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MOST SECANT VARIETIES OF TANGENTIAL VARIETIES
TO VERONESE VARIETIES ARE NONDEFECTIVE

HIROTACHI ABO AND NICK VANNIEUWENHOVEN

Abstract. We prove a conjecture stated by Catalisano, Geramita, and
Gimigliano in 2002, which claims that the secant varieties of tangential va-
rieties to the dth Veronese embedding of the projective n-space Pn have the
expected dimension, modulo a few well-known exceptions. It is arguably the
first complete result on the dimensions of secant varieties of a classically stud-
ied variety since the work of Alexander and Hirschowitz in 1995. As Bernardi,
Catalisano, Gimigliano, and Idá demonstrated that the proof of this conjec-
ture may be reduced to the case of cubics, i.e., d = 3, the main contribution
of this work is the resolution of this base case. The proposed proof proceeds
by induction on the dimension n of the projective space via a specialization
argument. This reduces the proof to a large number of initial cases for the
induction, which were settled using a computer-assisted proof. The individ-
ual base cases were computationally challenging problems. Indeed, the largest
base case required us to deal with the tangential variety to the third Veronese
embedding of P79 in P88559.

1. Introduction

Consider the ring of complex polynomials in (n + 1) variables, i.e.,

R = C[x0, x1, . . . , xn] =
⊕
d≥0

Sd(Cn+1),

where Sd(Cn+1) denotes the dth symmetric power of Cn+1. The homogeneous
polynomials of R of degree d will be referred to as d-forms. Every d-form admits a
so-called Waring decomposition into a sum of powers of linear forms:

f =
s∑

i=1
(λi,0x0 + λi,1x1 + · · · + λi,nxn)d =

s∑
i=1

�di ;(1.1)

if the length of the decomposition, i.e., s, is minimal, then it is called the Waring
rank (or just rank) of f . A basic question to ask is: “What is the rank of the
generic d-form f?” This question can be rephrased geometrically.

Let P(Sd(Cn+1)) be the projective space of Sd(Cn+1), so that every element of
the former space can be written as [f ] = {α f |α ∈ C \ {0}} for some nonzero f ∈
Sd(Cn+1). Note that a d-form and its nonzero scalar multiple have the same rank.
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Therefore, the rank of an element [f ] ∈ P(Sd(Cn+1)) can be defined unambiguously
as the rank of the d-form f . The set of rank-one elements of P(Sd(Cn+1)) forms
a nonsingular, nondegenerate n-dimensional subvariety called the dth Veronese
variety, which we denote by Vn,d. An element of P(Sd(Cn+1)) has rank s if and
only if it lies in a “secant (s− 1)-plane to Vn,d”, i.e., an (s− 1)-dimensional linear
subspace spanned by s points of Vn,d. Since the sth secant variety σs(Vn,d) of
Vn,d is defined as the Zariski closure of the union of secant (s − 1)-planes to Vn,d,
it follows that the Zariski closure of the set of rank-s elements of P(Sd(Cn+1))
is precisely σs(Vn,d). Hence, the d-forms that admit an expression as in (1.1) of
length s constitute a dense constructible subset of the affine cone over σs(Vn,d). By
definition, we have an ascending chain of varieties

Vn,d = σ1(Vn,d) ⊂ σ2(Vn,d) ⊂ · · · ⊂ σs(Vn,d) ⊂ · · · .
Since every d-form admits a Waring decomposition of finite length, this ascending
chain becomes stationary, i.e., we have σs(Vn,d) = P(Sd(Cn+1)) for a sufficiently
large s ∈ N. This implies that the problem of determining the rank of the generic
d-form is equivalent to the problem of finding the least positive integer s such that
σs(Vn,d) = P(Sd(Cn+1)).

According to Brambilla and Ottaviani [10], the origins of Waring’s problem, i.e.,
the problem of finding the Waring rank of the generic d-form, can be traced back
some 150 years to Sylvester, Campbell, Palatini, and Terracini, but it was not until
the end of the 20th century that Alexander and Hirschowitz completely solved the
problem in a series of papers culminating in their well-known 1995 paper [6].

Variations of Waring’s problem can be obtained by modifying the concept of
the rank of d-form. A natural alternative definition of the rank of d-form is the
Chow rank, which was recently considered in [2,7,27,30]. Every d-form f in (n+1)
variables is expressible as a sum of a finite number of completely decomposable
d-forms, i.e., d-forms that can be written as products of d linear forms:

f =
s∑

i=1

d∏
j=1

(λi,j,0x0 + λi,j,1x1 + · · · + λi,j,nxn) =
s∑

i=1
�i,1�i,2 · · · �i,d.(1.2)

The minimum number of completely decomposable d-forms that sum up to a d-
form is then called the Chow rank of the d-form. We propose to call (1.2) a
Chow decomposition. As an analogy to Waring’s problem, one may seek the least
positive integer s such that a general d-form has Chow rank s. Geometrically,
this Chow’s problem is equivalent to finding the least positive integer s such that
the sth secant variety of the Chow variety Cn,d parameterizing the zero cycles of
degree d in P(Cn+1) coincides with its ambient space P(Sd(Cn+1)); see, e.g., [21]
for the definition of the Chow variety. The value of such an s is believed to be⌈(

n+d
d

)
/(nd + 1)

⌉
for most values of n and d. Recently, it was proved that this

is actually the case for ternary forms [2]. This is the first nontrivial case, as the
conjecture for the binary case is trivially true because of the fundamental theorem
of algebra. Nevertheless, in the general case, the conjecture is still wide open, and
new ideas are necessary to prove (or disprove) this conjecture.

In this paper, we attempt to further our understanding of the aforementioned
conjecture by investigating an intermediate case between Waring’s problem, which
was resolved, and Chow’s problem, which is wide open. This idea was inspired
by the family of problems consisting of decomposing a partially symmetric tensor
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into a sum of rank-one partially symmetric tensors in Sd1(Cn+1) ⊗ Sd2(Cn+1) ⊗
· · · ⊗ Sdk

(Cn+1) for some partition (d1, d2, . . . , dk) of d; see [15] and [24, Sections
3.6, 5.5.3, and 5.7] for a geometric interpretation of such decompositions, and see
[1, 3, 4, 23] for recent progress on these problems. This family of problems includes
as special cases the original Waring problem, where the partition is (d), as well as
the general tensor decomposition problem, where the partition is (1, 1, . . . , 1).

We envisage a whole spectrum of decompositions intermediate between the two
extreme cases (1.1) and (1.2). For a fixed partition d = (d1, . . . , dk) of a positive
integer d, consider a d-form that splits completely into linear forms as follows:
�d1
1 �d2

2 · · · �dk

k . Every d-form f ∈ Sd(Cn+1) can be expressed as a finite sum of such
d-forms:

(1.3) f =
s∑

i=1

k∏
j=1

(λi,j,0x0 + · · · + λi,j,nxn)dj =
s∑

i=1

k∏
j=1

�
dj

i,j .

We call (1.3) a dth Chow–Waring decomposition of f . If the decomposition (1.3)
has the shortest length, then s is called the dth Chow–Waring rank of f . It goes
without saying that (1.3) is a Waring decomposition of f if d = (d), while it is a
Chow decomposition of f if d = (1, . . . , 1). Hence, the family of problems of finding
the generic dth Chow–Waring rank of P(Sd(Cn+1)), i.e., the least positive integer
s such that the generic f ∈ Sd(Cn+1) has dth Chow–Waring rank s, contains both
Waring’s and Chow’s problems as special cases. Recently, the problem of finding the
generic dth Chow–Waring rank of P(Sd(Cn+1)) was also considered independently
by Catalisano, Chiantini, Geramita and Oneto in [13].

A geometric interpretation of the above-mentioned problem is as follows.
Consider the map of (Pn)k into P(Sd(Cn+1)) defined by ([�1], [�2], . . . , [�k]) �→
[�d1

1 �d2
2 · · · �dk

k ]. We call this map the dth Chow–Veronese map of Pn and its image,
denoted by CVn,d, the dth Chow–Veronese variety. The dth Veronese embedding
Vn,d of P(Cn+1) and the Chow variety Cn,d in P(Cn+1) are both special types of
Chow–Veronese varieties; namely, CVn,(d) = Vn,d and CVn,(1,...,1) = Cn,d. As in the
case of Veronese varieties and Chow varieties, finding the least positive integer s
such that the sth secant variety of CVn,d fills P(Sd(Cn+1)) and finding the generic
dth Chow–Waring rank of P(Sd(Cn+1)) are equivalent.

The only dth Chow–Waring problem that has been completely settled so far is
the case where d = (d), i.e., the original Waring’s problem. This paper shall be
concerned with a modest first step towards the resolution of the dth Chow–Waring
problem. It will be our goal to determine—in all cases—the (d − 1, 1)th generic
Chow–Waring rank of P(Sd(Cn+1)).

The (d−1, 1)th Chow–Veronese variety CVn,(d−1,1) is more commonly known as
the tangent variety Tn,d of Vn,d. Determining the generic (d−1, 1)th Chow–Waring
rank of P(Sd(Cn+1)) is therefore equivalent to finding the least positive integer s
such that σs(Tn,d) = P(Sd(Cn+1)); this is a problem that has already received some
attention in the literature [8, 9, 14]. As points on Tn,d can be parameterized as
[�d−1m] with �,m ∈ Cn+1, it follows immediately from a standard parameter count
that

(1.4) dim σs(Tn,d) ≤ min {(2n + 1)s, N(n, d)} − 1, where N(n, d) =
(
n + d

d

)
.

We call the quantity on the right-hand side of the above inequality the expected
dimension of σs(Tn,d). The sth secant variety σs(Tn,d) to Tn,d is said to be defective
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if equality does not hold in (1.4). Otherwise we say that σs(Tn,d) is nondefective.
Catalisano, Geramita, and Gimigliano [14] conjectured in 2002 that σs(Tn,d) is
always nondefective, unless it is one of the exceptional cases in the statement of
Theorem 1.1. The main contribution of this paper is a proof of the Catalisano–
Geramita–Gimigliano (CGG) conjecture. To be more precise, we will prove the
following result.

Theorem 1.1. The sth secant variety σs(Tn,d) of the tangential variety Tn,d to
the Veronese variety Vn,d is nondefective, except in the following cases:

(i) d = 2 and 2 ≤ 2s < n; and
(ii) d = 3 and s = n = 2, 3, and 4.

To the best of our knowledge, all the defective cases listed in Theorem 1.1 were
first found by Catalisano, Geramita, and Gimigliano in [14]. Please consult [14,
Propositions 3.2, 3.3, and 3.4] for the detailed descriptions of these defective cases.

