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THE GYSIN TRIANGLE VIA LOCALIZATION

AND A1-HOMOTOPY INVARIANCE

GONÇALO TABUADA AND MICHEL VAN DEN BERGH

Abstract. Let X be a smooth scheme, Z a smooth closed subscheme, and
U the open complement. Given any localizing and A1-homotopy invariant of
dg categories E, we construct an associated Gysin triangle relating the value
of E at the dg categories of perfect complexes of X, Z, and U . In the par-
ticular case where E is homotopy K-theory, this Gysin triangle yields a new
proof of Quillen’s localization theorem, which avoids the use of devissage. As
a first application, we prove that the value of E at a smooth scheme belongs
to the smallest (thick) triangulated subcategory generated by the values of E
at the smooth projective schemes. As a second application, we compute the
additive invariants of relative cellular spaces in terms of the bases of the cor-
responding cells. Finally, as a third application, we construct explicit bridges
relating motivic homotopy theory and mixed motives on the one side with
noncommutative mixed motives on the other side. This leads to a comparison
between different motivic Gysin triangles as well as to an étale descent result
concerning noncommutative mixed motives with rational coefficients.

1. Introduction and statement of results

A differential graded (=dg) category A, over a base field k, is a category enriched
over complexes of k-vector spaces; see §4.1. Every (dg) k-algebra A naturally gives
rise to a dg category with a single object. Another source of examples is provided
by schemes since the category of perfect complexes perf(X) of every quasi-compact
quasi-separated k-scheme X admits a canonical dg enhancement1 perfdg(X); see
Keller [24, §4.6]. Let us denote by dgcat(k) the category of (essentially small) dg
categories, and by Hmo(k) its localization at the class of Morita equivalences.

A functor E : dgcat(k) → T , with values in a triangulated category, is called:

(C1) a localizing invariant if it inverts the Morita equivalences (or equivalently
if it factors through the category Hmo(k)) and sends short exact sequences
of dg categories (see §4.2) to distinguished triangles

0 −→ A −→ B −→ C −→ 0 �→ E(A) −→ E(B) −→ E(C) ∂−→ ΣE(A)

in a way which is functorial for strict morphisms of exact sequences;
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(C2) an A1-homotopy invariant if it inverts the canonical dg functors A → A[t],
where A[t] stands for the tensor product of A and k[t].

Example 1.1 (Homotopy K-theory). Let Ho(Spt) be the homotopy category of
spectra. Weibel’s homotopy K-theory gives rise to a functor KH : dgcat(k) →
Ho(Spt) which satisfies conditions (C1)-(C2); see [44, §2][47, §5.3]. When applied
to A, resp. to perfdg(X), this functor computes the homotopy K-theory of A, resp.
of X.

Example 1.2 (Nonconnective algebraic K-theory with coefficients). Let l be a
prime. When l � char(k), mod-lν nonconnective algebraic K-theory gives rise to a
functor IK(−;Z/lν) : dgcat(k) → Ho(Spt) which satisfies conditions (C1)-(C2); see
[48, §1]. When l | char(k), we can consider the functor IK(−)⊗Z[1/l]. When applied
to A, resp. to perfdg(X), these functors compute the nonconnective algebraic K-
theory with coefficients of A, resp. of X.

Example 1.3 (Étale K-theory). Let l be an odd prime. Dwyer-Friedlander’s étale
K-theory gives rise to a functor Ket(−;Z/lν) : dgcat(k) → Ho(Spt) which satisfies
conditions (C1)-(C2); see [47, §5.4]. When l � char(k) andX is moreover regular and
of finite type over Z[1/l], Ket(perfdg(X);Z/lν) agrees with the étaleK-theory of X.

Notation 1.4. Let E : dgcat(k) → C be a functor, with values in an arbitrary cat-
egory, and X a quasi-compact quasi-separated k-scheme. In order to simplify the
exposition, we will write E(X) instead of E(perfdg(X)).

Example 1.5 (Periodic cyclic homology). Let k be a field of characteristic zero and
D±(k) the derived category of Z/2-graded k-vector spaces. Periodic cyclic homology
gives rise to a functor HP : dgcat(k) → D±(k) which satisfies conditions (C1)-(C2);
see [25, §1.5][44, §3]. When applied to A, resp. to perfdg(X), this functor computes
the periodic cyclic homology of A, resp. of X. When X is moreover smooth, the
classical Hochschild-Kostant-Rosenberg theorem yields the following identifications
with de Rham cohomology:

(1.6) HP+(X) �
⊕
n even

Hn
dR(X), HP−(X) �

⊕
n odd

Hn
dR(X) .

Example 1.7 (Noncommutative motives). Let Mot(k) be the (closed) symmetric
monoidal triangulated category of noncommutative motives constructed in [47, §2];
denoted by MotA

1

loc(k) in loc. cit. By construction, this category comes equipped
with a symmetric monoidal functor U: dgcat(k) → Mot(k) which satisfies con-
ditions (C1)-(C2). Roughly speaking,2 U is the initial functor satisfying these
conditions and preserving filtered homotopy colimits; for further information on
noncommutative motives we invite the reader to consult the recent book [42].

Remark 1.8. As explained in [42, §8-9], there exist four different (closed) symmetric
monoidal triangulated categories of noncommutative motives, that are related by

2The precise formulation of this universal property makes use of the language of derivators.
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symmetric monoidal triangulated functors:

Motadd(k)

��

�����
��

MotA
1

add(k)

��
Motloc(k)

�����
��

MotA
1

loc(k) .

Roughly speaking, the underscript add, resp. loc, stands for additivity, resp. local-
ization, and the upperscript A1 for A1-homotopy invariance. Since the main results
of this article make use of localization and A1-homotopy invariance, they apply

solely to the category Mot(k) := MotA
1

loc(k).

Our main result is the following:

Theorem 1.9 (Gysin triangle). Let X be a smooth k-scheme, i : Z ↪→ X a smooth
closed subscheme, and j : U ↪→ X the open complement of Z. For every functor
E : dgcat(k) → T which satisfies conditions (C1)-(C2), we have an induced triangle

(1.10) E(Z)
E(i∗)−→ E(X)

E(j∗)−→ E(U)
∂−→ ΣE(Z) ,

where i∗, resp. j∗, stands for the push-forward, resp. pull-back, dg functor.

Remark 1.11 (Generalizations). Theorem 1.9 admits the following generalizations:

(G1) We may replace the schemes X, Z, and U by algebraic spaces; consult §7.
(G2) Given a dg category A, we may replace the dg categories perfdg(Z),

perfdg(X), perfdg(U), by their tensor product with A. In the case where
A = perfdg(Y ), with Y a quasi-compact quasi-separated k-scheme, this
corresponds to replacing the schemes X, Z, U by their product with Y
over k; consult Lemma 4.26.

Let perfdg(X)Z ⊂ perfdg(X) be the full dg subcategory of those perfect com-
plexes of OX -modules that are supported on Z. The bulk of the proof of Theo-
rem 1.9 consists of showing that the morphism E(i∗) : E(Z) → E(perfdg(X)Z) is
invertible; see Theorem 6.3. This result, which is of independent interest, should
be considered as a new “dévissage” theorem. Its proof is based on the description
of the dg category perfdg(X)Z in terms of a formal dg k-algebra (when X is affine)

and on a Zariski3 descent argument.
Let us now illustrate the general Theorem 1.9 in some particular cases.

Example 1.12 (Fundamental theorem). When X is the affine line Spec(k[t]), Z
is the closed point t = 0, and U is the punctured affine line Spec(k[t, t−1]), the
general Gysin triangle (1.10) reduces to the following distinguished triangle:

(1.13) E(k)
E(i∗)−→ E(k)

E(j∗)−→ E(k[t, t−1])
∂−→ ΣE(k) .

In this case we have E(i∗) = 0; see [44, Lem. 4.2]. Consequently, (1.13) gives rise
to an isomorphism E(k[t, t−1]) � E(k) ⊕ ΣE(k). The generalization (G2) yields
an isomorphism E(A[t, t−1]) � E(A)⊕ΣE(A) for every dg category A. By taking
E = KH, resp. E = HP , we hence recover the fundamental theorems in homotopy

3When X is an algebraic space X we use instead a Nisnevich descent argument.
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K-theory, resp. in periodic cyclic homology, established by Weibel in [52, Thms. 1.2
and 6.11], resp. by Kassel in [23, Cor. 3.12]; consult [44] for further details.

Example 1.14 (Quillen’s localization theorem). Homotopy K-theory agrees with
Quillen’s algebraic K-theory on smooth schemes. Therefore, when E = KH the
general Gysin triangle (1.10) reduces to the localization theorem

(1.15) K(Z)
K(i∗)−→ K(X)

K(j∗)−→ K(U)
∂−→ ΣK(Z)

established by Quillen in [39, Chap. 7 §3]. Quillen’s proof is based on the dévissage
theorem for abelian categories and on the equivalence between K-theory and G-
theory for smooth schemes. As mentioned above, our proof is different! Moreover,
following the generalization (G1), it applies also to algebraic spaces.

