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POINCARÉ-BIRKHOFF THEOREMS IN RANDOM DYNAMICS

ÁLVARO PELAYO AND FRAYDOUN REZAKHANLOU

The authors dedicate this article to Alan Weinstein, whose fundamental and deep insights in so
many areas of geometry are a continuous source of inspiration.

Abstract. We propose a generalization of the Poincaré-Birkhoff Theorem on
area-preserving twist maps to area-preserving twist maps F that are random
with respect to an ergodic probability measure. In this direction, we will
prove several theorems concerning existence, density, and type of the fixed
points. To this end first we introduce a randomized version of generalized
generating functions, and verify the correspondence between its critical points
and the fixed points of F , a fact which we successively exploit in order to
prove the theorems. The study we carry out needs to combine probabilistic
techniques with methods from nonlinear PDE, and from differential geometry,
notably Moser’s method and Conley-Zehnder theory. Our stochastic model in
the periodic case coincides with the classical setting of the Poincaré-Birkhoff
Theorem.

1. Introduction

Poincaré understood that preserving area has global implications for a dynamical
system. We give instances when this connection persists in a random setting. We
do it by using random generating functions to reduce the proofs to finding critical
points of random maps. This paper proposes an extension of the classical theory
of area-preserving twist maps to the random setting.

In his work in celestial mechanics [Po93] Poincaré showed the study of the dynam-
ics of certain cases of the restricted 3-Body Problem may be reduced to investigating
area-preserving maps (see Le Calvez [Le91] and Mather [Ma86] for an introduction
to area-preserving maps). He concluded that there is no reasonable way to solve
the problem explicitly in the sense of finding formulae for the trajectories. New
insights appear regularly (e.g. Albers et al. [AFFHO12], Bruno [Br94], Galante et
al. [GK11], and Weinstein [We86]). Instead of aiming at finding the trajectories, in
dynamical systems one aims at describing their analytical and topological behav-
ior. Of a particular interest are the constant ones, i.e., the fixed points (see Figure
1.1). The development of the modern field of dynamical systems was markedly
influenced by Poincaré’s work in mechanics, which led him to state (1912) the
Poincaré-Birkhoff Theorem [Po12,Bi13]. It was proved in full by Birkhoff in 1925.
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Figure 1.1. Fixed point of an area-preserving twist defined by a flow.

The result says that an area-preserving periodic twist map

F : S → S

of

S := R× [−1, 1]

has two geometrically distinct fixed points. More precisely:

Definition 1.1. A diffeomorphism F : S → S,

F (q, p) = (Q(q, p), P (q, p)),

is an area-preserving periodic twist if the following conditions are satisfied:

(1) area preservation: it preserves area;
(2) boundary invariance: it preserves �± := R× {±1}, i.e.

P (q,±1) := ±1;

(3) boundary twisting : F is orientation preserving and

±Q(q,±1) > ±q

for all q;
(4) periodicity : F (q + 1, p) = (1, 0) + F (q, p) for all p, q.

We may alternatively replace (3) and (4) by

(3’) q �→ Q(q,±1) is increasing and ±Q(q,±1) > ±q for all q, and (4) by
(4’) F (q, p) = (q + Q̄(q, p), P̄ (q, p)) for a map

F̄ := (Q̄, P̄ ) : S → S

such that

F̄ (q + 1, p) = F̄ (q, p)

for all (q, p).

Now we are ready to state the famous result of Poincaré and Birkhoff on area-
preserving twist maps.

Theorem A (Poincaré-Birkhoff). An area-preserving periodic twist F : S → S has
at least two geometrically distinct fixed points.
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For the purpose of our article, the most useful proof of Theorem A follows Chap-
eron’s viewpoint [Ch84,Ch84b,Ch89] and the so-called theory of “generating func-
tions”. Generalizations including a number of new ideas have been obtained by
several authors, e.g. see Carter [Ca82], Ding [Di83], Franks [Fr88, Fr88b, Fr06],
Le Calvez-Wang [Le10], Neumann [Ne77], and Jacobowitz [Ja76,Ja77]. Theorem A
was proved1 in certain cases by Poincaré [Po12]. Later Birkhoff gave a full proof
and presented generalizations [Bi13,Bi26]; in [Bi66] he explored its applications to
dynamics. See [BG97, Section 7.4] and [BN77] for an expository account.

There is no unique way to generalize Theorem A, but at least one should hope
that a generalization to the random setting recovers it as a particular case. In
our paper we prove a parallel generalization of Theorem A to twist maps that are
random with respect to a given probability measure. Our stochastic model in the
so-called periodic case coincides with the classical setting of the Poincaré-Birkhoff
Theorem. While random dynamics has been explored quite throughly, e.g. Brow-
nian motions [Ei56, Ne67], the implications of the area preservation assumption
remain relatively unknown. We recommend [AA68, KH95, Ko57, Mo73, Sm67] for
modern accounts of dynamics, and [BH12,HZ94,MS98,Pol01] for treatments em-
phasizing symplectic techniques.

2. The space of all twist maps and main theorems

The primary goal of this article is the study of the set of fixed points of an
area-preserving twist map that is not necessarily periodic. To describe our results,
let us write T for the space of area-preserving twist maps. That is, the set of
diffeomorphism F : S → S, such that the axioms (1) − (3) of the Introduction are

valid. For our purposes, let us also write T for the space of maps F̄ : S → S such
that if

�(F̄ )(q, p) := (q, 0) + F̄ (q, p),

then �(F̄ ) ∈ T. We think of the operator � : T → T as sending F̄ to its lift F = �(F̄ ).