The following is an immediate consequence of Theorem 1.1, which completely
solves the (d− 1, 1)th Chow–Waring problem.

Corollary 1.2. The generic (d− 1, 1)th Chow–Waring rank of P(S3(Cn+1)) is

s =
⌈
N(n, d)
2n + 1

⌉
,

unless (d, n, s) is one of the defective cases listed in Theorem 1.1. In the defective
cases with d = 3, the generic rank equals s + 1, while for d = 2, the generic rank
is 1 + �n/2	.

We would be remiss if we did not mention that there has been significant previous
work toward the completion of the CGG conjecture. In [14], Catalisano, Geramita,
and Gimigliano proved that the CGG conjecture is true for the following two cases;
namely, the first is the case where d = 2 and n, s are arbitrary, and the second is
the case where s ≤ 5 and n, d are arbitrary. In particular, the CGG conjecture was
proved to be true for d = 3, n ∈ {2, 3, 4}, and an arbitrary s. Another important
result was obtained by Ballico. In [8], he showed that the CGG conjecture holds
for n ∈ {2, 3} and for arbitrary d and s.

A major breakthrough was made by Bernardi, Catalisano, Gimigliano, and Idá
in 2009, who showed in [9, Corollary 2.5] that if the CGG conjecture holds for d = 3,
then it also holds for d ≥ 4. Additionally, they proved by an explicit computation
in the commutative algebra software CoCoA that the CGG conjecture holds for
n ≤ 9. Therefore, the novel contribution of this work concerns only the cases where
d = 3 and n ≥ 10. We prove that there are no defective cases other than (i) and
(ii) in Theorem 1.1.

The proof of Theorem 1.1 proceeds via an inductive approach based on a special-
ization technique, which was inspired by the paper of Brambilla and Ottaviani [10].
This inductive approach reduces the problem to a finite number of base cases. Em-
ploying a computer-assisted proof whose key step consists of computing the ranks
of several very large integer matrices, we proved that these base cases are true.
This turned out to be a computationally challenging problem, which we alleviated
by exploiting the particular structure of aforementioned matrices.

An application in which secant varieties of Chow–Veronese varieties naturally
appear is the design of efficient algorithms for evaluating multivariate polynomials.
From a practical viewpoint, knowledge of a dth Chow–Waring decomposition of a
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specific polynomial f results in tremendous savings in the (multiplicative) complex-
ity for the evaluation of f(x0, x1, . . . , xn). Indeed, if the polynomial is given naively
through its coefficients, i.e., f =

∑
0≤i1≤···≤id≤n ci1,...,idxi1 · · ·xid , then evaluating

it requires d multiplications for each of the
(
n+d
d

)
terms. However, if we know that

there is a k such that f admits (d1, . . . , dk)th Chow–Waring rank r, then we also
know that there exists an algorithm for evaluating the polynomial whose multi-
plicative complexity is only k(n+ 1) + d− 1 multiplications for each of the r terms
in the Chow–Waring decomposition, namely by first evaluating each of the linear
forms, taking the appropriate products, and then summing.

Aside from the foregoing very practical application, there is also theoretical inter-
est in complexity theory in finding the minimal multiplicative complexity of simple
computations involving only multiplication and summation. They are modeled as
arithmetic circuits which are essentially finite, labeled, directed, acyclic graphs; see,
e.g., [12,25,28]. Of particular interest are so-called depth-3 ΣΠΣ circuits which are
trees with 3 levels representing precisely the polynomials that can be written as in
(1.2), where s corresponds precisely with the number of inbound edges at the root
of the tree [28]. The overarching goal in arithmetic complexity theory consists of
finding low-degree families of explicit polynomials that nevertheless admit super-
polynomial growth of their arithmetic circuit size because of their ramifications to
the separation of various algebraic complexity classes [11,28]. Since several notions
of the size of the circuit all depend intrinsically on the rank s of the Chow decompo-
sition, it is essentially the study of the secant varieties of Chow varieties. Similarly,
the honest part of the s-secant variety of a dth Chow–Veronese variety corresponds
with a special subset of depth-3 ΣΠΣ circuits that could be easier to study—as
evidenced by the fact that we know the dimensions of these varieties already in
two cases: d = (d) by the Alexander–Hirschowitz theorem, and d = (d − 1, 1) by
Theorem 1.1.

The outline of the remainder of this paper is as follows. In the next section, we
recall some basic properties of tangential varieties of Veronese varieties. Section 3
describes the aforementioned inductive approach and illustrates how it will be used
to prove Theorem 1.1. The main goal of this section is to state the inductive step
(Proposition 3.6) as well as list the base cases of the induction (Corollary 3.7).
Section 4 will be devoted to the proof of Proposition 3.6. In Section 5, we will
verify the base cases to complete the proof of Theorem 1.1.

2. Preliminaries

This section recalls some basic results on secant varieties of tangential varieties
to Veronese varieties. First, we introduce some notation. Let U be an (n + 1)-
dimensional vector space over C. We denote by P(U), or simply P

n, the projective
space of lines in U passing through the origin. Throughout this paper, we write
[v] for the equivalence class containing a nonzero vector v of U . For any closed
subscheme X of Pn, we denote by

– IX the ideal of X;
– IX the ideal sheaf of X;
– hP(U)(X,−) the Hilbert function of X; and
– X̂ ⊆ U the affine cone over X.
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If X ⊂ P(U) is a variety, then Tp(X) denotes the projective tangent space to X at
p ∈ X.

2.1. Tangential varieties. Let ν̃n,d : U → Sd(U) be the map defined by sending
� ∈ U to �d ∈ Sd(U). This map induces the so-called dth Veronese map νn,d :
P(U) → P(Sd(U)). The image of νn,d is the Veronese variety Vn,d. Let dν̃n,d :
T�(U) → T�d

(
Sd(U)

)
be the differential of ν̃n,d at � ∈ U \ {0}, where T�(U) is the

tangent space to U at � and T�d
(
Sd(U)

)
is the tangent space to Sd(U) at �d. By

taking the derivative of the parametric curve (�+ tm)d, m ∈ U , one can show that
�d−1U is the image of dν̃n,d, i.e., the affine cone T̂[�d](Vn,d) over the tangent space
T[�d](Vn,d) to Vn,d at [�d].

Let Tn,d denote the tangential variety of Vn,d, i.e.,

Tn,d =
⋃

[�d]∈Vn,d

T[�d](Vn,d),

where the overline denotes the Zariski closure in P(Sd(U)). Let T̂n,d be the affine
cone over Tn,d in Sd(U). Define a map ϕ : U × U → Sd(U) by ϕ(�,m) = �d−1m.
Again, taking the derivative of the parametric curve (� + t�′)d−1(m + tm′) with
�′,m′ ∈ U proves that the image of the differential dϕ of ϕ at a generic point
(�,m) ∈ U × U is given by

T̂[�d−1m](Tn,d) = �d−1U + �d−2mU.(2.1)
Hence, it follows that Tn,d is irreducible of dimension 2n and that its singular locus
is Vn,d; see Proposition 1.1 in [14] for more details.

The sth secant variety σs(Tn,d) of the tangential variety Tn,d is defined as the
Zariski closure of the projectivization of the image of the map

σ̃s :
(
T̂n,d

)s
= T̂n,d × · · · × T̂n,d → Sd(Cn+1)

(�d−1
1 m1, . . . , �

d−1
s ms) �→

s∑
i=1

�d−1
i mi.

Its dimension satisfies inequality (1.4). If equality holds, or, equivalently, if the sth
secant variety of the tangential variety Tn,d is nondefective, then we say that the
statement T (n, d; s) is true, otherwise we say that it is false. If (2n+1)s ≤ N(n, d),
then we say that T (n, d; s) is subabundant. On the other hand, if (2n + 1)s ≥
N(n, d), then we say that T (n, d; s) is superabundant. A statement that is simul-
taneously subabundant and superabundant is called equiabundant.

For determining the dimension of σs(Tn,d), we may consider the dimension of
the projective tangent space Tp

(
σs(Tn,d)

)
at a generic point p ∈ σs(Tn,d). The

following classical theorem, which is essentially due to Terracini [29], describes the
tangent space to the secant variety σs(Tn,d) at a generic point in terms of tangent
spaces to Tn,d.

Lemma 2.1 (Terracini’s lemma). Let [�d−1
1 m1], . . . , [�d−1

s ms] ∈ Tn,d be s generic
points, and let q be a generic point of the subspace of P(Sd(U)) spanned by them.
Then, the affine cone over the tangent space at q is given by

T̂q

(
σs(Tn,d)

)
=

s∑
i=1

T̂[�d−1
i

mi](Tn,d).
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Proof. The tangent space to (T̂n,d)s at (�d−1
1 m1, . . . , �

d−1
s ms) is given by⊕s

i=1 T̂[�d−1
i mi](Tn,d). Since σ̃s is obtained from the map (Sd(U))s → Sd(U) defined

by sending (v1, . . . , vs) to
∑s

i=1 vi by restricting to (T̂n,d)s, the image of the differ-
ential of σ̃s at

∑s
i=1 �

d−1
i mi is

∑s
i=1 T̂[�d−1

i mi] (Tn,d), which completes the proof. �

Remark 2.2. Terracini’s lemma will be the main computational tool that we employ
in Section 5 for proving the truths of the base cases of our inductive proof of
Theorem 1.1. Note that if

∑s
i=1 T̂pi

(Tn,d) has the expected dimension for some
specific choice of points p1, . . . , ps ∈ Tn,d, then the foregoing linear space also has
the expected dimension for a generic choice of points, by semicontinuity. Thus, in
order to prove the truth of T (n, d; s), it suffices to show that dim

∑s
i=1 T̂pi

(Tn,d)
equals the expected value for any convenient choice of points p1, . . . , ps ∈ Tn,d.

2.2. Hilbert function. Let p ∈ Tn,d be generic. Then, there exist two distinct
points [�], [m] ∈ P(U) such that p = [�d−1m]. Let L be the line in P(U) passing
through [�] and [m]. We call the zero-dimensional closed subscheme of P(U) defined
by I3

[�] + I2
L the (2, 3)-point associated with p and denote it by p2,3.

In [14, Section 2], Catalisano, Geramita, and Gimigliano demonstrated that the
subspace H0(

P(U),Ip2,3(d)
)

formed by hypersurfaces of degree d in P(U) contain-
ing p2,3 can be identified with the subspace of hyperplanes in P(Sd(U)) containing
Tp(Tn,d). In particular, the Hilbert function is

hP(U)

(
p2,3, d

)
= N(n, d) − dim

(
I3
[�] + I2

L

)
d

= N(n, d) − dimH0 (
P(U),Ip2,3(d)

)
= dim T̂p(Tn,d)
= 2n + 1.