Example 1.16 (Six-term exact sequence). The maps i : Z ↪→ X and j : U ↪→
X give rise to homomorphisms on de Rham cohomology Hn

dR(i∗) : H
n
dR(Z) →

Hn+2c
dR (X) and Hn

dR(j
∗) : Hn

dR(X) → Hn
dR(U) where c := codim(i). Therefore,

when E = HP the long exact sequence associated to the general Gysin triangle
(1.10) reduces, via the identification (1.6), to the following six-term exact sequence:

⊕
n even H

n
dR(Z)

⊕
n Hn

dR(i∗) �� ⊕
n even H

n
dR(X)

⊕
n Hn

dR(j∗) �� ⊕
n even H

n
dR(U)

∂

��⊕
n odd H

n
dR(U)

∂

��

⊕
n odd H

n
dR(X)⊕

n Hn
dR(j∗)

�� ⊕
n odd H

n
dR(Z) .⊕

n Hn
dR(i∗)

��

One may check that this sequence is the “2-periodization” of the Gysin long exact
sequence on de Rham cohomology constructed by Hartshorne in [14, Chap. II §3].

Example 1.17 (Noncommutative motivic Gysin triangle). When E = U the gen-
eral Gysin triangle (1.10) reduces to the noncommutative motivic Gysin triangle:

(1.18) U(Z)
U(i∗)−→ U(X)

U(j∗)−→ U(U)
∂−→ ΣU(Z) .

Consult Remarks 3.4 and 3.9 for the relation between (1.18) and the motivic Gysin
triangle(s) constructed by (Morel-)Voevodsky.

We conclude this section with the following remark:

Remark 1.19. Theorem 1.9 is false if we assume (C1) but not (C2). For example,
cyclic homology gives rise to a localizing invariant HC : dgcat(k) → D(k) which is
not A1-homotopy invariant; see [24, §5.3], [25, §1.5]. Following Kassel [23, §3.4], we
have the following computation:

HCn(k[t, t
−1]) �

{
HCn(k)⊕HCn−1(k)⊕ k ⊕ I, n = 0,
HCn(k)⊕HCn−1(k)⊕ I, n �= 0 ,

where I stands for the augmentation ideal of k[t, t−1]. Therefore, we conclude from
Example 1.12 that Theorem 1.9 is false when E = HC.
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2. Applications

2.1. Reduction to smooth projective schemes.

Theorem 2.1. Let k be a perfect field of characteristic p ≥ 0 and E : dgcat(k) → T
a functor which satisfies conditions (C1)-(C2). Let us write T sp for the smallest
triangulated subcategory of T containing the objects E(Y ), with Y a smooth pro-
jective k-scheme, and T sp for the thick closure of T sp inside T . Given a smooth
k-scheme X, the following hold:

(i) When p = 0, the object E(X) belongs to T sp.
(ii) When p > 0 and T is Z[1/p]-linear, the object E(X) belongs to T sp.

Remark 2.2. The proof of item (ii) makes use of three ingredients:4 (a) the Gysin
triangles provided by Theorem 1.9; (b) Gabber’s refined version of de Jong’s theory
of alterations; (c) a “globalization” argument which allows us to pass from Z(l)-
linearity for all l �= p to Z[1/p]-linearity. Making use of ingredients (a)-(b), and
of different “globalization” arguments, Bondarko [7, Thm. 2.2.1] and Kelly [27,
Prop. 5.5.3] established an analogue of item (ii) in the particular case where T
is the Voevodsky’s triangulated category of (effective) geometric motives. Their
argument relies on a certain compact generation statement, which does not hold5

in the case of the triangulated category of noncommutative motives Mot(k).

Corollary 2.3. Let E : dgcat(k) → T be a functor as in Theorem 2.1. Assume
furthermore that T is well generated (see [36, Def. 1.15]), symmetric monoidal,6

and that the tensor product −⊗− preserves arbitrary direct sums in both variables.
Under these assumptions, if the functor E is moreover symmetric monoidal, then
the objects E(X), with X a smooth k-scheme, are strongly dualizable.

Proof. Given an object b ∈ T , the functor − ⊗ b : T → T is exact and preserves
arbitrary direct sums. Therefore, thanks to [36, Thm. 8.4.4], it admits a right
adjoint Hom(b,−) which by definition is the internal-Hom functor. This shows
that the symmetric monoidal structure of T is closed.

As proved in [42, Thm. 1.43], the strongly dualizable objects of the category
Hmo(k) are the smooth proper dg categories; see §4.1. Since by assumption the
functor E is symmetric monoidal, we conclude that the objects E(X), with X a
smooth projective k-scheme, are strongly dualizable. The result follows now from
Theorem 2.1 and from the well-known fact that the strongly dualizable objects of
a closed symmetric monoidal triangulated category are stable under distinguished
triangles and direct summands. �

2.2. Additive invariants of relative cellular spaces.

2.2.1. Additive invariants. Our next application is for so-called additive invariants
which are a weaker type of invariant than the kind we have considered up to now.
Every localizing invariant is an additive invariant but the converse is not true.7

4The proof of item (i) makes use of ingredient (a) and of resolution of singularities.
5The fact that the noncommutative motive U(X) of a smooth k-scheme X is a compact object

of Mot(k) is now a consequence of Theorem 2.1.
6We assume throughout the article that a symmetric monoidal structure on a triangulated

category is exact in both variables.
7Quillen’s algebraic K-theory as well as Karoubi-Villamayor’s K-theory are examples of addi-

tive invariants which are not localizing; consult [42] for details.
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Examples of additive invariants include algebraic K-theory and all its variants,
cyclic homology and all its variants, topological Hochschild homology, etc.

Let I be the dg category with objects {1, 2} and complexes of morphisms I(1, 1) =
I(2, 2) = I(1, 2) = k and I(2, 1) = 0, with k supported in degree zero. Given a dg
category A, let T (A) := A⊗I. We have two inclusion dg functors ι1, ι2 : A → T (A).
A functor F : dgcat(k) → A, with values in an additive category, is called an additive
invariant if it inverts the Morita equivalences and sends the dg categories T (A) to
direct sums

[F (ι1) F (ι2)] : F (A)⊕ F (A)
�−→ F (T (A)) .

As explained in [45, §13], the notion of additive invariant can be equivalently
formulated in terms of split short exact sequences of dg categories. Therefore, every
localizing invariant is in particular an additive invariant.

Remark 2.4. As proved in [46] (consult also §4.3), there exists a universal additive
invariant Uadd : dgcat(k) → Hmo0(k) with values in a suitable additive category8

Hmo0(k). This implies that an additive invariant can be alternatively characterized
as a functor F : dgcat(k) → A which factors through Uadd.

2.2.2. Relative cellular spaces. A flat map of k-schemes f : X → Y is called an
affine fibration of relative dimension d if for every point y ∈ Y there exists a Zariski
open neighborhood y ∈ V such that XV := f−1(V ) � Y × Ad with fV : XV → Y
isomorphic to the projection onto the first factor. Following Karpenko [22, Def. 6.1],
a smooth projective k-scheme X is called a relative cellular space if there exists a
filtration by closed subschemes

(2.5) ∅ = X−1 ↪→ X0 ↪→ · · · ↪→ Xi ↪→ · · · ↪→ Xn−1 ↪→ Xn = X

and affine fibrations pi : Xi\Xi−1 → Yi, 0 ≤ i ≤ n, of relative dimension di with Yi

a smooth projective k-scheme. The smooth schemes Xi\Xi−1 are called the cells
and the smooth projective schemes Yi the bases of the cells.

Example 2.6 (Gm-schemes). The celebrated Bialynicki-Birula decomposition [3]
provides a relative cellular space structure on smooth projective k-schemes equipped
with a Gm-action in which the bases of the cells are given by the connected com-
ponents of the fixed point locus; consult also [8, Thm. 3.1], [15, 18]. This class
of relative cellular spaces includes the isotropic flag varieties considered originally
by Karpenko [22] as well as the isotropic homogeneous spaces considered later by
Chernousov-Gille-Merkurjev [10].

Our main result concerning relative cellular spaces is the following:

Theorem 2.7. Let X be a relative cellular space. For every additive invariant F ,
we have an induced isomorphism F (X) �

⊕n
i=0 F (Yi).

Remark 2.8 (Strategy of the proof). In order to prove Theorem 2.7 we consider
first the special case F = U, i.e., we establish first an induced isomorphism

(2.9) U(X) �
n⊕

i=0

U(Yi)

in the category of noncommutative motives Mot(k). This decomposition is anal-
ogous to a similar result for Chow motives proved by Karpenko [22] using refined

8The category Hmo0(k) is different from the category Motadd(k) of Remark 1.8. The latter
category is triangulated while the former is only additive.
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properties of Chow and K-cohomology groups. The proof of (2.9) uses in an es-
sential way the fact that U satisfies conditions (C1)-(C2) (note that we do not
require this for F in Theorem 2.7!). It is based on the invariance of noncommuta-
tive motives under affine fibrations and on the observation that the Gysin triangles
associated to the filtration (2.5) are actually split! We cannot immediately obtain
Theorem 2.7 from (2.9) since F will in general not factor through U. However,
using the fact that all the schemes in the motivic decomposition (2.9) are smooth
projective, we prove that (2.9) implies a similar decomposition

Uadd(X) �
n⊕

i=0

Uadd(Yi)

in the additive category Hmo0(k). To finish the proof we use the fact that F , being
additive, factors (uniquely) through Uadd.