We have a natural family of shifts
{
τa : T → T : a ∈ R

}
, that are defined by

τaF̄ (q, p) = F̄ (q + a, p).

Given F ∈ T, we write

Fix(F ) =
{
x ∈ S : F (x) = x

}
⊂ S

for the set of its fixed points. If we abuse the notation and write τa for

τaA = {x : x + a ∈ A},
then we have the trivial commutative relationship

(2.1) τaFix(�(F̄ )) = Fix(�(τaF̄ )).

The type of results we will establish in this paper have the following flavor: For
generic members of T we will show that the set Fix(F ) is infinite, and in some
cases of positive density. We use probabilist means to decide on genericness; we
explore quantitative properties of Fix(F ) that are valid with probability one with
respect to a probability measure that is defined on the set T, or equivalently on
T. More precisely, we take a probability measure Q on (T,F), where F denotes

1One can use symplectic dynamics to study area-preserving maps; see [BH12]. Section 3.4 of
Bramham et al. [BH12] proves Theorem A using the important tool of finite energy foliations
[HWZ03].
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the Borel σ-algebra associated with the topology of uniform norm, and show that
the probability of those F̄ for which the set Fix(�(F̄ )) enjoys certain quantitative
properties is one. The type of quantitative properties we have in mind, would not
be affected if the set Fix(F ) is translated. In view of the translation property (2.1),
it is natural to assume that the probability measure Q is translation invariant (or in
the probability theory jargon stationary). This property also allows us to apply the
Ergodic Theorem to guarantee that density of Fix(�(F̄ )) is well defined for Q-almost
all choices of F̄ . We also assume that the probability measure Q is ergodic with re-
spect to the translations {τa : a ∈ R}. This is simply an irreducibility assumption;
if Q is not ergodic, then we can express it as an average over its ergodic components
and our results would be valid for each component. The advantage/raison d’etre of
the ergodicity is that the Q-almost sure density of Fix(F ) is a constant independent
of F .

We note that in the periodic case, the fact that we have at least two geometrically
distinct fixed points, translates to asserting that in the interval [0, �], � ∈ N, there
are at least 2� fixed points. How much of this is true in the random case? On
account of Theorem A, let us formulate a wish list that we would like to have for
the set of fixed points Fix(F ) of a randomly selected area-preserving twist map
F (·, ·):
(i) At the very least, we would like to show that the set Fix(F ) is nonempty (and
in fact unbounded from both sides by ergodicity) almost surely.

(ii) Better yet, we would like to show that the set Fix(F ) has a positive density.
That is, the large � limit of �−1#

(
Fix(F )∩[0, �]

)
exists and is positive almost surely.

(For a set B, #B denote its cardinality.)

(iii) Ideally, we can come up with two distinct properties (formulated in terms of
the derivative dF at the fixed point) such that if the set of fixed points with those
properties are denoted by Fix1(F ) and Fix2(F ), then both Fix1(F ) and Fix2(F ) are
of positive density almost surely. This would be our analog of the “two geometrically
distinct” aspect of the Poincaré-Birkhoff Theorem in the random setting.

2.1. Monotone twist maps. As we will demonstrate in our first theorem, we
have a rather satisfactory result in the case that Q is concentrated on the space of
monotone twists.

Definition 2.1. (1) We write MT+ for the space of maps F̄ = (Q̄, P̄ ) ∈ T such
that for every q, the function f : [−1, 1] → R, given by f(p) := Q̄(q, p) is increasing.

We also write MT+ for the set of �(F̄ ), with F̄ ∈ MT+. We refer to the members
of MT+ as the (positive) monotone twist maps. Similarly, we write MT− for the
space of maps F such that F−1 ∈ MT+. We refer to the members of MT− as the
negative monotone twist maps.

(2) A fixed point x = (q, p) of F (·, ·) : S → S is of + (respectively -) type if the
eigenvalues of dF (q, p) are positive (respectively negative). We write

Fix±(F ) =
{
x ∈ Fix(F ) : x is of ± type

}
.

Our interest in MT± stems from the fact that all monotone twist maps possess
generating functions. That is, for F = �(F̄ ) ∈ MT+, we can find a scalar-valued
function G(q,Q) = G(q,Q; F̄ ) such that

(2.2) F (q,−Gq(q,Q)) = (Q,GQ(q,Q)).
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Because of the boundary conditions of F (q, p) = (P (q, p), Q(q, p)), we only need to
define G(q,Q) for the pair (q,Q), such that

(2.3) Q(q,−1) � Q � Q(q,+1).

In particular
ψ(q; F̄ ) := G(q, q; F̄ )

is well defined. As we will see later (see (2.4) below)

ψ(·; τaF̄ ) = τaψ(·; F̄ ).

This implies that the law of ψ(q; F̄ ) is translation invariant (hence independent of
q), by the stationarity of Q.

As is demonstrated in our Theorem B below, (iii) of our wish list is (almost)
materialized for randomly selected monotone twist maps:

Theorem B. Let Q be a translation invariant ergodic probability measure on(
T,F

)
, such that Q

(
MT+

)
= 1. Then the following statements are true with prob-

ability one with respect to Q:

(1) The sets Fix±
(
�(F̄ )

)
are nonempty.

(2) If the random pair (
d

dq
ψ(q; F̄ ),

d2

dq2
ψ(q; F̄ )

)
has a probability density ρ(a, b) (which is independent of q by translation invari-
ance), then the sets Fix±

(
�(F̄ )

)
have positive density λ±, given by

λ± =

∫ ∞

−∞
b±ρ(0, b) db.