Let p1, . . . , ps ∈ Tn,d be generic points, let p2,3
1 , . . . , p2,3

s be their respective asso-
ciated (2, 3)-points, and let Z = {p2,3

1 , . . . , p2,3
s }. Since

H0 (P(U),IZ(d)) = (IZ)d =

(
s⋂

i=1
Ip2,3

i

)
d

=
s⋂

i=1

(
Ip2,3

i

)
d

=
s⋂

i=1
H0

(
P(U),Ip2,3

i
(d)
)
,

we can view H0 (P(U),IZ(d)) as the subspace of Sd(U) spanned by hyperplanes
containing the linear span of Tp1(Tn,d), . . . , Tps

(Tn,d). Furthermore, since each p2,3
i

imposes 2n + 1 linearly independent conditions on hypersurfaces of degree d, we
have

dimH0 (P(U),IZ(d)) ≥ max {N(n, d) − (2n + 1)s, 0} ,
or, equivalently,

(2.2) hP(U)(Z, d) = N(n, d) − dimH0 (P(U),IZ(d)) ≤ min {(2n + 1)s, N(n, d)} ,
with equality occurring if and only if one of the following holds:

(i) s ≤ �N(n, d)/(2n + 1)	 and all the p2,3
i impose linearly independent condi-

tions on hypersurfaces of degree d;
(ii) s ≥ �N(n, d)/(2n + 1) and there are no hypersurfaces of degree d contain-

ing Z.
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Therefore, it follows from Lemma 2.1 that showing the truth of T (n, d; s) is equiv-
alent to showing that the Hilbert function of Z has the expected value at d.

3. Induction

In the remainder, we shall be concerned with proving Theorem 1.1 in the case
d = 3, as the general case d ≥ 4 then follows from [9, Corollary 2.5]. For brevity,
we shall write Vn for the third Veronese embedding of U in P(S3(U)) and Tn for its
tangential variety. The affine cone over Tn will be denoted by T̂n and the dimension
of P(S3(U)) is denoted by N(n) = N(n, 3) =

(
n+3

3
)
. The main purpose of this

section is to introduce the inductive method that we pursue for proving that the
secant varieties σs(Tn) of Tn have the expected dimension except for s = n = 2, 3, 4.

3.1. Subabundance and superabundance. Proving nondefectivity of all sth
secant varieties of Tn is simplified by the fact that usually only two cases need
to be proved, namely σs1(Tn,d) and σs2(Tn,d), where s1 is the largest integer such
that T (n, 3; s1) is subabundant and s2 is the least integer such that T (n, 3; s2) is
superabundant. Naturally s2 − s1 ≤ 1. We claim that s1 and s2 have the following
explicit expressions if n ≥ 8. For such an n, let q and r be the quotient and the
remainder after division of n by 24. Define

s1(n) = 48q2 + (11 + 4r)q +
⌊
(4r2 + 22r + 33)/48

⌋
and s2(n) = s1(n) + 1.

Note that, for i ∈ {1, 2} and n ≥ 32, we may define
t(n) = si(n) − si(n− 24) = 96q + 4r − 37 = 4n− 37,

and, hence, for n ≥ 56 one has t(n)− t(n− 24) = 96. The next lemma entails that
T (n, 3; s1(n)) is subabundant and T (n, 3; s2(n)) is superabundant.

Proposition 3.1. Let n ≥ 8. Then, s1(n) = �N(n)/(2n + 1)	 and s2(n) =
�N(n)/(2n + 1).
Proof. As before, we write q and r for the quotient and remainder in the division of
n by 24 respectively. Let M(24q+r) = N(24q+r)−

(
48q2+(4r+11)q

)
(48q+2r+1)

and let f(r) = (4r2 + 22r + 33)/48. Then it can be verified that
M(24q + r)
48q + 2r + 1

= f(r) + 5
16(48q + 2r + 1)

.

Note that 48q+2r+1 = 2n+1, and so, in order to prove Proposition 3.1, it suffices
to show that ⌊

M(24q + r)
48q + 2r + 1

⌋
= �f(r)	

for n ≥ 8. To do so, it is enough to show that

(3.1) 0 < f(r) − �f(r)	 + 5
16(48q + 2r + 1)

< 1.

Assume that q = 0, i.e., n = r. Then, straightforward calculations show that

0 < f(r) − �f(r)	 + 5
16(2r + 1)

≤ 1

with equality if and only if r ∈ {1, 2, 7}. This also implies that inequality (3.1)
holds for every q ∈ N and for every r ∈ {0, . . . , 23}, because

0 <
5

16(48q + 2r + 1)
<

5
16(2r + 1)
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for such a q. We can therefore conclude that if n ∈ N with n ≥ 8, then N(n)/
(2n + 1) �∈ N and s1(n) = �N(n)/(2n + 1)	, from which it follows immediately
that s2(n) = �N(n)/(2n + 1). Thus, we completed the proof. �

The foregoing implies that s1(n) is the largest value of s for which T (n, 3; s) is
subabundant, and, similarly, s2(n) is the smallest value of s for which T (n, 3; s) is
superabundant. The following is an immediate consequence of Lemma 2.1.

Lemma 3.2. Let s ≥ 2. We have:
(i) If T (n, d; s) is true and subabundant, then T (n, d; s − 1) is also true and

subabundant.
(ii) If T (n, d; s) is true and superabundant, then T (n, d; s+1) is also true and

superabundant.

Consequently, for concluding the proof of Theorem 1.1, it suffices to demonstrate
that both T (n, 3; s1(n)) and T (n, 3; s2(n)) are true. It is important to recall that the
requirement n ≥ 8 in the explicit definitions of s1(n) and s2(n) is not a limitation
because T (n, d; s) is known to be true for n ≤ 9. It is also interesting to note that
T (2, 3; 2) and T (7, 3; 8) are the only statements that are equiabundant; the former
statement is false and the latter statement will be shown to be true. The fact that
T (7, 3; 8) is equiabundant is the reason why we restrain ourselves to n ≥ 8 in our
proof of Theorem 1.1, as it would introduce some unpleasant special cases in the
inductive proof that will be considered in Section 3.3.

3.2. Convenient subspaces. In order to prove that T (n, 3; si(n)) is true for each
i ∈ {1, 2}, we specialize a subset of the si(n) points of Tn to 24-codimensional linear
sections of Tn and show that the linear span of the tangent spaces to Tn at such
points has the expected dimension.

Let n ≥ 72. Let B = {x0, . . . , xn} be a basis of U , and then we define the
standard subspaces as Ui = Span(B \ Bi) with Bi = {x24(i−1), . . . , x24i−1} for
i = 1, 2, and 3. We also introduce the notation U i = Span(Bi) and Li = P(Ui).
Finally, we shall denote the linear span of the third Veronese embedding of Ui by
Si = P(S3(Ui)) for i ∈ {1, 2, 3}, and S denotes P(S3(U)).

In the next sections, we regularly exploit the following basic property of the
subspaces Ui: Let K ⊆ {1, 2, 3}. Then,

⋂
j∈K

Sj = P

⎛⎝S3

⎛⎝⋂
j∈K

Uj

⎞⎠⎞⎠ .

A proof of the above statement is obtained by observing that B \
(⋃

j∈K Bj

)
is a

basis for the affine cone over the left-hand side of the equality. As a consequence,
we also find

p = [�d−1m] ∈ Tn,d ∩

⎛⎝⋂
j∈K

Sj

⎞⎠ iff �,m ∈
⋂
j∈K

Uj .

These statements can be proved in a straightforward manner.
We start with the following observation. Consider any i ∈ {1, 2, 3}, and let

q ∈ Tn ∩Si be generic. Then, it follows from the above observation that there exist
generic �,m ∈ Ui such that q = [�2m]. The affine cone over the tangent space at q
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to Tn is given by T̂q(Tn) = �2U + �mU (see (2.1)). Note that adding S3(Ui) to the
previous equality results in

T̂q(Tn) + S3(Ui) = �2U i + �mU i + S3(Ui)(3.2)

because the sums �2U = �2Ui + �2U i and �mU = �mUi + �mU i are direct and
�2Ui, �mUi ⊂ S3(Ui). The sum (3.2) is direct when � �∈ [m], which is satisfied by a
generic choice of �,m ∈ Ui if dimUi = n− 24 > 1. It follows, therefore, that

(3.3) dim
(
S3(Ui) + T̂q(Tn)

)
= N(n− 24) + 48.

The next result concerns the dimension of the vector space sum of some of the
S3(Ui)’s.

Lemma 3.3. Let 1 ≤ k ≤ 3. Then we have

dim
k∑

j=1
S3(Uj) =

k∑
j=1

(−1)j−1
(
k

j

)
N(n− 24j).

Proof. With our choice of basis of U , a basis of S3(U) is given by E = {xixjxk | 0 ≤
i ≤ j ≤ k ≤ n}. Similarly, given our choice of the subspaces Ul, it follows that a
basis of S3(Ul), l = 1, 2, 3, is given explicitly by

Fl =
{
xixjxk | 0 ≤ i ≤ j ≤ k ≤ n, i, j, k �∈ {24(l − 1), 24(l − 1) + 1, . . . , 24l − 1}

}
.

Joining the bases, we note that determining the dimension of the span of F =
F1∪ · · ·∪Fk becomes a particularly simple task because any two elements v, w ∈ F
are either equal or distinct basis vectors of E. Hence, it suffices to count the
number of distinct vectors xixjxk appearing in F . This is the problem of computing
|F1 ∪ · · · ∪Fk|, which can be solved directly with the Inclusion–Exclusion Principle
for sets, i.e.,

|F1 ∪ · · · ∪ Fk| =
∑

∅�=K⊂{1,...,k}
(−1)|K|−1

∣∣∣∣∣∣
⋂
j∈K

Fj

∣∣∣∣∣∣ ;
since |

⋂
j∈K Fj | = N(n− 24|K|) by straightforward computation, the formula fol-

lows and the proof is concluded. �
Based on (3.3) and Lemma 3.3, we are led to the following proposition.

Proposition 3.4. Let χ : N ∪ {0} → {0, 1} be the function defined by

χ(a) =
{

0 if a = 0,
1 if a �= 0.