Example 2.10 (Knörrer periodicity). The following application of the Bialynicki-
Birula decomposition was inspired by the work of Brosnan [8]. Let q = fg + q′

where f , g, and q′, are forms of degree a > 0, b > 0, and a + b, in disjoint sets of
variables (xi)i=1,...,m, (yj)j=1,...,n, and (zk)k=1,...,p, respectively. Let us write Q and
Q′ for the projective hypersurfaces defined by q and q′, respectively. Assume that
Q is smooth. Under this notation and assumptions, there is a Gm-action on Q given
by λ · (x, y, z) := (λbx, λ−ay, z) with fixed point locus Pm−1

∐
Pn−1

∐
Q′; note that

this implies that Q′ is also smooth. By combining Theorem 2.7 and Example 2.6
with the fact that Uadd(P

n) � Uadd(k)
⊕(n+1) (see [42, §2.4.2]), we hence obtain an

induced isomorphism

(2.11) F (Q) � F (k)⊕(m+n) ⊕ F (Q′)

for every additive invariant F . Intuitively speaking, isomorphism (2.11) shows that
the “nontrivial parts” of F (Q) and F (Q′) are the same. Finally, recall that the
preceding computation holds for all isotropic quadratic forms since it is well known
that these can be written as xy + q′(z).

3. Motives versus noncommutative motives

3.1. Motivic homotopy theory versus noncommutative mixed motives.
The reduction Theorem 2.1 (and Corollary 2.3) allows us to improve the bridge
between Morel-Voevodsky’s motivic homotopy theory and Kontsevich’s noncom-
mutative mixed motives originally constructed in [43].

Kontsevich introduced in [30] a (rigid) symmetric monoidal triangulated cate-
gory of noncommutative mixed motives KMM(k). As explained in [43, §4], this
category can be described as the smallest thick triangulated subcategory of Mot(k)
containing the objects U(A) with A a smooth proper dg category. In the same vein,
let us write KMM(k)⊕ for the smallest triangulated subcategory of Mot(k) which
contains KMM(k) and is stable under arbitrary direct sums.

Morel and Voevodsky introduced in [35, 51] the stable A1-homotopy category
of (P1,∞)-spectra SH(k). By construction, this category comes equipped with
a symmetric monoidal functor Σ∞(−+) : Sm(k) → SH(k) defined on smooth k-
schemes. Let KGL ∈ SH(k) be the ring (P1,∞)-spectrum representing homotopy
K-theory (see [12, 41]) and Mod(KGL) the homotopy category of KGL-modules.
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Theorem 3.1. (i) Let k be a field of characteristic zero. Then there exists
a fully-faithful, symmetric monoidal, triangulated functor Φ making the
following diagram commute:

(3.2) Sm(k)

Σ∞(−+)

��

X �→perfdg(X)
��

�����
����

����
����

dgcat(k)

U

��
SH(k)

−∧KGL

��

KMM(k)

(−)∨

��

�� Mot(k)

Hom(−,U(k))

��
Mod(KGL)

Φ
�� KMM(k)⊕ �� Mot(k) ,

where Hom(−,−) stands for the internal-Hom of the category Mot(k).
(ii) Let k be a perfect field of positive characteristic p > 0. Then there ex-

ists a Z[1/p]-linear, fully-faithful, symmetric monoidal, triangulated func-
tor Φ1/p making the following diagram commute (the shorthand 1/p stands
for Z[1/p]):

(3.3) Sm(k)

Σ∞(−+)1/p

��

X �→perfdg(X)
��

�����
����

����
����

�� dgcat(k)

U(−)1/p

��
SH(k)1/p

−∧KGL1/p

��

KMM(k)1/p

(−)∨

��

�� Mot(k)1/p

Hom(−,U(k)1/p)

��
Mod(KGL1/p) Φ1/p

�� KMM(k)⊕1/p
�� Mot(k)1/p .

Proof. The outer commutative square of diagram (3.2) was constructed in [43,
Cor. 2.5(i)]. The inner commutative squares follow from Theorem 2.1(i) and Corol-
lary 2.3 applied to the functor E = U. Similarly to the proof of Theorem 2.1(ii)
(see §8), one can refine the proof of Ayoub [2, Prop. 2.2.27-2] using Gabber’s re-
fined theory of alterations. Using [43, Thm. 2.1(iii)], we hence obtain the outer
commutative square of diagram (3.3). The inner commutative squares follow from
Theorem 2.1(ii) and Corollary 2.3 applied to the functor E = U. �

Intuitively speaking, Theorem 3.1 formalizes the conceptual idea that the difer-
ence between the motivic homotopy theory and the theory of noncommutative
mixed motives is measured solely by the existence of a KGL-module structure.

Remark 3.4 (Morel-Voevodsky’s motivic Gysin triangle). Let X be a smooth
scheme, i : Z ↪→ X a smooth closed subscheme with normal vector bundle N ,
and j : U ↪→ X the open complement of Z. Making use of the Nisnevich topology
and of homotopy purity, Morel-Voevodsky constructed in [35, §3.2][51, §4] a motivic
Gysin triangle

(3.5) Σ∞(U+)
Σ∞(j+)−→ Σ∞(X+) −→ Σ∞(Th(N))

∂−→ Σ(Σ∞(U+))

in SH(k), where Th(N) stands for the Thom space of N . Since homotopy K-theory
is an orientable and periodic cohomology theory, Σ∞(Th(N))∧KGL is isomorphic
to Σ∞(Z+)∧KGL. Using the commutative diagram (3.2), we hence conclude that
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the image of (3.5) under the composed functor Φ◦(−∧KGL): SH(k) → KMM(k)⊕

agrees with the dual of the noncommutative motivic Gysin triangle (1.18). Roughly
speaking, (1.18) is the dual of the KGL-linearization of (3.5).

3.2. Mixed motives versus noncommutative mixed motives. The reduction
Theorem 2.1 (and Corollary 2.3) allows us also to improve the bridge between
Voevodsky’s mixed motives and noncommutative mixed motives constructed in [43].

Voevodsky introduced in [50, §2] the triangulated category of geometric mixed
motives DMgm(k) (over a perfect field k). By construction, this category comes
equipped with a symmetric monoidal functor M : Sm(k) → DMgm(k).

Let HZ ∈ SH(k) be the ring (P1,∞)-spectrum representing motivic cohomology;
see [51, §6.1]. Thanks to Bloch’s work [4], we have KGLQ �

⊕
i∈Z HZQ(i)[2i].

Moreover, DMgm(k)Q identifies with the full triangulated subcategory of compact
objects of DM(k)Q := Mod(HZQ); see [40]. As a consequence, base-change along
HZQ → KGLQ gives rise to a functor DM(k)Q → Mod(KGLQ). By composing it
with ΦQ, we hence obtain a Q-linear, symmetric monoidal, triangulated functor

(3.6) R: DM(k)Q −→ Mod(KGLQ)
ΦQ−→ KMM(k)⊕Q .

Theorem 3.7. Let k be a perfect field. The functor (3.6) gives rise to a Q-linear,
fully-faithful, symmetric monoidal functor R making the following diagram com-
mute:

(3.8) Sm(k)

M(−)Q

��

X �→perfdg(X)
��

�����
����

����
����

���
dgcat(k)

U(−)Q

��
DMgm(k)Q

π

��

KMM(k)Q

(−)∨

��

�� Mot(k)Q

Hom(−,U(k)Q)

��
DMgm(k)Q/−⊗Q(1)[2]

R

�� KMM(k)Q �� Mot(k)Q ,

where DMgm(k)Q/−⊗Q(1)[2] stands for the orbit category of DMgm(k)Q with respect
to the Tate motive Q(1)[2] (consult [43, §3.5] for the notion of orbit category).

Proof. The outer commutative square of diagram (3.8) was constructed in [43,
Thm. 2.8]. The inner commutative squares follow from Theorem 2.1 and Corollary
2.3 applied to the functor E = U. �

Intuitively speaking, Theorem 3.7 formalizes the conceptual idea that the com-
mutative world embeds fully-faithfully into the noncommutative world as soon as
we “⊗-trivialize” the Tate motive Q(1)[2].

Remark 3.9 (Voevodsky’s motivic Gysin triangle). Let X be a smooth scheme,
i : Z ↪→ X a smooth closed subscheme of codimension c, and j : U ↪→ X the
open complement of Z. Making use of algebraic geometric arguments such as the
projective bundle theorem and the deformation to the normal cone, Voevodsky
constructed in [50, §2] a motivic Gysin triangle

(3.10) M(U)Q
M(j)Q−→ M(X)Q −→ M(Z)Q(c)[2c]

∂−→ ΣM(U)Q

in DMgm(k)Q. Using the commutative diagram (3.8), we hence conclude that the

image of (3.10) under the composed functor R◦π : DMgm(k)Q → KMM(k)Q agrees
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with the dual of the rationalized noncommutative motivic Gysin triangle (1.18).
Roughly speaking, (1.18)Q is the dual of the Tate ⊗-trivialization of (3.10).

