Poincaré-Birkhoff Theorems in random dynamics
HTML articles powered by AMS MathViewer
- by Álvaro Pelayo and Fraydoun Rezakhanlou PDF
- Trans. Amer. Math. Soc. 370 (2018), 601-639 Request permission
Abstract:
We propose a generalization of the Poincaré-Birkhoff Theorem on area-preserving twist maps to area-preserving twist maps $F$ that are random with respect to an ergodic probability measure. In this direction, we will prove several theorems concerning existence, density, and type of the fixed points. To this end first we introduce a randomized version of generalized generating functions, and verify the correspondence between its critical points and the fixed points of $F$, a fact which we successively exploit in order to prove the theorems. The study we carry out needs to combine probabilistic techniques with methods from nonlinear PDE, and from differential geometry, notably Moser’s method and Conley-Zehnder theory. Our stochastic model in the periodic case coincides with the classical setting of the Poincaré-Birkhoff Theorem.References
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Peter Albers, Joel W. Fish, Urs Frauenfelder, Helmut Hofer, and Otto van Koert, Global surfaces of section in the planar restricted 3-body problem, Arch. Ration. Mech. Anal. 204 (2012), no. 1, 273–284. MR 2898741, DOI 10.1007/s00205-011-0475-2
- V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 0690288, DOI 10.1007/978-1-4757-1693-1
- V. I. Arnol′d and A. Avez, Ergodic problems of classical mechanics, W. A. Benjamin, Inc., New York-Amsterdam, 1968. Translated from the French by A. Avez. MR 0232910
- Michèle Audin, Vladimir Igorevich Arnold and the invention of symplectic topology, Contact and symplectic topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest, 2014, pp. 1–25. MR 3220939, DOI 10.1007/978-3-319-02036-5_{1}
- Jean-Marc Azaïs and Mario Wschebor, Level sets and extrema of random processes and fields, John Wiley & Sons, Inc., Hoboken, NJ, 2009. MR 2478201, DOI 10.1002/9780470434642
- June Barrow-Green, Poincaré and the three body problem, History of Mathematics, vol. 11, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1997. MR 1415387, DOI 10.1090/hmath/011
- George D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer. Math. Soc. 14 (1913), no. 1, 14–22. MR 1500933, DOI 10.1090/S0002-9947-1913-1500933-9
- George D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199–300. MR 1501070, DOI 10.1090/S0002-9947-1917-1501070-3
- George D. Birkhoff, An extension of Poincaré’s last geometric theorem, Acta Math. 47 (1926), no. 4, 297–311. MR 1555218, DOI 10.1007/BF02559515
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
- B. Bramham and H. Hofer, First steps towards a symplectic dynamics, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 127–177. MR 3076060, DOI 10.4310/SDG.2012.v17.n1.a3
- M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), no. 1, 21–31. MR 448339, DOI 10.1307/mmj/1029001816
- Alexander D. Bruno, The restricted 3-body problem: plane periodic orbits, De Gruyter Expositions in Mathematics, vol. 17, Walter de Gruyter & Co., Berlin, 1994. Translated from the Russian by Bálint Érdi; With a preface by Victor G. Szebehely. MR 1301328, DOI 10.1515/9783110901733
- Patricia H. Carter, An improvement of the Poincaré-Birkhoff fixed point theorem, Trans. Amer. Math. Soc. 269 (1982), no. 1, 285–299. MR 637039, DOI 10.1090/S0002-9947-1982-0637039-0
- Marc Chaperon, Une idée du type “géodésiques brisées” pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 13, 293–296 (French, with English summary). MR 765426
- Marc Chaperon, An elementary proof of the Conley-Zehnder theorem in symplectic geometry, Dynamical systems and bifurcations (Groningen, 1984) Lecture Notes in Math., vol. 1125, Springer, Berlin, 1985, pp. 1–8. MR 798078, DOI 10.1007/BFb0075631
- Marc Chaperon, Recent results in symplectic geometry, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 143–159. MR 1102710
- C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, DOI 10.1007/BF01393824
- Wei Yue Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 88 (1983), no. 2, 341–346. MR 695272, DOI 10.1090/S0002-9939-1983-0695272-2
- J. L. Doob, Random processes, John Wiley and Sons, Inc., New York; Chapman and Hall, Limited, London, 1953. viii+654 pp.