For a given nonnegative integer s, let p1, . . . , ps be generic points of Tn. For each
i ∈ {1, 2, 3} and a triplet (a1, a2, a3) of nonnegative integers, let qi,1, . . . , qi,ai

be
generic points of Tn ∩ Si. Let k = χ(a1) + χ(a2) + χ(a3). Then, the subspace

(3.4) W (n, s; a1, a2, a3) =
3∑

i=1
χ(ai)

⎛⎝S3(Ui) +
ai∑
j=1

T̂qi,j (Tn)

⎞⎠+
s∑

i=1
T̂pi

(Tn)

of S3(U) has at most dimension

(3.5) min

⎧⎨⎩
k∑

j=1
(−1)j−1

(
k

j

)
N(n− 24j) + 48

3∑
i=1

ai + (2n + 1)s, N(n)

⎫⎬⎭ .
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Following [5], we introduce the following terminology. Let w(n, s; a1, a2, a3) be
the integer (3.5) and let T (n, s; a1, a2, a3) be the statement that (3.4) has the ex-
pected dimension, i.e., it has dimension w(n, s; a1, a2, a3). Note that T (n, s; 0, 0, 0)
is the same as T (n, 3; s). If w(n, s; a1, a2, a3) equals the first item in the mini-
mization in (3.5), then we say that the statement T (n, s; a1, a2, a3) is subabundant.
On the other hand, if w(n, s; a1, a2, a3) = N(n), then we say that the statement
T (n, s; a1, a2, a3) is superabundant. If T (n, s; a1, a2, a3) is simultaneously subabun-
dant and superabundant, then we say that it is equiabundant.

Remark 3.5. We continue to use the notation introduced at the beginning of Sec-
tion 3.2.

Recall from Section 2.2 that if p ∈ Tn is generic, then p2,3 denotes the (2, 3)-
point associated with p. Let p1, . . . , ps ∈ Tn \

⋃3
i=1 Si. For each i ∈ {1, 2, 3}, let

qi,1, . . . , qi,ai
∈ Tn∩Si. For each i ∈ {1, 2, 3}, the symbol χ(ai)Li means Li = P(Ui)

if ai �= 0 and ∅ otherwise. Let L =
⋃3

i=1 χ(ai)Li. Consider the following zero-
dimensional subscheme of P(U):

Z =
3⋃

i=1

{
q2,3
i,1 , . . . , q

2,3
i,ai

}
∪
{
p2,3
1 , . . . , p2,3

s

}
.

As a cubic hypersurface contains L if and only if the corresponding hypersur-
face in S contains the union of χ(a1)S1, χ(a2)S2, and χ(a3)S3, it follows that
H0(P(U), IZ∪L(3)) can also be identified with the subspace spanned by the hyper-
planes containing the union of χ(a1)S1, χ(a2)S2, and χ(a3)S3 as well as the linear
span of the tangent spaces at the corresponding points. Therefore, the subspace
H0 (P(U),IZ∪L(3)) spanned by the cubic hypersurfaces of P(U) containing Z ∪L,
or, equivalently, the linear span of Z ∪ L, can be identified with the subspace of
S spanned by the hyperplanes containing the projectivization of W (n, s; a1, a2, a3).
In particular, the value of the Hilbert function of Z ∪ L at 3, i.e.,

hP(U) (Z ∪ L, 3) = N(n) − dimH0 (P(U),IZ∪L(3)) ≤ N(n) − w(n, s; a1, a2, a3),

equals the dimension of W (n, s; a1, a2, a3). This implies that the following are
equivalent:

(i) The statement T (n, s; a1, a2, a3) is true.
(ii) The value of the Hilbert function of Z∪L at 3 is equal to w(n, s; a1, a2, a3).
(iii) The dimension of H0 (P(U),IZ∪L(3)) is equal to N(n)−w(n, s; a1, a2, a3).

Our approach for proving the truth of statement T (n, s; a1, a2, a3) consists of show-
ing (iii).

3.3. The specialization. The proof of Theorem 1.1 proceeds, very roughly speak-
ing, by induction on n via a specialization technique, which follows closely Brambilla
and Ottaviani’s idea [10] for proving that the secant varieties of the third Veronese
variety are (mostly) nondefective. Proposition 3.6 demonstrates what needs to be
done to show the initial step. The base cases of the induction are listed in Corollary
3.7 and will be proved with the aid of a computer in Section 5. The purpose of
this subsection is to outline and visualize the main idea of the proof of Proposition
3.6. We give a full proof of this proposition in Section 4, which is based on Remark
3.5. The reader who is familiar with the language of schemes may safely skip to
Section 4.
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The basic idea of the aforementioned approach consists of reducing the prob-
lem of proving the truth of the statement T (n, 3; si(n)) to the problem of proving
T (n − 24, 3; si(n − 24)), where i ∈ {1, 2}. For establishing such an inductive ap-
proach, we select si(n) points p1, . . ., psi(n) of Tn as follows:

(i) 96 generic points on Tn ∩ Sj for each j ∈ {1, 2, 3};
(ii) t(n− 48) generic points on Tn ∩ Sj ∩ Sk for each j, k ∈ {1, 2, 3} with j < k;

and
(iii) si(n− 72) points on Tn ∩

(⋂3
j=1 Sj

)
.

As can be easily verified, si(n− 24) points are placed in Tn−24 = Tn ∩ Sj for each
j ∈ {1, 2, 3}. The goal is to show that the linear span of the tangent spaces to Tn
at these specific points has the expected dimension for each n, i.e.,

(3.6) dim
si(n)∑
j=1

T̂pj
(Tn) = w(n, si(n); 0, 0, 0),

under the assumption that T (n − 24, 3; si(n − 24)) is true. Then, by Remark 2.2,
we could conclude that the statement T (n, 3; si(n)) is true.

The strategy to prove equality (3.6) under the induction hypothesis is to divide
the process of specializing the si(n) points as indicated in (i)–(iii) into four steps,
the first three of which are visualized in Figure 1. In these steps, we have to handle
statements T for more general quintuples.

Step 1. Let n ≥ 32. Then, we may specialize1 si(n−24) out of si(n) points, namely,
the “blue” points p1, . . ., psi(n−24), to Tn−24 = Tn ∩ S1, leaving the remaining
t(n) = si(n) − si(n− 24) points on Tn \ S1 as illustrated in Figure 1(A).

Let A(n) be the vector space spanned by the hyperplanes of S containing the
projectivization of W (n, si(n); 0, 0, 0), or, equivalently, the linear span of Tp1(Tn),
. . . , Tpsi(n)(Tn). Let B(n) be the subspace of A(n) spanned by the elements of A(n)
containing S1. As was defined in (3.4), W (n, t(n); si(n−24), 0, 0) is the vector space
sum of T̂p1(Tn), . . . , T̂psi(n)(Tn), and S3(U1). We can therefore think of B(n) as the
vector space spanned by the hyperplanes of S containing the projectivization of
W (n, t(n); si(n− 24), 0, 0).

If Hn ∈ A(n) \ B(n), then the intersection of Hn with S1 is a hyperplane of
S1, which we denote by Hn−24. By the definition of A(n), the hyperplane Hn−24
contains the tangent space Tpi

(Tn−24) = Tpi
(Tn) ∩ S1 to Tn−24 at the blue points

pi for each i ∈ {1, . . . , si(n − 24)}. Since Hn−24 can be viewed as an element of
A(n− 24), we obtain the following inequality:

dimA(n) ≤ dimA(n− 24) + dimB(n).

This inequality is equivalent to the following inequality:

dimW (n, si(n); 0, 0, 0) ≥ dimW (n, t(n); si(n− 24), 0, 0)
+ dimW (n− 24, si(n− 24); 0, 0, 0) −N(n− 24).

As we shall see in Section 4, if

T (n, t(n); si(n− 24), 0, 0) and T (n− 24, si(n− 24); 0, 0, 0)

1It is implicitly understood that a specialization introduces no algebraic dependencies other
than the ones defined by the specialization. In particular, if some points are specialized to a
subvariety W , then the resulting points are generic points of W .



MOST TANGENTIAL TO VERONESE VARIETIES ARE NONDEFECTIVE 405

• •
•

•
••

•

••

•

	

	

		

	

•

• •

•

••• •• •

	
	

	
	

	

���

	
	
		 	

•
• •

•
•

•
•

•

•

•

t(n)
si(n− 24)

S1

(A) T (n, t(n); si(n− 24), 0, 0) and T (n− 24, si(n− 24); 0, 0, 0)

• •
•

•
••

•

••

•

	

	

		

	

•

• •

•

••• •• •

	
	

	
	

	

���

	
	
		 	

•
• •
•

•
•

•
•

•

•
96

t(n− 24)

t(n− 24)

si(n− 48)

S1S2

(B) T (n, 96; t(n− 24), t(n− 24), 0) and 2 × T (n− 24, t(n− 24); si(n− 48), 0, 0)

• •
•

•
••

•

••

•
•

• •

•

••• •• •

••
•• ••

•
•••

	 				

	

	
		

		

		
	

	
���

96

96

96

si(n− 72)
t(n− 48)

t(n− 48)t(n− 48) S1S2

S3

(C) T (n, 0; 96, 96, 96) and 3 × T (n− 24, 96; t(n− 48), t(n− 48), 0)

Figure 1. A visualization of the first three steps in the inductive
strategy. The blue points are p1, p2, . . . , psi(n−24), the red points
are psi(n−24)+1, . . . , psi(n−24)+t(n−24), and the collection of violet
points contains psi(n−24)+t(n−24)+1, . . . , psi(n).

are true, then the above inequality is an equality. In particular, we obtain

dimW (n, si(n); 0, 0, 0) = w(n, si(n); 0, 0, 0),

which proves the truth of T (n, si(n); 0, 0, 0). Recall that the goal is proving that
T (n, 3; si(n)) is true for every n ≥ 8 by induction. However, the specialization
proposed here may only be applied for n ≥ 32. Therefore, the initial cases of
the induction, i.e., n ∈ {8, 9, . . . , 32} should be proved separately; in Section 5, a
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method is proposed for accomplishing this task. This first step reduces the prob-
lem of proving the truth of T (n, 3; si(n)) to the problem of proving the truths of
T (n, t(n); si(n− 24), 0, 0) for every n ≥ 32.
Step 2. Let n ≥ 56. Then, we may perform the following two specializations for
verifying the truth of T (n, t(n); si(n − 24), 0, 0). First, the si(n − 48) blue points
p1, . . . , psi(n−48) ∈ (Tn∩S1) are specialized to (Tn∩S1)∩S2. The remaining t(n−24)
points are placed in (Tn ∩ S1) \ S2. Second, we specialize the t(n− 24) “red” points
psi(n−24)+1, . . . , psi(n−24)+t(n−24) to (Tn∩S2)\S1. The remaining 96 “violet” points
are placed in Tn \ (S1∪S2). The resulting configuration of si(n) points is illustrated
in Figure 1(B).