Remark 3.11 (Levine’s mixed motives). Levine introduced in [32, Part I] a triangu-
lated category of mixed motives DM(k) and a contravariant symmetric monoidal
functor h : Sm(k) → DM(k). As proved by Ivorra in [19, Thm. 4.2], when k is
a perfect field, the assignment h(X)Q(n) �→ Hom(M(X)Q,Q(n)) gives rise to an
equivalence of categories DM(k)Q → DMgm(k)Q whose precomposition with h(−)Q
identifies with X �→ M(X)∨Q. Thanks to Theorem 3.7, there exists then a Q-linear,

fully-faithful, symmetric monoidal functor R making the following diagram com-
mute:

(3.12) Sm(k)

h(−)Q

��

X �→perfdg(X)
�� dgcat(k)

U(−)Q

��

DM(k)Q

π

��
DM(k)Q/−⊗Q(1)[2]

R

�� KMM(k)Q ⊂ Mot(k)Q .

3.3. Étale descent of noncommutative mixed motives. Let DMet(k) be the
étale variant of DM(k) introduced by Voevodsky in [50, §3.3]. As proved in loc. cit.,
we have an equivalence of categories DM(k)Q � DMet(k)Q; consult also Ayoub’s
ICM survey [1]. Theorem 3.7 leads then to the following étale descent result:

Theorem 3.13. The presheaf of noncommutative mixed motives

Sm(k)op −→ KMM(k)⊕Q , X �→ U(X)Q

satisfies étale descent, i.e. for every X ∈ Sm(k) and étale cover U = {Ui → X}i∈I

of X, we have an induced isomorphism U(X)Q � holimn≥0U(ČnU)Q, where Č•U
stands for the Čech simplicial scheme associated to the cover U .

Proof. Thanks to the equivalence of categories DM(k)Q � DMet(k)Q, we have an

induced isomorphism M(X)Q � hocolimn≥0M(ČnU)Q in DM(k)Q. Since by con-
struction the functor (3.6) preserves homotopy colimits, we hence conclude from
Theorem 3.7 that U(X)∨Q � hocolimn≥0U(ČnU)∨Q. The proof follows now from the
fact that the functor Hom(−,U(k)Q) : Mot(k)Q → Mot(k)Q interchanges homo-
topy colimits with homotopy limits and restricts to a (contravariant) equivalence
of categories (−)∨ : KMM(k)Q → KMM(k)Q. �

4. Preliminaries

4.1. Dg categories. Let (C(k),⊗, k) be the category of (cochain) complexes of k-
vector spaces; we use cohomological notation. A differential graded (=dg) category
A is a category enriched over C(k) and a dg functor F : A → B is a functor enriched
over C(k); for further details consult Keller’s ICM survey [24].

Let A be a dg category. The opposite dg category Aop has the same objects as A
and Aop(x, y) := A(y, x). A right dg A-module is a dg functor Aop → Cdg(k) with
values in the dg category Cdg(k) of complexes of k-vector spaces. Let us write C(A)
for the category of right dg A-modules. Following [24, §3.2], the derived category
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D(A) of A is defined as the localization of C(A) with respect to the objectwise quasi-
isomorphisms. Let Dc(A) be the triangulated subcategory of compact objects.

A dg functor F : A → B is called a Morita equivalence if it induces an equiv-

alence of categories D(B) �→ D(A); see [24, §4.6]. As proved in [46, Thm. 5.3],
dgcat(k) admits a Quillen model structure whose weak equivalences are the Morita
equivalences. Let us denote by Hmo(k) the associated homotopy category.

The tensor product A⊗B of dg categories is defined as follows: the set of objects is
the cartesian product and (A⊗B)((x,w), (y, z)) := A(x, y)⊗B(w, z). As explained
in [24, §2.3], this construction gives rise to a symmetric monoidal structure on
dgcat(k), which descends to the homotopy category Hmo(k).

An A-B-bimodule B is a dg functor B: A⊗Bop → Cdg(k) or equivalently a right
dg (Aop ⊗ B)-module. A standard example is the A-B-bimodule

FB : A⊗ Bop → Cdg(k), (x, z) �→ B(z, F (x)),(4.1)

associated to a dg functor F : A → B.
Recall from Kontsevich [28–31] that a dg category A is called smooth if the

A-A-bimodule idB belongs to the triangulated category Dc(Aop ⊗ A) and proper
if

∑
i dimHiA(x, y) < ∞ for any ordered pair of objects (x, y). Examples include

the finite dimensional k-algebras of finite global dimension (when k is perfect) as
well as the dg categories perfdg(Y ) associated to smooth proper k-schemes Y .

4.2. Localizing invariants. Let E : dgcat(k) → T be a functor, with values in
a triangulated category, which inverts Morita equivalences. Thanks to the uni-
versal property of the homotopy category Hmo(k), we have an induced functor
E : Hmo(k) → T . Recall from [24, Thm. 4.11] that the homotopy category Hmo(k)
is pointed9 and that a short exact sequence of dg categories

(4.2) 0 −→ A I−→ B P−→ C −→ 0

consists of morphisms I and P in Hmo(k) such that P ◦ I = 0, I is the kernel of
P , and P is the cokernel of I. A “generic” example is given by the Drinfeld’s dg
quotient A ⊂ B → B/A of an inclusion of dg categories; consult [11] for details.

Definition 4.3. A functor E : dgcat(k) → T as above is called a localizing invariant
if the induced functor E : Hmo(k) → T sends short exact sequences of dg categories
(4.2) to distinguished triangles

E(A)
E(I)−→ E(B) E(P )−→ E(C) ∂−→ ΣE(A)

in a way which is functorial for strict morphisms of exact sequences.

Remark 4.4. Using the methods in [25], one may show that the functoriality of E
on strict morphisms of exact sequences of dg categories implies that E is functorial
on morphisms between exact sequences of dg categories in Hmo(k).

Example 4.5 (Mixed complex). Following Kassel [23], a mixed complex is a (right)
dg module over the algebra of dual numbers Λ := k[ε]/ε2 with deg(ε) = −1 and
d(ε) = 0. As proved by Keller in [25, §1.5], the mixed complex construction gives rise
to a localizing invariant C : dgcat(k) → D(Λ). Since Hochschild homology, cyclic
homology, negative cyclic homology, and periodic cyclic homology factor through
C, they are also examples of localizing invariants; consult [26, §2.2] for details.

9The dg category with one object and one morphism is the initial=terminal object of Hmo(k).
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Remark 4.6 (Quillen model). Let M be a stable Quillen model category and
E : dgcat(k) → M a functor which sends the Morita equivalences to weak equiv-
alences and the Drinfeld’s dg quotients A ⊂ B → B/A to homotopy (co)fiber
sequences E(A) → E(B) → E(B/A). Consider the associated composition

(4.7) dgcat(k)
E−→ M −→ Ho(M)

with values in the homotopy triangulated category. Clearly, the functor (4.7) in-
verts Morita equivalences. Moreover, it sends in a functorial way the Drinfeld’s dg
quotients to distinguished triangles. As proved by Keller in [25, §4], every short
exact sequence of dg categories (4.2) can be “strictified”, in a functorial way, into
the Drinfeld’s dg quotient A ⊂ B → B/A of an inclusion of dg categories. This
hence implies that (4.7) is a localizing invariant.

Example 4.8. Examples 1.1-1.3 and 1.7 fit into the framework of Remark 4.6.
Further examples include nonconnective algebraic K-theory, topological Hochschild
homology, topological cyclic homology, etc.; consult [42] for details.

4.3. Universal additive invariant and its relation with NC motives. We
start by recalling from [46] the construction of the universal additive invariant. As
proved in [46, Cor. 5.10], there is a natural bijection between HomHmo(k)(A,B)
and the set of isomorphism classes of the full triangulated subcategory rep(A,B) ⊂
D(Aop ⊗ B) of those A-B-bimodules B such that for every x ∈ A the right dg
B-module B(x,−) belongs to Dc(B). Under this bijection, the composition law of
Hmo(k) corresponds to the tensor product of bimodules. Since the bimodules (4.1)
belong to rep(A,B), we have the tautological functor

dgcat(k) → Hmo(k) A �→ A F �→ FB .(4.9)

The additivization of Hmo(k) is the additive category Hmo0(k) with the same
objects and with abelian groups of morphisms HomHom0(k)(A,B) given by the
Grothendieck group K0rep(A,B) of the triangulated category rep(A,B). By con-
struction, we have the following functor:

Hmo(k) → Hmo0(k) A �→ A B �→ [B] .(4.10)

Let us denote by Uadd the composition (4.10)◦(4.9). As proved in [46, Thms. 5.3
and 6.3], the functor Uadd : dgcat(k) → Hmo0(k) is the universal additive invariant,
i.e., given any additive category A we have an induced equivalence of categories

(4.11) Uadd : Funadditive(Hmo0(k),A)
�−→ Funadd(dgcat(k),A) ,

where the left-hand side denotes the category of additive functors and the right-
hand side the category of additive invariants (see §2.2.1).

As mentioned in §2.2.1, every localizing invariant is in particular an additive
invariant. Therefore, since the functor U : dgcat(k) → Mot(k) (see Example 1.7) is
a localizing invariant, and hence an additive invariant, it factors as follows:

(4.12) dgcat(k)

Uadd

��

U �� Mot(k)

Hmo0(k)
U

��

.