As we mentioned earlier, each monotone twist map has a generating function
that is unique modulo a constant. It may appear that it would be hard to come
up with examples of probability measures that are concentrated on monotone twist
maps because the set MT+ is rather complicated; after all a function F ∈ MT+

must satisfy (1)−(3) of the Introduction, and the monotonicity condition. However,
it would be easier if we start from a randomly selected generating function G, and
construct F from it with the aid of (2.2). For this to be useful, we need to figure
out what conditions must be satisfied by G in order to be in the range of the map
F̄ �→ G(·, ·; F̄ ). It is not hard to see

(2.4) G(q + a,Q + a; F̄ ) = G(q,Q; τaF̄ ).

(See Section 5.) This suggests defining L by

G(q,Q; F̄ ) = L(q,Q− q; F̄ ),

and trying to find the range of the map A(F̄ ) := L(·, ·; F̄ ). In some sense, L(q, v) =
L(q, v; F̄ ) is the Lagrangian of F , with v playing the role of the velocity. We also
note that in terms of the Lagrangian,

ψ(q; F̄ ) = L(q, 0; F̄ ).

For our second result, we determine the range of the map A and give a precise
recipe for constructing A−1, and an ergodic stationary law on MT+. We note that
in view of (2.3), the domain of definition for the function L(q, v) is

Q̄(q,−1) � v � Q̄(q, 1).
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However, it is more convenient to start with an extension of L to R2, and figure
out what the domain of L is from this extension. To have a simpler description for
the operator A−1, we would even start from a suitable translate of the extended
Lagrangian function, denoted by ω, and build G from this translation. In the
following definition, we give the necessary axioms for ω and make preparations for
the construction of G from ω.

Definition 2.2. Let us write Ω0 for the space of functions

ω : R2 → R

such that ω(q, a) > 0 for a > 0, ω(q, 0) = 0, and

η(q;ω) = inf{a | ω(q, a) = 2} < ∞

for every q. We then set

Q−(q;ω) =
1

2

∫ η(q;ω)

0

ω(q, a)da− η(q;ω),

G(q,Q;ω) = ω(q,Q− q −Q−(q;ω)).

We write Ω1 for the space of ω ∈ Ω0 such that Gq(q,Q;ω) < 0 for all (q,Q).

Theorem C. For every ω ∈ Ω1, there exists a unique function F̄ (·, ·;ω) such
that if F (·, ·;ω) = �

(
F̄ (·, ·;ω)

)
, then the equation (2.2) is valid for the function

G(q,Q) = G(q,Q;ω), that is given by

G(q,Q;ω) =

∫ Q

q+Q−(q;ω)

ω(q, a)da− (Q− q).

Moreover, if τaω(q, v) = ω(q + a, v), then

(2.5) F̄ (·, ·; τaω) = τaF̄ (·, ·;ω).

Theorem C provides a recipe for constructing examples of random monotone
twist maps for which Theorem B is applicable.

Recipe for the monotone twist map. Take any probability measure P on Ω0

that is stationary and ergodic with respect to {τa : a ∈ R}. If P(Ω1) = 1, then the
push-forward Q := B�P of P with respect to the map

B : Ω1 → MT+, B(ω)(·, ·) = F̄ (·, ·;ω),

gives a stationary and ergodic probability measure on MT+.
It is straightforward to construct stationary and ergodic probability measures

on Ω0. The only nontrivial condition to worry about is P(Ω1) = 1. To see how in
practice such a condition is verified, let us consider a concrete example.

Example 2.3. If we assume that ω is linear in a, and write ω(q, a) = R(q)a, for
a function R : R → R, then ω ∈ Ω0 means that R > 0. On the other hand,
if the derivative of R satisfies 2|R′| � R2, P-almost surely, then P(Ω1) = 1. For
example, we can start from an arbitrary uniformly positive stationary process R0

with bounded derivative, and build ω via ω(q, a) = cR0(q)a. This would satisfy
P(Ω1) = 1 provided that c is sufficiently large. See Example 5.7 for details.
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2.2. Hamiltonian systems. We now describe an important class of twist maps
that may include nonmonotone examples. Let Ω2 denote the set C2 (Hamiltonian)
functions ω(q, p, t) with uniformly bounded second derivatives such that

±ωp(q,±1, t) > 0, ωq(q,±1, t) = 0.

(Note that even though ω(q,±1, t) is independent of q, the function ωp(q,±1, t)
may depend on q.) Given ω ∈ Ω2, set

τaω(q, p, t) = ω(q + a, p, t),

as before, and write φω
t (q, p) for the flow of the corresponding Hamiltonian system

q̇ = ωp(q, p, t), ṗ = −ωq(q, p, t).

It is not hard to show that if

F t(q, p;ω) = φω
t (q, p), F̄ t(q, p;ω) = φω

t (q, p) − (q, 0),

then F t(·, ·;ω) ∈ T and

F̄ t
(
q, p; τaω

)
= τaF̄

t
(
q, p;ω

)
.

This means that if we start with a τ -invariant ergodic probability measure P on
Ω2, then its push-forward Qt under the map ω �→ F̄ t(·, ·;ω) is a τ -invariant ergodic

probability measure on MT+.

Theorem D. Let P be a τ -invariant ergodic probability measure P on Ω2. Then
the probability that F t(·, ·;ω) has infinitely many fixed points is one for every t ≥ 0,
i.e.

P
(
#Fix

(
F t(·, ·, ;ω)

)
= ∞

)
= 1.