Let C(n) be the subspace of B(n) spanned by the hyperplane containing S2.
One can verify that the tangent space to Tn at pj for each j ∈ {1, . . . , si(n− 48)}
lies in the linear span of S1 and S2. In particular,

S3(U1) + S3(U2) +
si(n)∑
j=1

T̂pj
(Tn) = S3(U1) + S3(U2) +

si(n)∑
j=si(n−48)+1

T̂pj
(Tn).

Therefore, C(n) can be identified with the vector space of the hyperplanes in S

containing the projectivization of W (n, 96; t(n− 24), t(n− 24), 0).
Let Hn ∈ B(n) \ C(n). Then, the intersection of Hn and S2 is a hyperplane

in S2, which we denote by Hn−24. This hyperplane contains the following linear
subspaces:

– the tangent spaces to the tangential variety Tn−24 = Tn∩S2 at the t(n−24)
red points psi(n−24)+1, . . . , psi(n−24)+t(n−24) that lie in (Tn ∩ S2) \ S1;

– the tangent spaces to Tn−24 at the si(n− 48) blue points p1, . . . , psi(n−48)
in (Tn ∩ S2) ∩ S1; and

– the 24-codimensional linear subspace S1 ∩ S2 of S2.
Therefore, Hn−24 can be considered as an element of B(n− 24). This implies that

dimB(n) ≤ dimB(n− 24) + dimC(n),
or, equivalently,

dimW (n, t(n); si(n− 24), 0, 0)
≥ dimW (n− 24, t(n− 24); si(n− 48), 0, 0)

+ dimW (n, 96; t(n− 24), t(n− 24), 0) −N(n− 24).
In Section 4, we will show that the equality of the above inequality holds if

T (n, 96; t(n − 24), t(n − 24), 0) and T (n − 24, t(n − 24); si(n − 48), 0, 0) are true;
consequently, T (n, t(n); si(n − 24), 0, 0) is true. The truth of the statement
T (n − 24, t(n − 24); si(n − 48), 0, 0) for n ∈ {32, . . . , 55}, the base cases of the
induction, will be proved in Section 5.
Step 3. Let n ≥ 80. Then, we may perform the following specializations for proving
the truth of the statement T (n, 96; t(n− 24), t(n− 24), 0).

(i) Specialize the si(n − 72) blue “diamond” points p1, . . . , psi(n−72) ∈ (Tn ∩
S1 ∩ S2) to (Tn ∩ S1 ∩ S2) ∩ S3. Leave the remaining t(n− 48) blue “star”
points in (Tn ∩ S1 ∩ S2) \ S3.

(ii) Specialize the t(n−48) blue star points psi(n−48)+1, . . . , psi(n−48)+t(n−48) ∈
(Tn ∩ S1) \ S2 to (Tn ∩ S1 ∩ S3) \ S2, leaving the remaining 96 blue points
in (Tn ∩ S1) \ (S2 ∪ S3).
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(iii) Specialize the t(n− 48) red star points psi(n−24)+1, . . . , psi(n−24)+t(n−48) ∈
(Tn ∩ S2) \ S1 to (Tn ∩ S2 ∩ S3) \ S1. Leave the remaining 96 red points in
(Tn ∩ S2) \ (S1 ∪ S3).

(iv) Specialize the 96 violet points psi(n−24)+t(n−24)+1, . . . , psi(n) to (Tn ∩ S3) \
(S1 ∪ S2).

The resulting configuration of si(n) points now looks like Figure 1(C).
Let D(n) be the subspace of C(n) that contains S3. As before, one can verify

that the tangent spaces to Tn at the star and diamond points pj for every j in
the union of {1, . . . , si(n − 48)}, {si(n − 48) + 1, . . . , si(n − 48) + t(n − 48)}, and
{si(n− 24) + 1, . . . , si(n− 24) + t(n− 48)} are contained in the linear span of S1,
S2, and S3. Consequently,

3∑
j=1

S3(Uj) +
si(n)∑
j=1

T̂pj
(Tn) =

3∑
j=1

S3(Uj) +
∑
j∈Λ

T̂pj
(Tn),

where

Λ = {si(n− 48) + t(n− 48) + 1, . . . , si(n− 24)}(3.7)
∪ {si(n− 24) + t(n− 48) + 1, . . . , si(n− 24) + t(n− 24)}
∪ {si(n− 24) + t(n− 24) + 1, . . . , si(n)}.

Note that the points pj with j ∈ Λ correspond to the “regular” circular points in
Figure 1, i.e., the 96 blue regular points, the 96 red regular points, and the 96
violet regular points. This means that D(n) can be viewed as the vector space of
hyperplanes of S that contain the projectivization of W (n, 0; 96, 96, 96).

Let Hn ∈ C(n) \D(n). Consider the hyperplane Hn−24 that is obtained as the
intersection of Hn and S3. This hyperplane contains the following linear subspaces:

– the tangent spaces to the tangential variety Tn−24 = Tn∩S3 at the 96 violet
points psi(n−24)+t(n−24)+1, . . . , psi(n) ∈ (Tn ∩ S3) \ (S1 ∪ S2);

– the tangent spaces to Tn−24 at the t(n − 48) blue star points psi(n−48)+1,
psi(n−48)+2, . . ., psi(n−48)+t(n−48) ∈ (Tn ∩ S1 ∩ S2) \ S3;

– the tangent spaces to Tn−24 at the t(n − 48) red star points psi(n−24)+1,
psi(n−24)+2, . . ., psi(n−24)+t(n−48) ∈ (Tn ∩ S2 ∩ S3) \ S1; and

– the 24-codimensional linear subspaces S1 ∩ S3 and S2 ∩ S3 of S3.
Therefore, Hn−24 can be considered as an element of C(n−24), and thus we obtain
the inequality

dimC(n) ≤ dimC(n− 24) + dimD(n).
This inequality is equivalent to the following inequality:

dimW (n, 96; t(n− 24), t(n− 24), 0) ≥ dimW (n− 24, 96; t(n− 48), t(n− 48), 0)
+ dimW (n, 0; 96, 96, 96) −N(n− 24).

In Section 4, we will show that if

T (n, 0; 96, 96, 96) and T (n− 24, 96; t(n− 48), t(n− 48), 0)

are true, then the above inequality is an equality, and, hence,

dimW (n, 96; t(n− 24), t(n− 24), 0) = w(n, 96; t(n− 24), t(n− 24), 0).

This establishes the truth of T (n, 96; t(n− 24), t(n− 24), 0).
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The truths of the statements T (n, 96; t(n − 24), t(n − 24), 0) for each n ∈
{56, . . . , 79} will be shown in Section 5. Therefore, it remains only to show that
T (n, 0; 96, 96, 96) is true for every n ≥ 80.

Step 4. Proving the truths of T (n, 0; 96, 96, 96) for n ≥ 80 can be reduced to showing
the truth of T (71, 0; 96, 96, 96) as follows. Let W be a 72-dimensional subspace of
U that intersects U1, U2, U3, U1 ∩ U2, U1 ∩ U3, U2 ∩ U3, and U1 ∩ U2 ∩ U3 properly.
More precisely, W satisfies the following conditions:

– W ∩ Uj is of codimension 24 in W for each j ∈ {1, 2, 3}.
– W ∩ Uj ∩ Uk is of codimension 48 for each j, k ∈ {1, 2, 3}.
– W ∩

⋂3
j=1 Uj is of codimension 72, or a trivial subspace.

As was discussed in Step 3, T (n, 0; 96, 96, 96) is true if and only if the vector space

3∑
j=1

S3(Uj) +
∑
j∈Λ

Tpj
(Tn)

has dimension w(n, 0; 96, 96, 96), where Λ is as in (3.7). We therefore no longer
consider the star and diamond points, i.e., the pj ’s with j ∈ {1, . . . , si(n)} \ Λ.
Instead, we only specialize

– the 96 regular blue points of (Tn ∩ S1) \ (S2 ∪ S3) to Tn ∩ P(S3(W ∩ U1));
– the 96 regular red points of (Tn∩S2)\ (S1∪S3) to Tn∩P(S3(W ∩U2)); and
– the 96 regular violet points of (Tn ∩ S3) \ (S1 ∪ S2) to Tn ∩ P(S3(W ∩ U3)).

Let E(n) be the subspace of D(n) spanned by the hyperplanes containing
P(S3(W )), and let Hn ∈ D(n) \ E(n). Then, Hn ∩ P(S3(W )) can be thought
of as an element of D(71) in the same way as in Steps 1, 2, and 3. We thus have
the inequality

dimD(n) ≤ dimD(71) + dimE(n).

As shall be shown in Section 4, there is no hyperplane containing the linear space
spanned by P(S3(W )), S1, S2, and S3, from which it follows that dimD(n) ≤
dimD(71). As is stated in Lemma 4.1, the vector space D(n) is expected to have
dimension 0 for every n ≥ 71, or equivalently, the vector space W (n, 0; 96, 96, 96)
has dimension N(n). Therefore, in order to prove the truths of T (n, 0; 96, 96, 96)
for every n ≥ 71, it suffices to show that T (71, 0; 96, 96, 96) is true.

Below we summarize Steps 1–4.

Proposition 3.6. Let i ∈ {1, 2} and let n ∈ N.
(i) Let n ≥ 32. If T (n, t(n); si(n − 24), 0, 0) and T (n − 24, si(n − 24); 0, 0, 0)

are true, then so is T (n, si(n); 0, 0, 0).
(ii) Let n ≥ 56. If T (n, 96; t(n − 24), t(n − 24), 0) and T (n − 24, t(n − 24);

si(n− 48), 0, 0) are true, then so is T (n, t(n); si(n− 24), 0, 0).
(iii) Let n ≥ 80. If T (n, 0; 96, 96, 96) and T (n − 24, 96; t(n − 48), t(n − 48), 0)

are true, then so is T (n, 96; t(n− 24), t(n− 24), 0).
(iv) Let n ≥ 71. If T (71, 0; 96, 96, 96) is true, then so is T (n, 0; 96, 96, 96).

In order to finish the proof of Theorem 1.1, we need to verify the base cases,
which are listed in the following corollary.
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Corollary 3.7. Let i ∈ {1, 2}. If the following statements are true, then so is
T (n, 3; si(n)) for every n ≥ 8:

(i) T (71, 0; 96, 96, 96);
(ii) T (n, 96; t(n− 24), t(n− 24), 0) for every n ∈ {56, . . . , 79};
(iii) T (n, t(n); si(n− 24), 0, 0) for every n ∈ {32, . . . , 55}; and
(iv) T (n, si(n); 0, 0, 0) for every n ∈ {8, . . . , 31}.

Combining the above corollary with the results of [9] proves Theorem 1.1.

4. The inductive cases: Proof of Proposition 3.6

The purpose of this section is to prove Proposition 3.6. We will invoke some
auxiliary lemma’s to accomplish this task. The first of these states that the proposed
specialization has some nice numerical features.