The following Proposition 4.13 and Lemma 4.15, concerning the functors U and
Uadd, will play a key role in the proof of Theorem 2.7.
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Proposition 4.13. Given a smooth proper k-scheme X and a smooth k-scheme
Y , there are isomorphisms of abelian groups

HomMot(k)(U(X),ΣnU(Y )) � K−n(X × Y ), n ∈ Z .(4.14)

In particular, the abelian group (4.14) is zero whenever n > 0.

Proof. As proved in [47, Cor. 2.7], the left-hand side of (4.14) is isomorphic to
KH−n(X × Y ). The proof follows then from the fact that homotopy K-theory
agrees with Quillen’s algebraic K-theory on smooth schemes. �
Lemma 4.15. Given smooth k-schemes X and Y , with X proper, the morphism

(4.16) HomHmo0(k)(Uadd(X),Uadd(Y )) −→ HomMot(k)(U(X),U(Y )) ,

induced by the additive functor U, is invertible.

Proof. Thanks to Proposition 4.13, the right-hand side of (4.16) is naturally iso-
morphic to K0(X × Y ). For the left-hand side we have the identifications

HomHmo0(k)(Uadd(X),Uadd(Y )) � K0(rep(perfdg(X)op, perfdg(Y )))

� K0(perfdg(X)op ⊗ perfdg(Y ))(4.17)

� K0(perfdg(X)⊗ perfdg(Y ))(4.18)

� K0(perfdg(X × Y ))(4.19)

� K0(X × Y ) ,

where (4.17) follows from the fact that rep(A,B) � Dc(Aop ⊗ B) for any two dg
categories with A smooth and proper, (4.18) follows from the Morita equivalence
perfdg(X)op → perfdg(X) given by F �→ HomX(F ,OX), and (4.19) from Lemma
4.26. The proof follows now from the construction of the diagram (4.12). �
4.4. Quasi-coherent sheaves and their derived categories. Given a quasi-
compact quasi-separated k-scheme X, let us write Mod(X) for the Grothendieck
category of OX -modules, Qcoh(X) for the full subcategory of quasi-coherent OX -
modules, D(X) := D(Mod(X)) for the derived category of X, and DQcoh(X) ⊂
D(X) for the full triangulated subcategory of those complexes of OX -modules with
quasi-coherent cohomology. In the same vein, given a closed subscheme Z ↪→ X,
let us write D(X)Z ⊂ D(X) and DQcoh(X)Z ⊂ DQcoh(X) for the full triangulated
subcategories of those complexes of OX -modules that are supported on Z.

Theorem 4.20 (Compact generation). Assume that the open complement of Z is
also quasi-compact quasi-separated. Under this assumption, the triangulated cate-
gory DQcoh(X)Z is compactly generated. Moreover, its full triangulated subcategory
of compact objects identifies with perf(X)Z .

Proof. Simply imitate the proof of [6, Thm. 3.1.1]; consult also [37], [21, Tag 0AEC,
Lem. 62.14.5]. �

The following result will play a key role in the proof of Theorem 5.3.

Proposition 4.21. Let X be a quasi-compact quasi-separated scheme, p : V ↪→ X
a quasi-compact open subscheme, and W ↪→ X the closed complement of V . For
every closed subscheme i : Z ↪→ X with quasi-compact complement, we have an
induced short exact sequence of dg categories

(4.22) 0 −→ perfdg(X)Z∩W −→ perfdg(X)Z
p∗

−→ perfdg(V )Z∩V −→ 0 .
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Proof. As explained by Keller in [24, Thm. 4.11], (4.22) is a short exact sequence
of dg categories if and only if the associated sequence of triangulated categories

(4.23) perf(X)Z∩W −→ perf(X)Z
p∗

−→ perf(V )Z∩V

is exact in the sense of Verdier. We claim that there is a short exact sequence:

(4.24) 0 −→ DQcoh(X)Z∩W −→ DQcoh(X)Z
p∗

−→ DQcoh(V )Z∩V −→ 0 .

As usual, this follows from the following facts: (i) if F ∈ DQcoh(V )Z∩V , then p∗(F)
belongs to DQcoh(X)Z ; (ii) if G ∈ DQcoh(X)Z , then cone(G → p∗p

∗(G)) belongs to
DQcoh(X)Z∩W . In what concerns (i), note that by base-change the restriction of
p∗(F) to the complement of Z is zero. In what concerns (ii), restrict to V . Thanks
to Theorem 4.20, the category DQcoh(X)Z∩W is generated by perfect complexes.
Therefore, by applying Neeman’s celebrated result [38, Thm. 2.1] to (4.24), we
conclude that (4.23) is also a short exact sequence of triangulated categories. �

The following “excision” result will be used in the proof of Theorems 5.3 and 6.8.

Theorem 4.25 (See [49, Thm 2.6.3]). Let f : X ′ → X be a flat morphism of
quasi-compact quasi-separated k-schemes and let Z ↪→ X be a closed subscheme
with quasi-compact complement such that Z ′ := X ′ ×X Z → Z is an isomorphism
of k-schemes. Then the functors (f∗, f

∗) define inverse equivalences of categories
between D(X)Z and D(X ′)Z′ and between perf(X)Z and perf(X ′)Z′ .

Proof. As proved in loc. cit., the functors (f∗, f
∗) define inverse equivalences be-

tween D−(X)Z and D−(X ′)Z′ . However, since D(X)Z and D(X ′)Z′ admit arbi-
trary direct sums and are generated by D−(X)Z and D−(X ′)Z′ , respectively, we
conclude that the functors (f∗, f

∗) also define inverse equivalences between D(X)Z
and D(X ′)Z′ . By restriction to compact objects, we hence obtain inverse equiva-
lences between perf(X)Z and perf(X ′)Z′ ; see Theorem 4.20. �

The following result will be used in the proof of Generalization (G2).

Lemma 4.26. Let X and Y be two quasi-compact quasi-separated k-schemes. Then
there is a Morita equivalence:

perfdg(X)⊗ perfdg(Y ) −→ perfdg(X × Y ), (F ,F ′) �→ F � F ′ .

Proof. Let G and G′ be compact generators of the triangulated categories DQcoh(X)
and DQcoh(Y ), respectively; see Theorem 4.20. According to [6, Lem. 3.4.1], G �G′

is a compact generator of DQcoh(X×Y ). Hence, it is sufficient to show that the dg
k-algebras REndX×Y (G � G′) and REndX(G)⊗REndY (G′) are quasi-isomorphic.
Let p : X × Y → X and q : X × Y → Y be the projection maps. Since p∗(G) and
q∗(G′) are perfect complexes, we have

REndX×Y (G � G′) = RΓ(X × Y,REndX×Y (p
∗(G)⊗L

X×Y q∗(G′))),

REndX×Y (p
∗(G)⊗L

X×Y q∗(G′)) � p∗(REndX(G))⊗L
X×Y q∗(REndY (G

′))

� REndX(G) � REndY (G′) .
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Therefore, it suffices to show that RΓ(X ×Y,F �F ′) � RΓ(X,F)⊗RΓ(Y,F ′) for
any two complexes with quasi-coherent cohomology F and F ′. We have

RΓ(X × Y,F � F ′) � RΓ(X × Y, p∗(F)⊗L
X×Y q∗(F ′))

� RΓ(Y, q∗p
∗(F)⊗L

Y (F ′))(4.27)

� RΓ(Y, (RΓ(X,F)⊗k OY )⊗L
Y F ′)(4.28)

� RΓ(Y,RΓ(X,F)⊗k F ′)

� RΓ(X,F)⊗RΓ(Y,F ′) ,

where (4.27) follows from the projection formula for q and (4.28) from flat base
change for RΓ(Y,−). This concludes the proof. �

4.5. Notation. LetX be a k-scheme, Z ↪→ X a closed subscheme, A a dg category,
and E : dgcat(k) → C a functor with values in an arbitrary category. In order to
simplify the exposition, we will write

E(X;Z;A) := E(perf(X)Z ⊗A) .

If Z = X or A = k, then we will omit the corresponding symbols from the notation.

5. Nisnevich descent in the supported setting

Consider the cartesian square of quasi-compact quasi-separated k-schemes

(5.1) V12 := V1 ×X V2

��

�� V2

p2

��
V1 p1

�� X ,

where p1 is an open immersion and p2 is an étale map inducing an isomorphism of
reduced schemes p−1

2 (X\V1)red � (X\V1)red. As proved by Morel and Voevodsky
in [35, §3.1 Prop. 1.4], the Nisnevich topology is generated by the distinguished
squares (5.1). The Zariski topology is generated by those distinguished squares
(5.1) in which p2 is also an open immersion.

Notation 5.2. A sequence of maps a → a′ → a′′ → Σa in a triangulated category
T is called an LES-triangle if it becomes a Long Exact Sequence after applying
HomT (b,−), for every object b of T . Distinguished triangles are, of course, LES-
triangles but the converse is false.

Let i : Z ↪→ X be a closed subscheme with quasi-compact complement, Z1 :=
Z ∩ V1, Z2 := p−1

2 (Z), and Z12 := Z1 ×Z Z2. Under this notation, and those of
§4.5, we have the following Nisnevich descent result:

Theorem 5.3. For every localizing invariant E : dgcat(k) → T we have a “Mayer-
Vietoris” LES-triangle10

(5.4) E(X;Z)
±−→ E(V1;Z1)⊕ E(V2;Z2) −→ E(V12;Z12)

δ−→ ΣE(X;Z) .