Example 2.4. In contrast with Theorem C, it is not hard to come up with examples
of Qt because any q-stationary process ω(q, p, t) does the job provided that the
boundary conditions are satisfied. Here are two examples:

(i) Let A(q, t) be a positive C2, q-stationary random process with bounded second
q-derivative. Take any deterministic C2 function B(p, t) with bounded second p-
derivative such that ±Bp(±1, t) > 0, and B(±1, t) = 0. Then the Hamiltonian
function ω(q, p, t) = A(q, t)B(p, t) will be in Ω2.

(ii) One classical way of constructing a stationary Hamiltonian function is starting
from a fixed deterministic Hamiltonian function H0(q, p, t) of compact support in
q-variable that satisfies the boundary conditions, and set

ω(q, p, t;α) =
∑
i

H0(q − qi, p, t),

where

α = {qi : i ∈ Z}
is a stationary point process. By this we mean that the set α is a discrete subset R

that is selected randomly with a law that is invariant with respect to the translations

τaα = {q − a : q ∈ α}.
A Poisson point process of constant intensity is an example of a stationary point
process.
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Theorem C raises two questions:

(i) Let Q be a stationary ergodic measure on T. Can we find a stationary
ergodic measure P on Ω2 such that Q = Q1? In other words, is Q the
push-forward of P with respect to the map ω �→ F̄ 1(·, ·;ω)?

(ii) What can be said about the type of the fixed points we have in Theorem D?

To rephrase the first question, let us write C([0, 1];T) for the space of C1 maps

γ : [0, 1] → T, such that �(γ(0)) is identity. The shift operator τ on T induces a

shift operator (again denoted by τ ) on C([0, 1];T) by (τaγ)(t) = τa(γ(t)). Note that
if we have a stationary ergodic measure P on Ω2, then the map

ω �→
(
F̄ t(q, p;ω) = φω

t (q, p) − (q, 0) : t ∈ [0, 1]
)

pushes forward P onto a stationary ergodic probability measure Q on C([0, 1];T).
It is not hard to show that the converse is also true; a stationary ergodic proba-
bility measure Q on C([0, 1];T) necessarily comes from a unique stationary ergodic
measure P on Ω2. As a result, we may rephrase the first question as

(i’) Let Q be a stationary ergodic measure on T. Can we find a stationary

ergodic measure Q on C([0, 1];T), such that Q is the push-forward of Q

under the time-1 map π1 : C([0, 1];T) → T? (By time-1 map we mean
π1γ := γ(1).)

We conjecture that the answer to this question is affirmative. In Theorem E
below, we partially resolve this conjecture by showing that if there is a path γ such
that �(γ) is area preserving only in the average sense, then it can be deformed to a
path of area-preserving maps. To state this carefully, we make a definition.

Definition 2.5. Let D denote the space of diffeomorphism F : S → S. We write
D for the space of functions F̄ such that �(F̄ ) ∈ D. Let Q be a stationary ergodic

measure on C([0, 1];D). We say that Q is regular if the following conditions are
true:

(a) ∫
sup

t∈[0,1]

[
‖γ̇(t)‖∞ + ‖dγ(t)‖∞ +

∥∥dγ(t)−1
∥∥
∞
]
Q(dγ) < ∞,

with ‖ · ‖∞ denoting the L∞ norm, and γ̇(t) and dγ(t) denoting the deriva-
tives of γ(t) with respect to t and x = (q, p).

(b)
1

2

∫ [∫ 1

−1

det(dγ(t)(q, p)) dp

]
Q(dγ) = 1

for every t ∈ [0, 1]. (This expression is independent of q by the stationarity
of Q.)

We note that the condition (b) is trivially satisfied if Q is concentrated on

C([0, 1];T), because for an area-preserving �(γ(t)), we simply have

det(dγ(t)(q, p)) = 1.

Theorem E. Let Q be a stationary ergodic measure on T. If there exists a regular
stationary ergodic measure Q on C([0, 1];D), such that Q is the push-forward of
Q under the time-1 map π1γ := γ(1), then there exists another stationary ergodic

measure Q′ on C([0, 1];T), such that Q is also the push-forward of Q under the
time-1 map π1.
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2.3. The complexity of an isotopy. We now would like to address the second
question we asked in Subsection 2.2:

(ii) What can be said about the type of the fixed points we have in Theorem D?

To address this question, we first need to explain what role the measure Q on
C([0, 1];T) plays in the proof of Theorem D. When the measure Q on T comes
from a measure P on Ω2, or when the assumptions of Theorem D are satisfied,
we have an isotopy of area-preserving twists F t(·, ·;ω) that connects the identity to
F (·, ·;ω) := F 1(·, ·;ω), with F 1 distributed according to Q. Following the Chaperon
strategy for proving Conley-Zehnder’s Theorem, we may use this isotopy to express
F as a finite composition of monotone twist maps. More precisely,

Theorem F. Let P be a τ -invariant ergodic probability measure P on Ω2. Let
F = F 1 be as in Theorem D. Then there exists a deterministic integer N � 0 and
area-preserving random twists Fj, 0 � j � N, such that for P almost all ω ∈ Ω2,
we have a decomposition:

(2.6) F (·, ·;ω) = FN (·, ·;ω) ◦ . . . ◦ F2(·, ·;ω) ◦ F1(·, ·;ω) ◦ F0(·, ·;ω),

where

• Fj is negative monotone if j is even;
• Fj is positive monotone if j is odd;
• F̄j(q, p;ω) :=Fj(q, p;ω)−(q, 0) is stationary, i.e. F̄j(q, p; τaω)=τaF̄j(q, p;ω)
for every j.

