compare with
the second statement of Theorem 2.10.

Appendix A. The renormalization map

A.1. Invariant measure for a continued fraction algorithm. We recall the
method introduced by Arnoux and Nogueira [2] and developed in Arnoux-Schmidt;
see [3]. We consider a measure-preserving dynamical system (T, I, B, ν), where
T : I → I is a measurable map on the measurable space (I, B) which preserves
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Figure 12. The sets Kω and Dω for ω = (α2,−1).

Figure 13. The sets Kω and Dω for ω = (β3, 1).

the measure ν (ν is usually a probability measure). A natural extension of the

dynamical system (T, I, B, ν) is an invertible system (T̃ ,Θ, B′, μ) with a surjective

projection π : Θ → I making (T, I, B, ν) a factor of (T̃ ,Θ, B′, μ), and such that
any other invertible system with this property has its projection factoring through
(T̃ ,Θ, B′, μ). The natural extension of a dynamical system exists always and is
unique up to measurable isomorphism; see [17]. Informally, the natural extension is
given by appropriately giving to (forward) T -orbits an infinite (in general) past; an
abstract model of the natural extension is easily built using inverse limits. There
is an efficient heuristic method for explicitly determining a geometric model of
the natural extension of an interval map when this map is given (piecewise) by
Mobius transformations. If the map is given by generators of a Fuchsian group of
finite covolume, then one can hope to realize the natural extension as a factor of
a section of the geodesic flow on the unit tangent bundle of the hyperbolic surface
uniformized by the group.

Definition A.1. An interval map f : I → I is called a piecewise Mobius map if
there is a partition of I into intervals I =

⋃
Iα and a set M := {M(α)} of elements

PSL(2,R) such that the restriction of f to Iα is exactly given by x ∈ Iα → M(α).x.
We call the subgroup of PSL(2,R) generated by M the group generated by f and
denote it by Γf .

We will use the following classical result; see [2].
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Figure 14. A part of the domain Θ and the red curve y = −1/x.

Proposition A.2. Assume dν is a finite nonzero measure, S invariant, such that
the measure of a set is equal to the measure of its closure. There exists Θ ⊂ R2

such that dynamical system (S̃,Θ, dμ) is a natural extension of the dynamical system
(S, [0, 2], dν) where:

• The map S̃ is piecewise defined by the following formula where A ∈ SL2(Z):

S̃ : Θ → Θ

(x, y) �→
(
A(x).x,

−1

A(x).(−1/y)

)
.

• The map S̃ has an invariant measure given by dμ =
dxdy

(1 + xy)2
.

A.2. Invariant measure for the accelerated renormalization map. It re-
mains to find a domain Θ where this map is bijective. The following figure describes
this domain:

Θ Θ

[0, 2] [0, 2]

π

S

S̃

π

Lemma A.3. The domain Θ = [0, 1]× [0, 1] ∪ [1, 2]× R+ ∪ [3/2, 2]× [−1,+∞) is

invariant for the application S̃ defined by

(x, y) �→
(
A(x).x,

−1

A(x).(− 1
y )

)
.

Moreover the map S̃ : Θ �→ Θ is bijective.
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Proof. The proof is based on the following diagrams. The three following images
form a partition of Θ.

We represent the corresponding images by S̃ in the following images. They also
form a partition of Θ. This proves that S̃ is a bijection on Θ.

−3

−2

−1

0

1

2

3

1(2n)
1/(2n+ 1)

0 211/2 3/2

�

Appendix B. Lyapunov exponent and cocycles

B.1. Background on the Lyapunov exponent. We refer to [6].

Definition B.1. A cocycle of the dynamical system (X,T ) is a map M : X×N →
GL2(R) such that

• M(x, 0) = Id for all x ∈ X,
• M(x, n+m) = M(Tn(x),m)M(x, n) for all x ∈ X and n,m ∈ N.

Theorem B.2 (Oseledets). Let (X,T ) be a dynamical system and μ be an invariant
probability measure for this system. Let M be a cocycle over T such that for each
n ∈ N the maps x �→ ln ||M(x, 1)||, x �→ ln ||M(x,−1)|| are L1 integrable with respect
to μ.

Then there exist a measurable map Z from X to R2 \ {0} and two functions λ+

and λ− from X to R which are T -invariant, such that λ+ ≥ λ− and for μ almost
all x and for every nonzero vector z ∈ R2:⎧⎨

⎩
lim 1

n ln ||M(x, n)z|| −→
n→+∞

λ−(x) if z ∈ vect
(
Z(x)

)
,

lim 1
n ln ||M(x, n)z|| −→

n→+∞
λ+(x) if z /∈ vect

(
Z(x)

)
.
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The numbers λ±(x) are called Lyapunov exponents of the cocycle; see [14]
and [9].

Theorem B.3 (Furstenberg-Kesten). Let (X,μ, T ) be a dynamical system and μ
be an invariant probability measure for this system. Suppose that log ||M(x, 1)|| and
log ||M(x,−1)|| are L1(μ) integrable. Then, for μ almost every x:

λ+(x) = lim
n

1

n
ln ‖M(x, n)‖ and λ−(x) =

1

n
lim
n

ln ‖M(x, n)−1‖−1.