10If the functor E is suitably enhanced, then (5.4) can be made into an actual distinguished
triangle. However, we will not need this extra assumption/result.
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Proof. Let us write W for the (reduced) closed complement (X\V1)red of V1. Under
this notation, we have the commutative diagram

(5.5) perfdg(X)Z∩W

��

�� perfdg(X)Z

p∗
2

��

p∗
1 �� perfdg(V1)Z1

��
perfdg(V2)Z2∩p−1

2 (W )
�� perfdg(V2)Z2

�� perfdg(V12)Z12

in the homotopy category Hmo(k). Thanks to Proposition 4.21, both rows are short
exact sequences of dg categories. Moreover, since p−1

2 (Z ∩W ) = Z2 ∩ p−1
2 (W ) and

p2 : V2 → X is étale, the left-hand side vertical morphism is a Morita equivalence
by Theorem 4.25. By applying E to (5.5), we obtain an induced morphism between
distinguished triangles with invertible outer vertical morphisms

(5.6) E(X;Z ∩W )

�
��

�� E(X;Z)

E(p∗
2)

��

E(p∗
1)�� E(V1;Z1)

��

∂ �� ΣE(X;Z ∩W )

�
��

E(V2;Z2 ∩ p−1
2 (W )) �� E(V2;Z2) �� E(V12;Z12)

∂ �� ΣE(V2;Z2 ∩ p−1
2 (W )) .

By applying the homological functor HomT (b,−) to the commutative diagram
(5.6), for every object b of T , we observe that the middle square forms a “Mayer-
Vietoris” LES-triangle (5.4) with boundary morphism δ induced by the composition

E(V12;Z12)
∂→ ΣE(V2;Z2 ∩ p−1

2 (W )) � ΣE(X;Z ∩W ). �

Remark 5.7 (Generalization). Given a dg category A, Drinfeld proved in [11,
Prop. 1.6.3] that the functor − ⊗ A preserves short exact sequences of dg cate-
gories. By tensoring (5.5) with A, we obtain an induced LES-triangle

E(X;Z;A)
±→ E(V1;Z1;A)⊕ E(V2;Z2;A) → E(V12;Z12;A)

δ→ ΣE(X;Z;A) .

6. Proof of Theorem 1.9

Thanks to the work of Thomason-Trobaugh [49, §5] (see also Proposition 4.21),
we have the following short exact sequence of dg categories:

(6.1) 0 −→ perfdg(X)Z −→ perfdg(X)
j∗−→ perfdg(U) −→ 0 .

Consequently, we obtain an induced distinguished triangle

E(X;Z) −→ E(X)
E(j∗)−→ E(U)

∂−→ ΣE(X;Z) .

Since the dg functor i∗ : perfdg(Z) → perfdg(X) factors through the inclusion
perfdg(X)Z ⊂ perfdg(X), we have also an induced morphism

(6.2) E(i∗) : E(Z) −→ E(X;Z) .

The proof of Theorem 1.9 follows now from the following result:

Theorem 6.3 (“Dévissage”). The morphism (6.2) is invertible.

The proof of Theorem 6.3 is divided into three main steps:

(i) first, we describe the behavior of an A1-homotopy invariant with respect to
N0-graded dg categories;
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(ii) second, by combining the first step with a formality result of independent
interest (see Theorem 6.8), we prove Theorem 6.3 in the affine case;

(iii) third, using the Nisnevich descent results established in §5, we bootstrap
the proof of Theorem 6.3 from the affine case to the general case.

Step I: Gradings. A dg category A is called N0-graded if the (cochain) com-
plexes of k-vector spaces A(x, y) are equipped with a direct sum decomposition⊕

n≥0 A(x, y)n of (cochain) complexes of k-vector spaces, which is preserved by the

composition law. Note that, by definition, the N0-grading of A(x, y) is respected
by the differential. The elements of A(x, y)n are called of pure degree n. Let A0

be the dg category with the same objects as A and A0(x, y) := A(x, y)0. Note
that we have an “inclusion” dg functor ι0 : A0 → A and a “projection” dg functor
π : A → A0 such that π ◦ ι0 = id.

Remark 6.4. Let A be a dg category whose (cochain) complexes of k-vector spaces
A(x, y) have zero differential and are supported in nonpositive degrees. In this case,
the dg category A becomes N0-graded: an element of A(x, y) is of pure degree n if
it is of cohomological degree −n.

Remark 6.5. The tensor product of an N0-graded dg category A with a dg category
B is again an N0-graded dg category with (A ⊗ B)((x,w), (y, z))n := A(x, y)n ⊗
B(w, z).

The following result is classical.

Lemma 6.6 (See [16]). For every A1-homotopy invariant E : dgcat(k) → T and
N0-graded dg category A, we have an associated isomorphism E(ι0) : E(A0) →
E(A).

Proof. Since π ◦ ι0 = id, it suffices to show that E(ι0 ◦ π) = id. Note that we have
canonical dg functors ι : A → A[t] and ev0, ev1 : A[t] → A satisfying the equalities
ev0 ◦ ι = ev1 ◦ ι = id. Consider the commutative diagram

(6.7) A

A H ��

ι0◦π
��

A[t]

ev0

��

ev1

��
A ,

where H is the dg functor defined by x �→ x and A(x, y)n → A(x, y)[t], f �→ f ⊗ tn.
Since the functor E inverts the morphism ι, it also inverts the morphisms ev0 and
ev1. Moreover, E(ev0) = E(ev1). By applying the functor E to (6.7), we hence
conclude that E(ι0 ◦ π) = id. �
Step II: Affine case. Our main result in the affine case is the following.

Theorem 6.8 (Formality). Let Z ↪→ X be a closed immersion of smooth affine
k-schemes and I ⊂ OX the defining ideal of Z in X. Then the following hold:

(i) The sheaf OX/I ∈ perf(X)Z is a compact generator of DQcoh(X)Z.
Consequently, the dg category perfdg(X)Z is Morita equivalent to
perfdg(A), where A stands for the derived dg algebra of endomorphisms
REndX(OX/I).
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(ii) The dg algebra A is formal.
(iii) We have an isomorphism H∗(A) � Γ(Z,

∧∗
Z((I/I2)∨)), where I/I2 is con-

sidered as a vector bundle on Z.

Proof. (i) Given an object F ∈ DQcoh(X)Z , we need to show the implication:

HomDQcoh(X)Z (OX/I,ΣnF) = 0 ∀n ∈ Z ⇒ F = 0 .(6.9)

Since X is affine, the left-hand side of (6.9) is equivalent to HomX(OX/I,F) = 0.
As proved by Grothendieck in [13, Prop. (19.1.1)], the ideal I is locally generated
by a regular sequence. Given an (affine) open subscheme U ↪→ X such that Z∩U =
V (f1, . . . , fd) for a regular sequence f1, . . . , fd ∈ Γ(U,OU ), the object (OX/I)|U :=⊗

i cone(fi : OU → OU ) is well known to be a compact generator of DQcoh(U)Z∩U ;
see [5, Prop. 6.1]. Using the natural identification between HomX((OX/I)|U ,F|U )
and HomX(OX/I,F)|U , we conclude that F|U = 0. The proof follows now from
the fact that X admits a covering by such (affine) open subschemes U ’s.

(ii) It is now convenient to switch to ring theoretic notation: let X = Spec(R),
Z = Spec(S), and φ : R � S the surjective k-algebra homomorphism corresponding

to the closed immersion Z ↪→ X. Let us write I for the kernel of φ, R̂ for the

completion of R at I, T for the graded symmetric algebra SymS(I/I
2), and T̂ for

the completion of T at the augmentation ideal T>0. Thanks to Proposition 6.12
below, I/I2 is a finitely generated projective S = R/I-module and there exists an

isomorphism T̂
�→ R̂ compatible with φ and with the projection T → T0 = S.

Let us write D(R) for the derived category of R and D(R)I for the full trian-
gulated subcategory of those complexes of R-modules whose cohomology is locally
annihilated by a power of I. Note that D(R), resp. D(R)I , agrees with the cat-
egory D(Qcoh(X)), resp. D(Qcoh(X))Z . As proved in [5, Thm. 5.1] (see also

[6, Cor. 3.3.5]), we have an equivalence RΓ: DQcoh(X)
�→ D(Qcoh(X)). Since this

equivalence preserves cohomology of complexes, it restricts to the equivalence

(6.10) RΓ: DQcoh(X)Z
�−→ D(Qcoh(X))Z = D(R)I .

We also have the following equivalences of categories:

(6.11) DQcoh(X)Z
(6.10)−→ D(R)I

(a)→ D(R̂)Î
(b)→ D(T̂ )T̂≥1

(c)→ D(T )T≥1
,

where (a) and (c) follow from (the ring theoretic version of) Theorem 4.25 and
(b) from Proposition 6.12. Concretely, (a) is the base-change along the k-algebra

homomorphism R → R̂ and (b), resp. (c), the restriction along the k-algebra

homomorphism T̂
�→ R̂, resp. T → T̂ . Via the equivalences (6.11), the sheaf

OX/I ∈ DQcoh(X)Z corresponds to the T -module S ∈ D(T )T≥1
. Consequently, the

dg algebra A becomes quasi-equivalent to the derived dg algebra of endomorphisms
A′ := REndT (S). The formality of A′ follows now from Proposition 6.13 below.