The integer N in (2.6) is the complexity of F . We may use an L∞ bound on the
first derivative of ω to get an upper bound on N . Statements [Le91, Propositions
2.6 & 2.7, Lemma 2.16] have the flavor of Theorem F for classical twists (see also
[MS98, Section 9.2]).

When N = 1 or 2, more can be said about the set of fixed points and the nature
of dF at the fixed points. We refer to Theorems 6.5 and 6.6 when N = 1, and
Theorem 7.3 when N = 2.

2.4. Almost periodic twists. In fact our main results do cover the classical
Poicare-Birkhoff Theorem A in some cases. For example, Theorem D implies
that the flow of any deterministic Hamiltonian function H0(q, p, t) on strip S,
that is 1-periodic in q, and satisfies the twist boundary conditions (H0

q (q,±1, t) =

0,±H0
p (q,±, t) > 0), possesses 1-periodic orbits (or its time-1 map has fixed points).

In other words, we may recast the deterministic periodic model as an example of a
random twist model. The interpretation we have in mind is also applicable if H0

is almost periodic in q. We explain this by three models of random area-preserving
twist maps:

Example 2.6 (Periodic twists). As the simplest example, take any F̄0 ∈ T, that
is 1-periodic in q-variable, and set

(2.7) Γ(F̄0) =
{
τaF̄0 : a ∈ R

}
⊂ T.

We now take a τ -invariant probability measure Q on T that is concentrated on
Γ(F̄0). Since F̄0 is a 1-periodic function in q-variable, the set Γ(F̄ ) is homeomorphic
to the circle. (Here we are thinking of a circle as the interval [0, 1] with 0 = 1.)
Since Q is τ -invariant, it can only be the push-forward of the Lebesgue measure
under the map a �→ τaF̄ . Now any almost sure statement for the fixed points of
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the lifts of maps in the support of Q is equivalent to an analogous statement for
the map F̄0. This is because if (q0, p0) is a fixed point for

F (q, p) := �
(
τaF̄

)
= (q, 0) + τaF̄0(q, p),

then (q0 + a, p0) is a fixed point for F0 = �(F̄0). For example, the statement that
for Q-almost choices of F̄ , its lift �(F̄ ) has a fixed point is equivalent to asserting
that F0 has a fixed point. In summary, our stochastic model coincides with the
classical setting of Poincaré-Birkhoff in this case.

Example 2.7 (Quasi-periodic twists). Pick a function

F̄1 : Tk × [−1,−1] → R× [−1, 1],

where Tk denotes the k-dimensional torus. Pick a vector v ∈ Rk that satisfies the
following condition:

(2.8) 〈v, n〉 = 0, n ∈ Zk ⇒ n = 0.

Let

F̄0(q, p) = F̄1(qv, p)

and define Γ(F̄0) as in (2.7). Note that if k > 1, the set Γ(F̄0) is not closed.
However, the condition (2.8) guarantees that its topological closure Γ′(F̄0) consists
of functions of the form

F̄ (q, p; b) = F̄0(qv + b, p),

with b ∈ Tk. (Here we regard Tk as [0, 1]k with 0 = 1, and qv − b is a Mod 1
summation.) Assume that Q is concentrated on the set Γ′(F̄0). Again, since Q is τ -
invariant, the pull-back of Q with respect to the transformation b ∈ Tk �→ F̄ (·, ·; b)
can only be the uniform measure on Tk. Hence, a Q-almost sure statement regarding
the fixed points of F = �(F̄ ), is equivalent to an analogous statement for the map

F (·, ·; b) = �
(
F̄ (·, ·; b)

)
for almost all b ∈ Tk. In other words, our main result does not guarantee the
existence of fixed points for a given quasi-periodic map F0 = �(F̄0). Instead our
main results say that for almost all choices of b, the map F (·, ·; b) possesses fixed
points.

Example 2.8 (Almost periodic-twists). Given a function F̄0 ∈ T, let us assume
that the corresponding Γ(F̄0) is precompact with respect to the topology of uniform
convergence. We write Γ′(F̄0) for the topological closure of Γ(F̄0). By the classical
theory of almost periodic functions, the set Γ′(F̄0) can be turned to a compact
topological group and for Q, we may choose a normalized Haar measure on Γ′(F̄0).
Again, our main results only guarantee the existence of fixed points for F (q, p) =
�(F̄ ), for Q-almost all choices of F̄ .

In the random stationary setting, we may start with a function F̄0 such that the
corresponding Γ′(F̄0) is not compact and may not have a group structure. Instead
we may insist on the existence of an ergodic translation invariant measure that is
concentrated on Γ′(F̄0). Even the last requirement can be relaxed and our measure
Q may not be concentrated on Γ′(F̄0) for some F̄0. The measure Q in some sense
plays the role of the normalized Haar measure in our third example above.
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2.5. Abstract formulation. So far we have stated several results for the set of
fixed points of �(F̄ ) where F̄ is selected according to a suitable ergodic stationary

probability measure Q on T. In all the models we have discussed in the preced-
ing subsections, the measure Q is expressed as a push-forward of another ergodic
stationary probability measure P that is now defined on a probability space Ω. In
other words, our Q-selected function can be expressed as F̄ (·, ·;ω) with ω selected
according to a suitable stationary ergodic measure P, and the map ω �→ F̄ (·, ·;ω)
satisfies

τaF̄ (·, ·;ω) = F̄ (·, ·; τaω).

This is equivalent to

(2.9) F̄ (q, p;ω) = F̄ (0, p; τqω) := F̄0(τqω, p).