Lemma 4.1. The statements T (n, 0; 96, 96, 96) and T (n, 96; t(n−24), t(n−24), 0)
are equiabundant for n ≥ 71 and n ≥ 48 respectively.

Proof. From straightforward computations, it follows that

N(n) =
3∑

i=1
(−1)i+1

(
3
i

)
N(n− 24i) + 3 · 48 · 96,

so that T (n, 0; 96, 96, 96) is equiabundant. Note that we adopt the convention that
N(−1) = 0 for the special case n = 71.

Let q and r be the quotient and remainder after division of n by 24. Then, we
also have

N(n) −
2∑

i=1
(−1)i+1

(
2
i

)
N(n− 24i)

= 576n− 12672 = 576(24q + r) − 12672
= (9216q + 384r − 12768) + (4608q + 192r + 96)
= 2 (48 (96q + 4r − 133)) + 96 (2 (24q + r) + 1)
= 2 · 48 · t(n− 24) + 96 (2n + 1) .

Therefore, T (n, 96; t(n− 24), t(n− 24), 0) is equiabundant. �

Another nice feature of the specialization is revealed in the next lemma.

Lemma 4.2. Let n ≥ 32. Then the expected codimension of

W (n, t(n); s1(n− 24), 0, 0)

in S3(U), denoted c(n), is a function of the remainder of n after division by 24.
In particular, c(n + 24) = c(n).
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Proof. If n ≥ 32, then the expected codimension of W (n, t(n); s1(n − 24), 0, 0) in
S3(U) is given explicitly by

c(n) = N(n) − w(n, t(n); s1(n− 24), 0, 0)
= N(n) −N(n− 24) − t(n)(2n + 1) − 48s1(n− 24)
= 12n2 − 240n + 1772 − (4n− 37)(2n + 1) − 48s1(n− 24)
= 4n2 − 170n + 1809 − 482(q − 1)2 − 48(11 + 4r)(q − 1)
− 48�(4r2 + 22r + 33)/48	

= 4r2 − 170n + 1809 + 4608q − 482 + 48(11 + 4r) − 528q
− 48�(4r2 + 22r + 33)/48	

= 4r2 + 22r + 33 − 48�(4r2 + 22r + 33)/48	,
where r and q are the quotient and remainder by division of n by 24. It follows
that c(n) is the remainder of 4r2 + 22r + 33 after division by 48. �

The final auxiliary result that we require is stated next.

Lemma 4.3. Let UK be the subspace of U spanned by B1 ∪B2 ∪B3. Then,

S3(U) = S3(UK) +
3∑

i=1
S3(Ui).

Proof. Let E = {xixjxk | 0 ≤ i ≤ j ≤ k ≤ n} be a basis of S3(U). Then, it suffices
to show that E is contained in S3(UK) +

∑3
l=1 S3(Ul). Obviously, the monomial

xixjxk with 0 ≤ i ≤ j ≤ k ≤ n is an element of S3(UK) if and only if k ≤ 71.
Hence, we may assume that k ≥ 72. In this case, there is at least one l ∈ {1, 2, 3}
such that xi, xj , xk ∈ B \Bl, where Bl is defined as in Section 3.2. This means that
xixjxk ∈ S3(Ul) for such an l, concluding the proof. �

In the following proofs, recall that Li = P(Ui).

Proof of Proposition 3.6(i). Here, we only prove that if T (n, t(n); s1(n− 24), 0, 0)
and T (n − 24, s1(n − 24); 0, 0, 0) are true, then so is T (n, s1(n); 0, 0, 0). The proof
of the superabundant case follows along the same path.

Let p1, . . . , ps1(n) ∈ Tn and let Z =
{
p2,3
1 , . . . , p2,3

s1(n)

}
. Then, we obtain the

following short exact sequence:

(4.1) 0 → IL1∪Z(3) → IZ(3) → IL1∩Z,L1(3) → 0.

Suppose that p1, . . . , ps1(n−24) are generic points of Tn ∩ S1 and that the remaining
t(n) points are generic points of Tn \ S1. Then, by assumption and Remark 3.5,

dimH0 (P(U),IL1∪Z(3)) = N(n) −N(n− 24) − (2n + 1)t(n) − 48s1(n− 24)

and

dimH0 (L1,IL1∩Z,L1(3)) = N(n− 24) − s1(n− 24)(2(n− 24) + 1).

From (4.1), it follows that

dimH0 (P(U),IZ(3)) ≤ dimH0 (P(U),IL1∪Z(3)) + dimH0 (L1,IL1∩Z,L1(3))
= N(n) − s1(n)(2n + 1).
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On the other hand, since hP(U)(Z, 3) ≤ s1(n)(2n + 1) by (2.2), we have

dimH0 (P(U),IZ(3)) = N(n) − hP(U)(Z, 3) ≥ N(n) − s1(n)(2n + 1),

which implies that dimH0 (P(U),IZ(3)) = N(n) − s1(n)(2n + 1). Therefore, the
statement T (n, s1(n); 0, 0, 0) is true. �

Proof of Proposition 3.6(ii). We first show that if T (n, 96; t(n − 24), t(n − 24), 0)
and T (n−24, t(n−24); s1(n−48), 0, 0) are true, then so is T (n, t(n); s1(n−24), 0, 0).

Let p1, . . . , pt(n) ∈ Tn \ S1, let q1, . . . , qs1(n−24) ∈ Tn ∩ S1, and let

Z =
{
p2,3
1 , . . . , p2,3

t(n), q
2,3
1 , . . . , q2,3

s1(n−24)

}
.

Assume that p1, . . . , pt(n−24) are generic points of Tn∩S2 and that q1, . . . , qs1(n−48)
are generic points of Tn∩S1∩S2. Then, we obtain the following short exact sequence:

0 → IL2∪Z(3) → IZ(3) → IL2∩Z,L2(3) → 0.
By the assumption that the superabundant statement T (n, 96; t(n−24), t(n−24), 0)
is true, i.e., dimH0 (P(U),IL2∪Z(3)) = 0 by Lemma 4.1, and since by assumption
T (n− 24, t(n− 24); s1(n− 48), 0, 0) is true, we obtain

dimH0 (P(U),IZ(3)) ≤ dimH0 (P(U),IL2∪Z(3)) + dimH0 (L2,IL2∩Z,L2(3))
= 0 + c(n− 24) = c(n).

The last equality is due to Lemma 4.2. On the other hand, the actual codimension
of H0 (P(U),IZ(3)) is larger than or equal to c(n). Therefore,

dimH0 (P(U),IZ(3)) = c(n),
and hence T (n, t(n); s1(n− 24), 0, 0) is true.

Note that the statement T (n, t(n); s2(n − 24), 0, 0) is superabundant. As a
consequence, the expected codimension of W (n, t(n); s2(n − 24), 0, 0) is zero.
We can therefore prove that the truths of T (n, 96; t(n − 24), t(n − 24), 0) and
T (n− 24, t(n− 24); s2(n− 48), 0, 0) imply that T (n, t(n); s2(n− 24), 0, 0) is true in
the same way as for T (n, t(n); s1(n− 24), 0, 0). �

Proof of Proposition 3.6(iii). For each i ∈ {1, 2}, let pi,1, . . . , pi,t(n−24) ∈ Tn ∩ Si,
let q1, . . ., q96 ∈ Tn \ (S1 ∪ S2), and let

Z =
{
p2,3
1,1, . . . , p

2,3
1,t(n−24), p

2,3
2,1, . . . , p

2,3
2,t(n−24), q

2,3
1 , . . . , q2,3

96

}
.

Assume that
(1) pi,1, . . . , pi,t(n−48) are generic points of (Tn ∩ Si) ∩ S3;
(2) the 96 points pi,t(n−48)+1, . . . , pi,t(n−24) are generic points of (Tn ∩ Si) \ S3;

and
(3) q1, . . . , q96 are generic points of Tn ∩ S3.

Then, we have the short exact sequence
(4.2) 0 → IL3∪Z(3) → IZ(3) → IL3∩Z,L3(3) → 0.
The assumption that the statements

T (n, 0; 96, 96, 96) and T (n− 24, 96; t(n− 48), t(n− 48), 0)
are true implies

dimH0 (P(U),IL3∪Z(3)) = dimH0 (L3,IL3∩Z,L3(3)) = 0
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by Lemma 4.1. Taking cohomology of (4.2) gives rise to

dimH0 (P(U),IZ(3)) ≤ dimH0 (P(U),IL3∪Z(3))+dimH0 (L3,IL3∩Z,L3(3)) = 0,

from which it follows that dimH0 (P(U),IZ(3)) = 0. Hence, the statement
T (n, 96; t(n− 24), t(n− 24), 0) is true. �

Proof of Proposition 3.6(iv). For each i ∈ {1, 2, 3}, let pi,1, . . . , pi,96 be generic
points of Tn ∩ Si. Let

Z =
{
p2,3
i,1 , . . . , p

2,3
i,96

∣∣∣ i ∈ {1, 2, 3}
}
.

For simplicity, denote
⋃3

i=1 Li by L. Let UK be the subspace of U spanned by
B1 ∪ B2 ∪ B3 = {x0, . . . , x71}, and let K = P(UK). Assume that pi,1, . . . , pi,96 ∈
Tn ∩ P (S3(UK)) for each i ∈ {1, 2, 3}. Then, we have the following short exact
sequence:

(4.3) 0 → IL∪Z∪K(3) → IL∪Z(3) → I(L∪Z)∩K,K(3) → 0.

Since dimH0 (P(U),IL∪K(3)) = 0 by Lemma 4.3 and

dimH0 (P(U),IL∪K(3)) ≥ dimH0 (P(U),IL∪Z∪K(3)) ,

we get dimH0 (P(U),IL∪Z∪K(3)) = 0. Furthermore, the assumption that the
statement T (71, 0; 96, 96, 96) is true implies that dimH0 (K,I(L∪Z)∩K,K(3)

)
= 0

by Lemma 4.1. Taking cohomology of (4.3) therefore yields dimH0 (P(U),IL∪Z(3))
= 0. Thus, the statement T (n, 0; 96, 96, 96) is also true, and hence we completed
the proof. �

5. The base cases: Proof of Theorem 1.1

It remains to prove the correctness of the base cases of the inductive proof
presented in the previous section, i.e., those cases appearing in Corollary 3.7. For
proving the truths of the statements T (n, s; a1, a2, a3), we propose constructing a
matrix T whose column span coincides with the subspace W (n, s; a1, a2, a3). The
rank of T then coincides with the dimension of W (n, s; a1, a2, a3). Adopting such
an approach allows us to leverage efficient algorithms from linear algebra, which
were already employed with success in the context of identifiability of the tensor
rank decomposition [16] and Waring’s decomposition [17].