(iii) The proof follows from Proposition 6.13 below. �

Proposition 6.12 (Affine tubular neighborhoods). Let φ : R � S be a surjective
morphism between smooth k-algebras, with kernel I. Then the S = R/I-module

I/I2 is finitely generated projective. Let R̂ be the I-adic completion of R at I, T

the graded symmetric algebra SymS(I/I
2) (with Tn := Symn

S(I/I
2)), and T̂ the

completion of T at the ideal T≥1. Under this notation, there exists an isomorphism

τ : T̂
�→ R̂ such that φ̂ ◦ τ agrees with the projection onto T0 = S.
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Proof. Since the k-algebras R and S are formally smooth (see [33, Prop. E.2]), the

proof follows from [13, Cor. 0.19.5.4] applied to A := k, B := R̂, and C := S. The

property that φ̂ ◦ τ agrees with the projection onto T0 = S is not explicitly stated
in loc. cit., but it follows immediately from the proof. �

Proposition 6.13 (Koszul duality). Let S be a commutative ring, P a finitely
generated projective S-module, and T := SymS(P ). Then the dg algebra A :=
REndT (S) is formal and its cohomology as a graded algebra is given by

∧∗
S P∨.

Proof. We may compute the cohomology H∗(A) = Ext∗T (S, S) via the standard
Koszul resolution of S given by

K := (SymS(ΣP )⊗S T, η ∩ −),

where η is the unit element in P∨ ⊗S P . Since the differential in K becomes zero
after applying HomT (−, S), we have abelian group isomorphisms

(6.14) Ext∗T (S, S) � H∗(HomT (K, S)) � SymS Σ−1(P∨) .

Next, we observe that if ω ∈ Symn
S Σ−1(P∨), then ω ∩ − (super-)commutes with

η ∩ −. This implies that ω ∩ − defines a morphism of complexes K → ΣnK. We
obtain in this way a dg algebra morphism SymS Σ−1(P∨) → EndT (K), ω �→ ω∩−,
such that the composition SymS Σ−1(P∨) → H∗(EndT (K)) → H∗(HomT (K, S))
is the inverse of (6.14). This concludes the proof. �

We may now conclude the proof of Theorem 6.3, and hence of Theorem 1.9,
in the affine case. Thanks to Theorem 6.8, the dg category perfdg(X)Z is Morita
equivalent to H∗(A) and the dg functor i∗ : perfdg(Z) → perfdg(X)Z identifies with

the inclusion of H0(A) into H∗(A). Using Lemma 6.6 and Remark 6.4, we hence
conclude that the induced morphism (6.2) is invertible.

Step III: General case. In order to bootstrap the proof of Theorem 6.3 from the
affine case to the general case, we use the following induction principle:

Proposition 6.15 (See [6, Prop. 3.3.1]). Given a property P, assume the following:

(A1) The property P holds for all affine k-schemes X.
(A2) Let V1∪V2 = X be a Zariski open cover of a scheme X; such that X,V1, V2,

V12 are quasi-compact quasi-separated (see §5). If the property P holds for
V1, V2, and V12, then it also holds for X.

Under the assumptions (A1)-(A2), the property P holds for all quasi-compact quasi-
separated k-schemes.

Let P be the following property: “If X is a smooth k-scheme, then (6.2) is invert-
ible for every smooth closed subscheme Z”. As proved in Step II, the assumption
(A1) of Proposition 6.15 is satisfied. Let us now verify assumption (A2). Given
a smooth k-scheme X and a smooth closed subscheme i : Z ↪→ X, consider the
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commutative diagram

(6.16) E(X;Z)
E(p∗

1) ��

E(p∗
2)

��

E(V1;Z1)

��

E(Z)

E(i∗)
		���������

E(p∗
1) ��

E(p∗
2)

��

E(Z1)

E(i1∗)


���������

��
E(Z2)

E(i2∗)

�����
���

���
�� E(Z12)

E(i12∗ )

����
���

���
�

E(V2;Z2) �� E(V12;Z12)

in the triangulated category T , where Zi := Z ∩Vi and Z12 := Z1 ∩Z2. In order to
prove assumption (A2) we need to show that if the morphisms E(i1∗), E(i2∗), and
E(i12∗ ) are invertible, then E(i∗) is also invertible. Thanks to Theorem 5.3, (6.16)
gives rise to the following morphism between LES-triangles:

E(Z)

E(i∗)

��

± �� E(Z1)⊕ E(Z2)

E(i1∗)⊕E(i2∗)

��
�
��

�� E(Z12)

E(i12∗ )

��
�
��

δ �� ΣE(Z)

E(i∗)

��
E(X;Z) ±

�� E(V1;Z1)⊕ E(V2;Z2) �� E(V12;Z12)
δ

�� ΣE(X;Z) .

Making use of the 5-lemma, we conclude that E(i∗) becomes invertible after ap-
plying HomT (b,−), for every object b of T . The Yoneda lemma hence implies that
E(i∗) is invertible. This finishes the proof of Theorem 6.3, and hence of Theo-
rem 1.9.

7. Proof of the generalizations (G1)-(G2)

Generalization (G1). Consider the cartesian square of algebraic spaces

(7.1) V12 := V1 ×X V2

��

�� V2

p2

��
V1 p1

�� X ,

where p1 is an open immersion and p2 is an étale map inducing an isomorphism
on reduced algebraic spaces p−1

2 (X\V1)red � (X\V1)red. Let i : Z ↪→ X be a closed
algebraic subspace, Z1 := Z ∩ V1, Z2 := p−1

2 (Z), and Z12 := Z1 ×Z Z2.

Remark 7.2. Theorem 5.3 holds similarly with (5.1) replaced by (7.1) and Z1, Z2,
and Z12, replaced by Z1, Z2, and Z12, respectively.

In the case of algebraic spaces, Proposition 6.15 admits the following variant:

Proposition 7.3 (See [21, Tag 08GL, Lem. 62.8.3]). Given a property P, assume:

(A1) The property P holds for all affine k-schemes X .
(A2) If the property P holds for the quasi-compact quasi-separated algebraic

spaces V1, V2, V12 in (7.1), with V2 being an affine k-scheme, then it also
holds for X .
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Under the assumptions (A1)-(A2), the property P holds for all quasi-compact quasi-
separated algebraic spaces.

Let X be a smooth algebraic space, i : Z ↪→ X a smooth closed algebraic space,
and j : U ↪→ X the open complement of Z. Similarly to (6.1), we have the following
short exact sequence of dg categories:

0 −→ perfdg(X )Z −→ perfdg(X )
j∗−→ perfdg(U) −→ 0 .

Therefore, in order to establish (G1), it suffices to prove the generalization of The-
orem 6.3 obtained by replacing (6.2) with E(i∗) : E(Z) → E(X ;Z). Steps I-II hold
mutatis mutandis. For Step III, simply replace Proposition 6.15 by Proposition 7.3
and run the same argument using Remark 7.2.

Generalization (G2). Given a dg category A, Drinfeld proved in [11, Prop. 1.6.3]
that the functor − ⊗ A preserves short exact sequences of dg categories. Conse-
quently, in order to establish (G2), it suffices to prove the generalization of Theorem
6.3 obtained by replacing (6.2) with the morphism

(7.4) E(i∗ ⊗ id) : E(Z;A) −→ E(X;Z;A) .

Step I holds mutatis mutandis. For Step II, recall from Theorem 6.8 that the
dg category perfdg(X)Z is Morita equivalent to H∗(A) and that the dg functor

i∗ : perfdg(X) → perfdg(X)Z identifies with the inclusion of H0(A) into H∗(A).
Thanks to Remarks 6.4-6.5, we hence conclude from Lemma 6.6 that the morphism
(7.4) is also invertible. For Step III, run the same argument using Remark 5.7.
Finally, the second claim of Generalization (G2) follows from Lemma 4.26.

8. Proof of Theorem 2.1

We start with the following birationality result:

Proposition 8.1. Let k be a perfect field, X and Y two birational smooth connected
k-schemes, and E : dgcat(k) → T a functor which satisfies conditions (C1)-(C2).
Let U be a triangulated subcategory of T . Assume that all the objects E(W ), with W
a smooth k-scheme of dimension strictly inferior to dim(X), belong to U . Under
these assumptions, if E(X) or E(Y ) belongs to U , so does the other one.