The space Ω takes different forms depending on the type of result we have in mind.
For example:

• Ω = Ω1 where Ω1 is the space of functions in Ω0 that satisfies a suitable
nondegeneracy condition as was discussed in Subsection 2.1.

• Ω = Ω2 is the space of certain Hamiltonian functions as we described in
Subsection 2.2.

• Ω = Γ′(F̄0) is the topological closure of the translates of a fixed F̄0 ∈ T as
we discussed in Subsection 2.4.

For a more flexible formulation, we set up a framework for random area-
preserving twist map that is defined on a general and unspecified Ω. With this
goal in mind, we propose the following abstract setting to study area-preserving
dynamics: a probability space, that is, a quadruple:

Ω̂ := (Ω, F, P, τ ).(2.10)

Here Ω is a separable metric space, F is the Borel sigma-algebra on Ω, τ : R×Ω → Ω
is a continuous R-action, and P is a τ -invariant ergodic probability measure on
(Ω,F). Denote τa := τ (a, ·) : Ω → Ω. In addition, we assume:

(i) P-positivity : if U ∈ F is a nonempty open set, then P(U) > 0.
(ii) P-preservation by τ : P(τaA) = P(A) for every a ∈ R, and every A ∈ F.
(iii) Ergodicity : for every A ∈ F, if τaA = A for all a ∈ R, then P(A) = 1 or

P(A) = 0.

If (i), (ii), and (iii) hold we say that P is a τ -invariant ergodic probability measure.
For instance, take a smooth manifold Ω which admits a smooth global flow φ :
R × Ω → Ω with an ergodic invariant probability measure P that is positive on
nonempty open subsets of Ω (it is nontrivial to find φ with these properties), F the
Borel sigma-algebra of Ω, and τa := φ(a, ·).

In what follows, let Ω̂ be a probability space as in (2.10). Let

F̄0 : Ω × [−1, 1] → S

be a measurable map with respect to the product measure of P and the Lebesgue
measure on [−1, 1]. Write

F̄0(ω, p) = (Q̄(ω, p), P̄ (ω, p))
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and suppose that F : S×Ω → S is of the form F (q, p;ω) = (Q(q, p; ω), P (q, p; ω)),
with

(2.11)

{
Q(q, p; ω) = q + Q̄(τqω, p),

P (q, p; ω) = P̄ (τqω, p).

Write E for the expected value with respect to the probability measure P.

Definition 2.9. We say that F in (2.11) is an area-preserving random twist if the
following hold for P-almost all ω:

(1) area-preservation: F (· , · ; ω) : S → S is an area-preserving diffeomorphism;
(2) boundary invariance: P (q,±1;ω) = ±1;
(3) boundary twisting : q �→ Q(q,±1;ω) is increasing, and ±Q̄(ω,±1) > 0.

If additionally Q̄(ω, p) is increasing in p, we refer to F as a (positive) monotone area-
preserving random twist. We call F a negative monotone area-preserving random
twist, if F−1 is a positive area-preserving random twist. When there is no danger
of confusion, we may simply call such a map a positive/negative twist.

It is this abstract formulation that will be used for the rest of the paper. By a
slight change of notion, we can readily restate our main results Theorems B-F in
terms of an abstract area-preserving random twist.

2.6. Arnol’d Conjecture. Arnol’d formulated the higher dimensional analogue
of Theorem A: the Arnol’d Conjecture [Ar78] (see also [Au13], [Ho12], [HZ94],
[Ze86]). The first breakthrough on the conjecture was by Conley and Zehnder
[CZ83], who proved it for the 2n-torus (a proof using generating functions was later
given by Chaperon [Ch84]). The second breakthrough was by Floer [Fl88, Fl89,
Fl89b, Fl91]. Related results were proven e.g. by Hofer-Salamon, Liu-Tian, Ono,
Weinstein [Ho85,HS95,LT98,On95,We83].

As noted above, the first breakthrough on Arnold’s Conjecture was achieved by
Conley and Zehnder [CZ83]. According to their theorem, any smooth symplectic
map F : T2d → T2d that is isotopic to identity has at least 2d+1 many fixed points.
For the stochastic analog of [CZ83], we take a 2d-dimensional stationary process

X(x;ω) = X̄(τxω)

with

X̄ : Ω → R2d, x ∈ R2d,

and assume that its lift

F (x;ω) = x + X(x;ω)

is symplectic with probability one. Our strategy of proof is also applicable to such
random symplectic maps. The main ingredients for proving results analogous to our
main theorems are Morse Theory and the Spectral Theorem for multi-dimensional
stationary processes. In a subsequent paper, we will work out a generalization of
Conley and Zehnder’s Theorem in the stochastic setting.
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2.7. Main strategy and outline of the paper. As we mentioned earlier, we have
adopted Chaperon’s approach to establish our main results. Here is an outline of
what follows:

(i) In Section 3 we give a definition for the generalized generating function of an
area-preserving twist map F in our random setting and show that there is a one-to-
one correspondence between fixed points F and the critical points of its generalized
generating function (Proposition 3.3).

(ii) The purpose of Section 4 is threefold:

• We show that if (2.6) is valid for F , then F has a generalized generating
function. On account of Proposition 3.3, we may prove our results about
the fixed points of F by proving analogous results for the critical points of
its generalized generating function. (See Lemma 4.4.)

• We establish Theorem F so that (2.6) is valid whenever our area-preserving
random twist map comes from a Hamiltonian ODE.

• We establish Theorem E so that any regular Q comes from a Hamiltonian
ODE.