The functions λ+ and λ− are T -invariant and∫
λ+dμ = lim

n

1

n

∫
ln ‖M(x, n)‖dμ(x)

and ∫
λ−dμ = lim

n

1

n

∫
ln ‖M(x, n)−1‖−1dμ(x).

Corollary B.4. If μ is an ergodic measure for (X,T ), then λ+ and λ− are constant
μ almost everywhere and

λ+ = lim
n

1

n

∫
ln ‖M(x, n)‖dμ(x) and λ− = lim

n

1

n

∫
ln ‖M(x, n)−1‖−1dμ(x).

B.2. Special case of cocyles in positive matrices in GL2(Z). Assume now
that each matrix has nonnegative coefficients. Then it is clear that for almost
every x:

(18) vect
(
Z(x)

)
∩
(
R∗

+

)2

= ∅.

Recall the metric on PR2 given by

d

((
x
y

)
,

(
z
t

))
= log

max (x/z, y/t)

min (x/z, y/t)
.

Now if M is a positive matrix, then the Lipschitz constant of M is defined by
the following formula and is less than 1; see [5, p. 220]:

L(M) = max
d(Mu,Mv)

d(u, v)
= tanh

(
1

4
ln

(
ad

bc

))
≤ 1.

Thus we deduce (see also [22]):

Lemma B.5. Let (Mn)n be a sequence of positive matrices. If limn L(M1 . . .Mn) =
0, then there exists Z such that for every z ∈ R2

+ the sequence M1 . . .Mnz converges
to Z.

Theorem B.6. Let (X,μ, T ) be a dynamical system and μ be an ergodic probability
measure for this system. Let MX → GL2(Z) ∩M2(N) be a measurable map.

We suppose that for almost each x ∈ X, M(x) is hyperbolic.
Then, there exists a measurable map x → zx such that for almost each z ∈ R2

+,

lim
n→+∞

M(x)× · · · ×M(Tnx)(R2
+) = R+ · zx.

We recall that a matrix is hyperbolic if |tr(M)| > 2.
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Remark that a compact subgroup of GL2(R) is included up to conjugation in
O(2). Thus we can replace one hypothesis by for each integer n, Mn is a positive
matrix and

(19) μ
(
x ∈ X;M(x) is hyperbolic

)
> 0.

B.3. Cocycles over the system (Ω, S, ν) and over (Ω,S,ν). The next lemma
explains why we do not work with the system (Ω, S, ν).

Lemma B.7. The maps ω �→ ln ‖M(ω)‖ and ω �→ ln
∥∥M(ω)−1

∥∥ are not L1 inte-
grable with respect to ν.

Proof. The matrices M(ω) are in M2(N) and then ln ‖Mω‖1 is positive.
We consider the identification between Ω and [0, 2]. Then ln ‖M(ω)‖1 = ln(2) if

ω ∈ [1, 3/2] and a density of ν is 1
x(x−1) on [1, 3/2]. �

Lemma B.8. We have:

(1) The function ω → ln r is in L1(ν).
(2) The functions ω → ln ‖M(ω)‖ and ω → ln ‖M (ω)−1‖ are in L1(ν).

Moreover

(20)

∫
ln ‖M (ω)‖∞dν(ω) ≤ 3.8 and 2.46 ≤

∫
ln r(ω)dν(ω) ≤ 2.47.

Proof. We find that∫
ln ‖M (x)‖∞dν(x)=

∫
ln ◦max

(
m1,1(x) +m1,2(x),m2,1(x) +m2,2(x)

)
dν(x)

=
∑
n≥1

∫ 1
n

1
n+1

ln ◦max
(
2n+ 1, n+ 1)

) 1

x+ 1
dx

+
∑
n≥2

∫ 1+ 1
n

1+ 1
n+1

ln ◦max
(
2n− 1, 1

) 1
x
dx

+
∑
n≥2

∫ 2− 1
n+1

2− 1
n

ln ◦max
(
2n+ 1, n

) 1

x− 1
dx

=
∑
n≥1

ln(2n+ 1)

∫ 1
n

1
n+1

1

x+ 1
dx+

∑
n≥2

ln(2n− 1)

∫ 1+ 1
n

1+ 1
n+1

1

x
dx

+
∑
n≥2

ln(2n+ 1)

∫ 2− 1
n+1

2− 1
n

1

x− 1
dx

and∫
ln r(x)dν(x) =

∫ 1

0

ln r(x)
1

x+ 1
dx+

∫ 3/2

1

ln r(x)
1

x
dx+

∫ 2

3/2

ln r(x)
1

x− 1
dx

= −
∫ 1

0

ln(x)

x+ 1
dx+

∑
n≥2

∫ 1+ 1
n

1+ 1
n+1

ln r(x)
1

x
dx−

∫ 2

3/2

ln(2− x)

x− 1
dx

= −
∫ 1

0

ln(x)

x+ 1
dx−

∑
n≥2

∫ 1+ 1
n

1+ 1
n+1

ln
(
n− (n− 1)x

)
x

dx

−
∫ 2

3/2
ln(2−x)
x−1 dx.

�
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