- D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Springer Series in Statistics, Springer-Verlag, New York, 1988. MR 950166
- Albert Einstein, Investigations on the theory of the Brownian movement, Dover Publications, Inc., New York, 1956. Edited with notes by R. Fürth; Translated by A. D. Cowper. MR 0077443
- Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207–221. MR 1001276
- Andreas Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575–611. MR 987770, DOI 10.1007/BF01260388
- Andreas Floer, Elliptic methods in variational problems, ICM-90, Mathematical Society of Japan, Tokyo; distributed outside Asia by the American Mathematical Society, Providence, RI, 1990. A plenary address presented at the International Congress of Mathematicians held in Kyoto, August 1990. MR 1126912
- John Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. (2) 128 (1988), no. 1, 139–151. MR 951509, DOI 10.2307/1971464
- John Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 99–107. MR 967632, DOI 10.1017/S0143385700009366
- John Franks, Erratum to: “Generalizations of the Poincaré-Birkhoff theorem” [Ann. of Math. (2) 128 (1988), no. 1, 139–151; MR0951509], Ann. of Math. (2) 164 (2006), no. 3, 1097–1098. MR 2259255, DOI 10.4007/annals.2006.164.1097
- Joseph Galante and Vadim Kaloshin, Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action, Duke Math. J. 159 (2011), no. 2, 275–327. MR 2824484, DOI 10.1215/00127094-1415878
- Christophe Golé, Symplectic twist maps, Advanced Series in Nonlinear Dynamics, vol. 18, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. Global variational techniques. MR 1992005, DOI 10.1142/9789812810762
- Lucien Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994), no. 2, 331–351 (French). MR 1273787, DOI 10.1016/0040-9383(94)90016-7
- Helmut Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 407–462. MR 831040, DOI 10.1016/S0294-1449(16)30394-8
- H. Hofer, Arnold and symplectic geometry, Notices Amer. Math. Soc. 59 (2012), 499–502.
- H. Hofer and D. A. Salamon, Floer homology and Novikov rings, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 483–524. MR 1362838
- H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125–255. MR 1954266, DOI 10.4007/annals.2003.157.125
- Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732, DOI 10.1007/978-3-0348-8540-9
- Howard Jacobowitz, Periodic solutions of $x^{\prime \prime }+f(x,t)=0$ via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976), no. 1, 37–52. MR 393673, DOI 10.1016/0022-0396(76)90094-2
- Howard Jacobowitz, Corrigendum: The existence of the second fixed point: a correction to “Periodic solutions of $x''+f(x, t)=0$ via the Poincaré-Birkhoff theorem” (J. Differential Equations 20 (1976), no. 1, 37–52), J. Differential Equations 25 (1977), no. 1, 148–149. MR 437857, DOI 10.1016/0022-0396(77)90187-5
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- A. N. Kolmogorov, Théorie générale des systèmes dynamiques et mécanique classique, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 315–333 (French). MR 0097598
- Patrice Le Calvez, Propriétés dynamiques des difféomorphismes de l’anneau et du tore, Astérisque 204 (1991), 131 (French, with English and French summaries). MR 1183304
- Patrice Le Calvez and Jian Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 138 (2010), no. 2, 703–715. MR 2557187, DOI 10.1090/S0002-9939-09-10105-3
- Gang Liu and Gang Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1–74. MR 1642105
- John N. Mather, Dynamics of area preserving maps, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1190–1194. MR 934323
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
- Edward Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton, N.J., 1967. MR 0214150, DOI 10.1515/9780691219615
- Walter D. Neumann, Generalizations of the Poincaré Birkhoff fixed point theorem, Bull. Austral. Math. Soc. 17 (1977), no. 3, 375–389. MR 584597, DOI 10.1017/S0004972700010650
- Kaoru Ono, On the Arnol′d conjecture for weakly monotone symplectic manifolds, Invent. Math. 119 (1995), no. 3, 519–537. MR 1317649, DOI 10.1007/BF01245191
- H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome III, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Librairie Scientifique et Technique Albert Blanchard, Paris, 1987 (French). Invariant intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques. [Integral invariants. Periodic solutions of the second kind. Doubly asymptotic solutions]; Reprint of the 1899 original; Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library]. MR 926908
- H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375–407.
- Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR 1826128, DOI 10.1007/978-3-0348-8299-6
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Claude Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), no. 4, 685–710. MR 1157321, DOI 10.1007/BF01444643
- Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
- Alan Weinstein, On extending the Conley-Zehnder fixed point theorem to other manifolds, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 541–544. MR 843640
- E. Zehnder, The Arnol′d conjecture for fixed points of symplectic mappings and periodic solutions of Hamiltonian systems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1237–1246. MR 934328
Additional Information
- Álvaro Pelayo
- Affiliation: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093-0112
- MR Author ID: 731609
- Email: alpelayo@math.ucsd.edu
- Fraydoun Rezakhanlou
- Affiliation: Department of Mathematics, University of California Berkeley, Berkeley, California 94720-3840
- MR Author ID: 253698
- Email: rezakhan@math.berkeley.edu
- Received by editor(s): February 5, 2015
- Received by editor(s) in revised form: March 24, 2016, and April 14, 2016
- Published electronically: August 15, 2017
- Additional Notes: The first author was supported by NSF Grants DMS-1055897, DMS-1518420, and DMS-0635607, a J. Tinsely Oden Faculty Fellowship from the University of Texas, and an Oberwolfach Leibniz Fellowship
The second author was supported in part by NSF Grant DMS-1106526 and DMS-1407723 - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 601-639
- MSC (2010): Primary 60D05
- DOI: https://doi.org/10.1090/tran/6967
- MathSciNet review: 3717991
Dedicated: To Alan Weinstein on his 70th birthday, with admiration.
The authors dedicate this article to Alan Weinstein, whose fundamental and deep insights in so many areas of geometry are a continuous source of inspiration.