(iii) By Theorem F, we can associate a nonnegative integer N to our twist map
that measures its complexity. The case N = 0 corresponds to the monotone twist
maps and they are studied in Section 5. In particular, we establish Theorems B
and C in this Section.

(iv) In Sections 6 and 7 we study the case of an area-preserving twist map with
complexity N ≤ 2. Most notably we show that if N = 1, then the corresponding
F possesses infinitely many fixed points of different types (Theorems 6.5, 6.6). In
the case of N = 2, we have a similar result for the critical points of its generating
function. Though we have not been able to prove an analogous result for the fixed
points of F because of a complicated formula that relates the eigenvalues of the
first derivative of F to the second derivatives of its generating function.

(v) Section 8 is devoted to the proof of Theorem D.

3. Calculus of random generating functions

We construct the principal novelty of the paper, random generating functions,
and explain how to use them to find fixed points. Recall that Ω is as in (2.10).

Definition 3.1. We say that a measurable function G : Ω → R is ω-differentiable
if the limit

∇G(ω) := lim
t↓0

t−1 (G(τtω) −G(ω))

exists for P-almost all ω. For a measurable map K : Ω × [0, 1] → R we write
Kp = ∂K

∂p and Kω = ∂K
∂ω for the partial derivatives of K. We say that K is C1 if

the partial derivatives of K exist and are continuous for P-almost all ω.

Given an area-preserving random twist as in (2.11), consider the sets (see Fig-
ure 3.1): ⎧⎪⎪⎨

⎪⎪⎩
Ā := {(ω; v) | Q̄(ω, −1) � v � Q̄(ω, 1)} ⊆ Ω × R,

Āω := {v | (ω; v) ∈ Ā} ⊆ R,
Āv := {ω | (ω; v) ∈ Ā} ⊆ Ω,

Aω := {(q,Q) | (τqω; Q− q) ∈ Ā}.
(3.1)
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Q

q→Q(q, 1)
q→Q(q, −1)

q

Figure 3.1. Aω in (3.1) bounded by the graphs of q �→ Q(q, 1),
q �→ Q(q, −1), respectively.

We write F−1(P,Q) = (q(Q,P ), p(Q,P )).

Definition 3.2. Given an area-preserving random twist map (2.11), we say that
L : Ā×RN → R is a generalized generating function of complexity N if L is C1 and
the function

G(q,Q; ξ) = G(q,Q; ξ, ω) := L(τqω,Q− q, ξ1 − q, . . . , ξN − q)

with ξ = (ξ1, . . . , ξN ) satisfies:

(3.2) Gξ(q,Q; ξ, ω) = 0 ⇒ F (q,−Gq(q,Q; ξ, ω);ω) = (Q,GQ(q,Q; ξ, ω)) .

Our interest in generalized generating functions is due to the following.

Proposition 3.3. Let L be a generalized generating function for F . Set

I(q, ξ;ω) = L(τqω, 0, ξ1 − q, . . . , ξN − q).

If (q̄, ξ̄) is a critical point for I(·, ·;ω), then �x := (q̄, −Gq(q̄, q̄; ξ̄)) is a fixed point
of F (·, ·;ω).

Proof. Observe that if (q̄, ξ̄) is a critical point of I, then by the definition of G,
GQ(q̄, q̄; ξ̄) = −Gq(q̄, q̄; ξ̄) and Gξ(q̄, q̄; ξ̄) = 0. Since L is a generating function,
Gξ = 0 gives F (�x) = �x. �

The underlying theme of the paper is to show that fixed points of F are in
correspondence with critical points of the associated random generating function
G, and then prove the existence of critical points of G. Viterbo has used generating
functions with great success [Vi11]. Golé [Go01] describes several results in this
direction.

4. Proofs of Theorems E and F

We begin by introducing stationary lifts.

Definition 4.1. A function f(q, ω) is stationary if f(q, ω) = f̄(τqω) for a contin-
uous f̄ : Ω → R. We say that f is a stationary lift if f(q, ω) = q + f̄(τqω) for a
continuous f̄ : Ω → R.

Definition 4.2. A vector-valued map f(q, p;ω) with f(·, ω) : R2 → R2 is q-
stationary if f(q, p, ω) = f̄(τqω, p) for some f̄ : Ω × R → R2. A similar defini-
tion is given for f(·, ω) : S → R2. We say that such f is a q-stationary lift if f can
be expressed as f(q, p, ω) = (q, 0) + f̄(τqω, p).
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Proposition 4.3. The following properties hold:

(P.1) If f(q, ω) is an increasing stationary lift in C1, then f−1 is an increasing lift.
The same holds for q-stationary diffeomorphism lifts f(q, p, ω).

(P.2) The composition of q-stationary lifts is a q-stationary lift. If f is a q-
stationary lift and g is q-stationary, g ◦ f is q-stationary.

(P.3) For every differentiable f̄ : Ω → R we have that E∇f̄ = 0.

Proof. The proof of (P.2) is trivial. We only prove (P.1) for a stationary lift
f(q, p, ω) because the case of f(q, ω) is done in the same way. Assume that f(q, p, ω)
is a q-stationary lift so that for every a ∈ R, f(q + a, p, ω) = (a, 0) + f(q, p, τaω),
and write g(q, p, ω) for its inverse. To show that g(q, p, ω) is a q-stationary lift it
suffices to check that g(q + a, p, ω) = (a, 0) + g(q, p, τaω). In order to do this, let us
fix a and write g̃(q, p, ω) for the right-hand side (a, 0) + g(q, p, τaω). Observe that
since f is a q-stationary lift,

f(g̃(q, p, ω), ω) = (a, 0) + f(g(q, p, τaω), τaω) = (a, 0) + (q, p) = (q + a, p).