Throughout this section, we deal with matrix representations of linear spaces,
meaning that we will work in coordinates. We adopt the monomial basis {x0, x1, . . . ,
xn} of U ∼= C

n+1. A natural basis of S3(U), when considered as the degree three
piece of C[x0, x1, . . . , xn], is E = {xixjxk | 0 ≤ i ≤ j ≤ k ≤ n}. By considering
the lexicographic total monomial order ≤lex on the elements of E, we can define an
embedding

ν3 : E → C(n+3
3 )

xixjxk �→ ez,

where z + 1 is the position of xixjxk in the lex-ordered sequence x3
0, x2

0x1, x2
0x2,

. . ., xn−1x
2
n, x3

n, and ek is the standard basis vector that has a 1 in position k + 1
and zeros elsewhere. The domain of the map can be extended to the whole of
S3(U) by linearity, namely define it as ν3(w) =

∑
0≤i≤j≤k≤n ci,j,kν3(xixjxk) for
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w =
∑

0≤i≤j≤k≤n ci,j,kxixjxk. With regard to these bases, the product of the
linear forms

ki = ki,0x0 + ki,1x1 + · · · + ki,nxn,

�i = �i,0x0 + �i,1x1 + · · · + �i,nxn, and
mi = mi,0x0 + mi,1x1 + · · · + mi,nxn,

i.e., ki�imi ∈ S3(U), is represented explicitly by the vector

ν3(ki�imi) =

⎡⎢⎢⎢⎢⎢⎣
ki,0�i,0mi,0

ki,0�i,0mi,1 + ki,0�i,1mi,0 + ki,1�i,0mi,0
...

ki,n−1�i,nmi,n + ki,n�i,n−1mi,n + ki,n�i,nmi,n−1
ki,n�i,nmi,n

⎤⎥⎥⎥⎥⎥⎦
with respect to the standard basis of C(n+3

3 ).

5.1. The algorithm. Having stated accurately the isomorphism between S3(U)
and C(n+3

3 ), we present in Algorithm 1 a basic approach for checking the truth of
T (n, s; a1, a2, a3).

While Algorithm 1 is mathematically correct, implementing it as such may lead
to a huge computational cost. As an example, consider the application of the
algorithm to the statement T (79, 96; 183, 183, 0), which corresponds to the most
challenging case that we should prove in Corollary 3.7. In the first step, 96 matrices
of size 88560 × 160 are constructed. The second step would construct two sets of
183 matrices of size 88560 × 48. In the third step, the algorithm constructs F1,
which is of size N(79)×N(55) = 88560× 30856, and F2, which is of the same size.
The concatenation of all these matrices is thus of size 88560×94640. Simply storing
this matrix using standard 64-bit integers would result in a memory consumption
of about 62.4GB. Based on our computational experiments, we can retroactively
estimate that computing the rank of this matrix would take about two and a half
days using one processing unit.

For overcoming the aforementioned double computational hurdle of memory con-
sumption and long computation time, we propose a simple trick that will greatly
improve the computational characteristics of the cases (ii) and (iii) of Corollary 3.7,
especially for the larger values of n. Naturally, one understands from Lemma 3.3
that the matrices Fi will contain some identical columns and that they may be
removed from T without affecting the latter’s rank. However, the gain from this
will only be marginal; in the preceding example, one would still have to compute
the rank of an 88560 × 88656 matrix. The more noteworthy improvement that we
suggest is based on the following elementary property of orthogonal projectors; let
A ∈ Cm×n and B ∈ Cm×p, and then

rank
[
A B

]
= rankA + rankP⊥

AB = n + rank P⊥
AB,(5.1)

provided that A is a matrix with n ≤ m linearly independent columns, and where
P⊥

A = In −A(A∗A)−1A∗ is the projection onto the orthogonal complement of the
span of the columns of A; herein, A∗ is the conjugate transpose of A, and In is the
n× n identity matrix.

Let us partition T as T = [ F R ] , and let F′ be the matrix obtained from F by
removing identical columns, i.e., the columns of F′ constitute a basis of the column
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Algorithm 1 A simple algorithm for confirming the truth of T (n, s; a1, a2, a3).

(1) Select s points p1, . . . , ps of Tn by randomly choosing �i,mi ∈ U . As was
shown in (2.1), the affine cone over the tangent space to Tn at pi is given
explicitly by �2iU + �imiU. We can represent this space practically by the
column span of the matrix
Tpi

=
[
ν3(�2ix0) · · · ν3(�2ixn) ν3(�imix0) · · · ν3(�imixn)

]
.

Let R1 be the horizontal concatenation of the matrices just defined.
(2) For every al �= 0, l = 1, 2, 3, we choose al points ql,1, . . . , ql,al

of Tn ∩ Sl

by randomly drawing two vectors �l,j ,ml,j ∈ Ul. The span of the affine
cone over the tangent space to Tn at the ql,j ’s modulo S3(Ul) is given by
�2l,jU l + �l,jml,jU l. We can represent this space practically by the column
span of the matrix

Tql,j =
[
Tql,j ,1 Tql,j ,2

]
, where

Tql,j ,1 =
[
ν3(�2l,jx24(l−1)) · · · ν3(�2l,jx24l−1)

]
and

Tql,j ,2 =
[
ν3(�l,jml,jx24(l−1)) · · · ν3(�l,jml,jx24l−1)

]
.

Let R2 be the horizontal concatenation of the matrices Tql,j just defined.
(3) For every nonzero al, l = 1, 2, 3, construct the matrix
Fl =

[
ν3(xixjxk) | 0 ≤ i ≤ j ≤ k ≤ n, i, j, k �∈ {24(l − 1), . . . , 24l − 1}

]
,

whose column span coincides with S3(Ul). Let F be the matrix obtained
from concatenating all Fl horizontally.

(4) Concatenate the matrices F, R1, and R2 horizontally, and call the re-
sult T. By construction, the rank of T coincides with the dimension of
W (n, s; a1, a2, a3). If the rank is maximal, i.e., equal to the expected value
(3.5), then T (n, s; a1, a2, a3) is true by semicontinuity. Otherwise, the algo-
rithm declares that it does not know the answer; either the chosen points
pi and qi,j were not sufficiently general, or T (n, s; a1, a2, a3) is false.

space of F. Then, the column span of T equals the column span of T′ = [ F′ R ].
We will now apply (5.1) to T′. With the proposed isomorphism ν3 it can be verified
that the t columns of F′ form a subset of the standard basis vectors of C(n+3

3 ). Let
us write F′ explicitly as F′ = [ ez1 ez2 ··· ezt ], where 0 ≤ z1 < z2 < · · · < zt ≤

(
n+3

3
)

and where the particular values of zi are those implicitly given in the proof of
Lemma 3.3. In this case, the projection onto the complement of the column span
of F′ takes a particularly pleasing form:

P⊥
F′ = In − F′(It)−1(F′)∗ = In −

t∑
i=1

ezie
∗
zi .

Thus, P⊥
F′R simply sets the z1th, z2th, . . ., ztth row of R to zero. Since the rows

consisting only of zeros do not influence the rank of a matrix, one may even remove
them. Let Y = {1, 2, . . . , N(n)} \ {z1, z2, . . . , zt} consist of the indices of the rows
that are not zero. Then, we denote by R(Y ) the matrix consisting of the rows of
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R with row indices appearing in Y . As a result, we have

rankT = rankT′ = dim
3∑

j=1
χ(aj)S3(Uj) + rankR(Y ),

where χ(aj)S3(Uj) = ∅ if aj = 0, and S3(Uj) otherwise. In the foregoing, the
value of the first term is given explicitly by Lemma 3.3. Consequently, it suffices to
compute the rank of the subset of the rows of R corresponding to the index set Y .
It should be remarked that the elements of Y can be computed as the complement
of the set of zi’s whose values can be computed directly from the definition of
the map ν3; one simply computes the position of a monomial in some lex-ordered
sequence of monomials. In particular, this calculation can be performed without
auxiliary memory requirements. That is, we only need to store |Y | integer values,
which contrasts markedly with the straightforward approach in which the entire
matrix F would be constructed explicitly.

In conclusion, we propose optimizing the computational properties of the basic
algorithm by replacing steps (3) and (4) with the following alternative:

(3) For every nonzero al, compute the set of integers

Zl =
{
z | ez = v3(xixjxk), i, j, k ∈ {0, 1, . . . , n} \ {24(l − 1), . . . , 24l − 1}

}
,

while Zl = ∅ for every al that is zero. Compute

Y =
{
1, 2, . . . , N(n)

}
\ (Z1 ∪ Z2 ∪ Z3).

(4) Concatenate the matrices R1 and R2 horizontally, and call the resulting
matrix R. By construction, the rank of R(Y ) coincides with

dimW (n, s; a1, a2, a3) − dim
3∑

i=1
χ(aj)S3(Uj).

If the rank of R(Y ) plus dim
∑3

i=1 χ(aj)S3(Uj) equals the maximal value,
i.e., the expected value (3.5), then T (n, s; a1, a2, a3) is true by semiconti-
nuity. Otherwise, the algorithm declares that it does not know the an-
swer; either the chosen points pi and qi,j were not sufficiently general, or
T (n, s; a1, a2, a3) is false.

We will refer to this version of Algorithm 1 as the optimized version, while the
original statement of Algorithm 1 will be called the basic version.

5.2. Implementation aspects. For efficiently and reliably computing the rank of
T, we propose to adopt the same strategy as [16]. The idea consists of choosing the
points pi and qi,j in a convenient manner. Let a be a sufficiently large prime number
and consider the definitions of U and Ul over the prime field Za. We suggest picking
pi = �d−1

i mi by sampling random vectors �,m ∈ U whose entries are uniformly
drawn from [0, a − 1]. Similarly, we choose qi,j by randomly sampling two vectors
�,m ∈ Ui. We may then obtain a lower bound on the rank of T by computing the
rank of T over Za, rather than over C. The rank of T over the finite field Za may
be computed by reducing T to row echelon form by applying Gaussian elimination
over Za. The proposal to bound the rank from below by choosing special points and
performing a rank computation over a finite field does not fundamentally alter the
output of the optimized version of Algorithm 1. When the rank of T is maximal
over Za, i.e., equal to the expected value w(n, s; a1, a2, a3), then the rank over C
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will also be maximal. If the rank of T is less than expected, then the algorithm
will claim that it does not know whether T (n, s; a1, a2, a3) is true; our modification
has only introduced an additional source of uncertainty, namely it may be the case
that the rank over Za is strictly less than over C.