Proof. It is sufficient to consider the case where Y is an open subscheme of X. Let
Z ↪→ X be the closed complement of Y . Since by assumption k is a perfect field,
there exists a stratification of Z into closed subschemes

∅ = Z−1 ↪→ Z0 ↪→ · · · ↪→ Zr ↪→ · · · ↪→ Zn−1 ↪→ Zn = Z

such that Zr\Zr−1 is smooth for every 0 ≤ r ≤ n. Consider the Gysin triangles

(8.2) E(Zr\Zr−1) −→ E(X\Zr−1) −→ E(X\Zr)
∂−→ ΣE(Zr\Zr−1)

provided by Theorem 1.9. Since Y is an open dense subscheme of X, the dimension
of Zr\Zr−1 is strictly inferior to dim(X) for every 0 ≤ r ≤ n. Therefore, the proof
follows recursively from the Gysin triangles (8.2). �
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Item (i). Let U be the triangulated category T sp. Without loss of generality we
may assume that X is connected. Furthermore, using induction on dim(X) we
may assume that all the objects E(W ), with W a smooth k-scheme of dimension
strictly inferior to dim(X), belong to U . Since by assumption k admits resolution of
singularities, X can be realized as the open complement of a strict normal crossing
divisor D inside a smooth projective k-scheme Y . Using the fact that E(Y ) belongs
to U , the proof of item (i) of Theorem 2.1 follows now from Proposition 8.1.

Remark 8.3. Let Di be the irreducible components of D. One may easily show that
the object E(X) belongs to the smallest triangulated subcategory of T containing
the objects E(Y ) and {E(Dr1 ∩ · · · ∩Dri) | 1 ≤ r1, . . . , ri ≤ m}.

Item (ii). Let U be the triangulated category T sp. Without loss of generality we
may assume that X is connected. Furthermore by induction on dim(X) we may
assume that all the objects E(W ), with W a smooth k-scheme of dimension strictly
inferior to dim(X), belong to U . We start with the following auxiliary results:

Proposition 8.4. For each prime l �= p, there exists an open dense subscheme
V ↪→ X and a finite étale cover gV : V ′ → V such that gV ∗(OV ′) � O⊕d

V with d
coprime to l. Moreover, E(V ′) belongs to U .

Proof. Gabber’s refined version of de Jong’s theory [20] of alterations (see [17,
Thms. 3(i) and 3.2.1]) allows us to construct for each prime l �= p a diagram

V ′ := V ×X X ′

gV

��

j′ �� X ′ := X ×X Y

��

�� Y

g

��
V

j
�� X �� X ,

where X is a compactification of X, g is an alteration, j : V ↪→ X is an open dense
subscheme, and gV is a finite étale surjective map of rank d prime to l. Shrinking
V if necessary, we may assume that (gV )∗(OV ′) � O⊕d

V . Since Y is irreducible, the
open subscheme V ′ ↪→ Y is dense. Using the fact that Y is smooth projective and
dim(Y ) = dim(X), we conclude from Proposition 8.1 that E(V ′) belongs to U . �

Lemma 8.5. Let f : X → Y be a finite map between quasi-compact quasi-separated
k-schemes such that f∗(OX) � O⊕d

Y . Then for every additive invariant F , the
composition F (f∗)◦F (f∗) : F (Y ) → F (X) → F (Y ) is equal to d times the identity.

Proof. Since F factors through the universal additive invariant Uadd (see §4.3), it
is sufficient to prove Lemma 8.5 in the case F = Uadd. Thanks to the projection
formula (see [49, §3.17]), the dg functor f∗f

∗ : perfdg(Y ) → perfdg(Y ) is given by

f∗(OX) ⊗ −. Since by assumption f∗(OX) � O⊕d
Y , the perfdg(Y )-bimodule f∗f∗B

corresponding to f∗f
∗ (see (4.1)) is isomorphic to (idB)

⊕d in the triangulated cate-
gory rep(perfdg(Y ), perfdg(Y )). Consequently, [f∗f∗B] = d[idB] in the Grothendieck
group K0rep(perfdg(Y ), perfdg(Y )). The proof follows now from the fact that [idB]
is the identity of the object Uadd(Y ) ∈ Hmo0(k). �

Choose an arbitrary prime l0 �= p and construct V, V ′, gV , d as in Proposition 8.4
with l = l0. Denote the result by V ′

0 , V0, gV0
, d0. Let {l1, . . . , lt} be the prime factors

of d0 distinct from p. Construct V ′, V, gV , d for each l = li and denote the result by
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V ′
i , Vi, gVi

, di. Let us write V for the intersection
⋂t

i=1 Vi. Thanks to Proposition

8.1, we can assume that V0 = V1 = · · · = Vt = V and replace V ′
i by g−1

Vi
(V )

without changing the statement of Proposition 8.4; in particular, E(V ′
i ) belongs to

U . Lemma 8.5 below hence implies that the composition E(gVi,∗)◦E(g∗Vi
) : E(V ) →

E(V ′
i ) → E(V ) is equal to di times the identity.

Now, choose integers (ai)i ∈ Z such that
∑

i aidi = gcd(d0, . . . , dt). Under these
choices, the (matrix) composition

E(V )
[E(g∗

Vi
)]t×1

−−−−−−−→
t⊕

i=0

E(V ′
i )

[aiE(gVi,∗)]1×t−−−−−−−−−−→ E(V )

is equal to e := gcd(d0, . . . , dn) times the identity. We claim that e is a power of
p. Indeed, if q �= p is a prime which divides e, then q divides d0. This implies
that q = li for some 1 ≤ i ≤ t. But then we would conclude that q does not
divides di, which is a contradiction! Since e is a power of p and, by assumption,
the triangulated category T is Z[1/p]-linear, the object E(V ) is a direct summand

of
⊕t

i=0 E(V ′
i ). Using the fact that E(V ′

i ) belongs to U and that the triangulated
category U is idempotent complete, we hence conclude that E(V ) also belongs to
U . The proof of item (ii) of Theorem 2.1 follows now from Proposition 8.1 applied
to the open dense subscheme j : V ↪→ X.

9. Proof of Theorem 2.7

We start with the following “invariance” result concerning affine fibrations:

Proposition 9.1. Let f : X → Y be an affine fibration between quasi-compact
quasi-separated k-schemes. For every functor E : dgcat(k) → T which satisfies

conditions (C1)-(C2), we have an induced isomorphism E(f∗) : E(Y )
�→ E(X).

Proof. Let us denote by d the relative dimension of f . Using an appropriate variant
of Proposition 6.15, it suffices to verify the following conditions:

(A1) The morphism E(Y ) → E(Y ×Ad), induced by the projection, is invertible.
(A2) Let V1 ∪ V2 = Y be a Zariski cover of Y . If the morphisms E(f∗

1 ), E(f∗
2 ),

and E(f∗
12) are invertible, then E(f∗) is also invertible.

By Lemma 4.26, we have an isomorphism E(Y × Ad) � E(Y ; perfdg(A
d)). There-

fore, condition (A1) follows from the Morita equivalence k[t]⊗d → perfdg(A
d) and

from an iterated application of condition (C2). In order to prove condition (A2),
consider the commutative diagram

E(X)
E(p∗

1) ��

E(p∗
2)

��

E(X1)

��

E(Y )

E(f∗)


									

E(p∗
1) ��

E(p∗
2)

��

E(V1)

E(f∗
1 )

��











��
E(V2)

E(f∗
2 )

����
��
��
��
�

�� E(V12)

E(f∗
12)

����
���

���
��

E(X2) �� E(X12)
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in the triangulated category T , where Xi := f−1(Vi) and X12 := f−1(V12). Thanks
to Theorem 5.1, the outer and inner squares give rise to “Mayer-Vietoris” LES-
triangles. Hence, a proof similar to the one of (Step III: General case) shows that
if E(f∗

1 ), E(f∗
2 ), and E(f∗

12) are invertible, then E(f∗) is also invertible. �

The filtration (2.5), combined with the isomorphisms U(Yi) � U(Xi\Xi−1) pro-
vided by Proposition 9.1, gives rise to the following Gysin triangles in Mot(k):

U(Yi) −→ U(X\Xi−1) −→ U(X\Xi)
∂−→ ΣU(Yi), 0 ≤ i ≤ n− 1 .(9.2)

We will prove by descending of induction on j for −1 ≤ j ≤ n− 1 that U(X\Xj) �⊕n
i=j+1 U(Yi). For j = n − 1 this boils down to U(X\Xn−1) = U(Yn) which

has already been proved. Assume now that U(X\Xj) �
⊕n

i=j+1 U(Yi). Then the

distinguished Gysin triangle (9.2) for i = j becomes

(9.3) U(Yj) −→ U(X\Xj−1) −→
n⊕

i=j+1

U(Yi)
∂−→ ΣU(Yj) .

Since the schemes Yi’s are smooth projective, Proposition 4.13 implies that ∂ = 0.
Therefore, the distinguished triangle (9.3) splits and gives rise to an isomorphism
U(X\Xj−1) �

⊕n
i=j U(Yi). This completes the proof of the induction step.

According to Lemma 4.15, the additive functor U (see §4.3) restricts to an equiv-
alence between the full subcategories of Hmo0(k) and Mot(k) spanned by the ob-
jects Uadd(X) and U(X), respectively, where X runs through the smooth proper
k-schemes. As a consequence, we also have an induced isomorphism Uadd(X) �⊕n

i=0 Uadd(Yi) in the additive category Hmo0(k). The proof of Theorem 2.7 follows
now from the fact that F , being additive, factors through Uadd.
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Supérieure, Paris, 1998. Notes available at www.math.uchicago.edu/mitya/langlands.html

[32] Marc Levine, Mixed motives, Mathematical Surveys and Monographs, vol. 57, American
Mathematical Society, Providence, RI, 1998. MR1623774

[33] Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag,
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