The optimized algorithm was implemented in C++. We used basic data struc-
tures from the Eigen v3 [22] library. The construction of R was partially parallelized
with OpenMP v3.1. The rank R(Y ) was computed over a finite field with char-
acteristic 8191 using the Rank function provided by FFLAS–FFPACK [20], which
essentially computes an LU -factorization with row and column pivoting. The un-
derlying BLAS implementation that FFLAS–FFPACK requires was the optimized
OpenBLAS [26] library. We ran the program on a computer system containing
128GB of main memory and two central processing units (twice an Intel Xeon
E5-2697 v3), each with 14 processing cores clocked at 2.60GHz. Using numactl
we instructed the software to use all 14 cores of one central processing unit; in
particular, the calculation of the rank over Z8191 proceeded in parallel.

5.3. Computational complexity. As we claimed before, pursuing the optimiza-
tion that was proposed for the basic version of Algorithm 1 is worthwhile for proving
statements of type (ii) and (iii) in Corollary 3.7. We can now justify this claim.
Proposition 5.1. The time complexity of the optimized version of Algorithm 1
for verifying the truth of T (n, 96; t(n− 24), t(n− 24), 0) is O(n4). Its space com-
plexity is O(n4).
Proof. The time complexity of the first two steps of Algorithm 1 amounts to

O
(
96(2n + 2)N(n) + 2 · 48 · t(n− 24)N(n)

)
= O(n4)

operations for constructing the matrix R; recall that t(n) = 4n− 37 scales linearly
in n. The optimized algorithm retains only

|Y | = N(n) − 2N(n− 24) + N(n− 48) = 576n− 12672
rows of R in the last step, while the number of columns of R is

2 · t(n− 24) · 48 + 96(2n + 2) = 576n− 12576.
Hence, the Gaussian elimination step for computing the rank of R(Y ) requires
only O(n3) operations. The time complexity is thus dominated by the cost of
constructing R. From the size of the involved matrices, it follows that R is the
largest matrix that should be (temporarily) stored, for a total space complexity of
O(n4) values in Za. �
Proposition 5.2. The time complexity of the optimized version of Algorithm 1
for verifying the truth of T (n, t(n); si(n− 24), 0, 0), i ∈ {1, 2}, is O(n6). Its space
complexity is O(n5).
Proof. The time complexity of the first two steps is

O
(
t(n)(2n + 2)N(n) + 48si(n− 24)N(n)

)
= O(n5);

recall from the explicit expression in Section 3.1 that si(n) scales quadratically in
n. The number of rows of R(Y ) equals N(n) − N(n − 24) = O(n2), while the
number of columns equals t(n)(2n + 2) + 48si(n − 24) = O(n2). Therefore, the
rank computation requires O(n6) operations, yielding the time complexity. From
the size of the involved matrices, it follows that storing R requires O(n5) values
of Za. �
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Figure 2. A plot of the execution time for proving the different
types of statements in function of the dimension n of U . The
dotted lines indicate the asymptotic time complexity proved in
Propositions 5.1, 5.2 and 5.3.

Statements of type (ii) and (iii) in Corollary 3.7 can thus be verified in a more
efficient manner than attempting to prove the statement T (n, si(n); 0, 0, 0), i ∈
{1, 2}, directly. It is namely straightforward to verify the following result.

Proposition 5.3. The time complexity of both versions of Algorithm 1 for ver-
ifying the truth of T (n, si(n); 0, 0, 0), i ∈ {1, 2}, is O(n9). Its space complexity is
O(n6).

As a confirmation of foregoing time complexity analyses, we compare them with
experimentally obtained execution times of the optimized implementation of Algo-
rithm 1. In Figure 2, we plot the total execution time of the program for verifying
the truth of the three types of statements featured in the foregoing propositions for
increasing values of the dimension n of the projective space P(U). In this figure,
we also display four monomials that were fitted to the data: both the monomials
c1n

9 and c2n
7 were fitted to the execution times for verifying statements of type

T (n, s2(n); 0, 0, 0), the monomial c3n6 was fitted to the execution times for verify-
ing statements of type T (n, t(n); s2(n−24), 0, 0), and the monomial c4n4 was fitted
to the execution times for verifying the statements T (n, 96; t(n− 24), t(n− 24), 0).
The coefficients ci were determined using the fit command of gnuplot 4.6. As can
be seen, the experimental results for the statements appearing in Propositions 5.1
and 5.2 line up well with the theoretically determined asymptotic time complexities.
However, the execution times for proving statements T (n, s2(n); 0, 0, 0) do not seem
to obey an asymptotic growth of O(n9); rather, it seems to grow only like O(n7).
One likely explanation for this phenomenon is that the pivoted LU -factorization
method in FFLAS–FFPACK is exploiting the additional structure that is present
in R. The matrix R(Y ) = R corresponding to statements T (n, si(n); 0, 0, 0) is
namely very sparse, i.e., it contains many entries equal to zero. Consider the first
step of Algorithm 1, and then it is clear that both ν3(�2ixj) and ν3(�imixj) each
contain precisely dimS2(U) = N(n, 2) nonzero values for a generic choice of �i and
mi, where N(n, d) is as in (1.4). Hence, out of the 2(n+ 1)N(n, 3) elements of Tpi
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only 2(n + 1)N(n, 2) of them are not equal to zero. The fraction of zeros of Tpi
,

and, hence, of T, is thus 1 − 3(n + 3)−1, which tends to 1 as n → ∞. It may thus
be appropriate to treat R as a sparse matrix when computing its rank. The design
and implementation of efficient methods for sparse LU -factorization is a field with
a very rich literature (see, e.g., [18,19]), but it lies beyond the scope of the present
paper.

Figure 2 facilitates appreciation of the tremendous difference in execution times
for projective spaces of equal dimension when proving one of the three types of
statements. That is, the optimizations that we proposed not only reduced the the-
oretical time complexity, but also resulted in practical and significant time savings.
Without these optimizations, the time required to prove the type of statements ap-
pearing in Corollary 3.7 (ii) and (iii) would likely increase asymptotically as c2n

7,
as is suggested by Figure 2.

5.4. The proof. Of foremost interest is whether we can prove Corollary 3.7 with
the algorithm. This turns out to be the case.

Proof of Corollary 3.7. We computed the rank of R(Y ) over the finite field Z8191
with prime characteristic 8191. The optimized algorithm was able to compute
the ranks of all of the matrices involved in Corollary 3.7, confirming in every
instance that their rank coincided with the expected dimension of the subspace
W (n, s; a1, a2, a3). We were particularly fortunate that in every case the maximal
rank was found at the first random example that we sampled. The total execution
time for proving Corollary 3.7 with our experimental setup was 85.5s for case (i),
8871.2s for case (ii), 6917.7s for case (iii), and 221.9s for case (iv). The base cases
could thus be proved in just under four and a half hours.

The output of the algorithm includes a certificate consisting of the explicit ex-
pressions of the linear forms �i,mi ∈ Z

n+1
8191 and �l,j ,ml,j ∈ Ul. At the corresponding

points pi = [�d−1
i mi] ∈ Tn and ql,j = [�d−1

l,j ml,j ] ∈ Tn ∩ Sl, the linear span of the
tangent spaces to the tangential variety Tn spans a subspace W (n, s; a1, a2, a3) of
dimension exactly equal to the expected, i.e., maximal, value w(n, s; a1, a2, a3).
All the certificates produced by our algorithm may be found at the following web
page: https://doi.org/10.13140/RG.2.1.2843.3368. They constitute the proof
of Corollary 3.7.

To give an impression of the output of the program, an example is included below.
The output of the algorithm for proving the truth of the only true equiabundant
statement T (7, 8; 0, 0, 0) is as follows.

Using random seed: 1440664437
l_0 = [6240 5559 4744 2128 3525 2499 7333 2585]
m_0 = [5179 5860 2731 4978 4356 4995 358 2752]
l_1 = [6524 4761 3599 7815 1716 2187 4195 7889]
m_1 = [1512 3708 6893 7109 5519 5965 5496 2212]
l_2 = [2484 8072 7956 3951 6365 63 6777 37]
m_2 = [5225 7196 2009 3291 6451 5475 2616 5079]
l_3 = [4096 596 3500 6582 5675 2959 6074 3891]
m_3 = [4798 7696 188 5184 578 1679 2657 335]
l_4 = [7882 7500 5717 2715 1488 1144 5362 5122]
m_4 = [3740 7615 3260 3859 2746 75 1181 1268]
l_5 = [5979 741 5874 6408 7902 5006 3801 6057]

https://doi.org/10.13140/RG.2.1.2843.3368
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m_5 = [5718 1256 7323 3359 1176 5753 675 3460]
l_6 = [4415 2885 403 5801 124 1935 8094 6722]
m_6 = [5366 1942 5568 1892 6945 5454 7057 5850]
l_7 = [4552 7106 6564 5562 6468 3805 3021 5507]
m_7 = [7463 2235 5324 6275 2378 2047 1639 7436]
Constructed the 120 x 128 matrix R(Y) in 0.081s.
Computed the rank of R(Y) over F_8191 in 0.007s.
Found 0 + 120 = 120 vs. 120 expected.
T(7, 8; 0, 0, 0) is TRUE (SUBABUNDANT)
Total computation took 0.088s.
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Boston, MA, 1994. MR1264417

[22] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.
[23] Antonio Laface and Elisa Postinghel, Secant varieties of Segre-Veronese embeddings of (P1)r,

Math. Ann. 356 (2013), no. 4, 1455–1470, DOI 10.1007/s00208-012-0890-1. MR3072808
[24] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics,

vol. 128, American Mathematical Society, Providence, RI, 2012. MR2865915
[25] J. M. Landsberg, Geometric complexity theory: an introduction for geometers, Ann. Univ.

Ferrara Sez. VII Sci. Mat. 61 (2015), no. 1, 65–117, DOI 10.1007/s11565-014-0202-7.
MR3343444

[26] W. Qian, Z. Xianyi, Z. Yunquan, and Q. Yi, AUGEM: Automatically generate high perfor-
mance dense linear algebra kernels on x86 CPUs, Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (New York, NY), ACM,
2013, pp. 25:1–25:12.

[27] Yong Su Shin, Secants to the variety of completely reducible forms and the Hilbert function
of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27, DOI
10.1142/S0219498812501095. MR2997451

[28] Amir Shpilka and Amir Yehudayoff, Arithmetic circuits: a survey of recent results and
open questions, Found. Trends Theor. Comput. Sci. 5 (2009), no. 3-4, 207–388 (2010), DOI
10.1561/0400000039. MR2756166

[29] A. Terracini, Sulla Vk per cui la varietà degli Sh h + 1-secanti ha dimensione minore
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