By uniqueness, g̃(q, p, ω) = g(q + a, p, ω), which concludes the proof of (P.2). As
for (P.3), write f(x, ω) = f̄(τxω) and observe that for any smooth J : R → R of
compact support, with

∫
R
J(x)dx = 1,

E∇f̄ =

∫
R

J(x) (Efx(x, ω)) dx

= −E

∫
R

J ′(x)f(x, ω) dx

= −
(∫

R

J ′(x) dx

)(
Ef̄

)
,(4.1)

so E∇f̄ = 0. �

The proof of Theorem E draws on spectral theory for random processes. To this
end, let us recall the statement of the Spectral Theorem for random processes. The
Spectral Theorem allows us to represent a random process in terms of an auxiliary
process with randomly orthogonal increments. Such a representation reduces to a
Fourier series expansion if the stationary process is periodic. In order to apply the
Spectral Theorem to a stationary process a(q) = ā(τqω), one follows the steps:

(i) Assume that a(q) is centered in the sense that Eā(ω) = 0. We define the
correlation R(z) = Eā(ω)ā(τzω).

(ii) There always exists a nonnegative measure G such that

R(z) =

∫ ∞

−∞
eizξ G(dξ).

(iii) One can construct an auxiliary process (Y (ξ) : ξ ∈ R) or alternatively the
random measure Y (dξ) = Y (dξ, ω) that are related by Y (I) = Y (b)−Y (a),
where I = [a, b]. The process Y has orthogonal increments in the following
sense:

I ∩ J = ∅ =⇒ EY (I)Y (J) = 0.(4.2)

The relationship between the measure G(dξ) or its associated nondecreasing
function G(ξ) is given by EY (I)2 = G(b) −G(a) = G(I).
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The Spectral Theorem ([Do53]) says that for any stationary process a for which
Eā2<∞, we may find a process Y satisfying (4.2) such that ā(τqω)=

∫∞
−∞ eiqξY (dξ).

Note that

Eā(τqω)ā(ω) = E

∫ ∞

−∞
eiqξ Y (dξ)

∫ ∞

−∞
Y (dξ′) =

∫ ∞

−∞
eiqξ G(dξ).(4.3)

Also, ā(ω) =
∫∞
−∞ Y (dξ, ω), and the stationarity of a(q, ω) means

Y (dξ, τqω) = eiqξY (dξ, ω).

For our application below, we will have a family of random maps (a(q, t) | t ∈ [0, 1])
that varies smoothly with t. In this case we can guarantee that the associated
measures Y (dξ, t) depend smoothly in t.

The main difficulties of the proof are due to the fact that the “random and area-
preservation properties” do not integrate well, for instance when arguing about
t-dependent deformations which must preserve both properties. The proof consists
of four steps.

Proof of Theorem E. Write x = (q, p). Since F is random isotopic to the identity,
there is a path F = (F t | t ∈ [0, 1]) of diffeomorphisms that connects F to the
identity map, F t is a stationary lift for each t ∈ [0, 1], we have the normaliza-

tion 1
2

∫ 1

−1
E det(dF t)dp = 1 for every t ∈ [0, 1], and F t is regular for a constant

independent of t. There are four steps to the proof:

Step 1 (General strategy to turn F into a path of area-preserving random twists).
Write

ρt(x) = ρt(q, p) = ρ̄t(τqω, p) = det(dF t(x)),

so that (F t)∗ dx = ρt dx, where dx = dq ∧ dp and, by assumption,

1

2

∫ 1

−1

Eρtdp =
1

2

∫ 1

−1

Eρ̄tdp = 1, ρ0 = ρ1 = 1.

Since F t is regular uniformly on t, the function ρt is bounded and bounded away
from 0 by a constant that is independent of t. That is, there exists a constant
C0 > 0 such that C−1

0 � ρt(x;ω) � C0, almost surely. We now construct, out of
F t, an area-preserving path Λt which is a stationary lift for every t. We achieve
this by using Moser’s deformation trick, namely we construct a path Gt such that
Λt = F t ◦Gt is an area-preserving stationary lift for all t. As it will be clear from
the construction of Gt below, G0 and G1 are both the identity and, as a result, Λt

is a path of area-preserving maps that connects F to identity. We need

(Gt)∗(ρtdx) = dx,

and Gt is constructed as a 1-flow map of a vector field

X(x, θ) = X(x, θ; t).

So we wish to find some vector field X such that Gt = φ1 where φθ, θ ∈ [0, 1],
denotes the flow of X. In fact, we also have to make sure that the vector field ±X

is parallel to the q-axis at p = ±1. This guarantees that the strip S is invariant
under the flow of X.

Let

m(θ, x) := θρt(x) + (1 − θ),
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so that m(θ, x) dx is connecting the area from dx to ρt dx. We need to find a
vector field X such that its flow φθ satisfies (φθ)∗dx = m(θ, x) dx. Equivalently, m
must satisfy the Liouville equation

mθ + ∇ · (Xm) = ρt − 1 + ∇ · (Xm) = 0.(4.4)

The strategy to solve equation (4.4) for X is as follows. Search for a solution X such
that mX = ∇xu is a gradient. Of course we insist that u is q-stationary so that X

is also q-stationary:

u(q, p, θ) = ū(τqω, p, θ),

(mX)(q, p, θ) = (mX)(q, p, θ;ω) = (m̄X̄)(τqω, p, θ)

= (ūω(τqω, p, θ), ūp(τqω, p, θ)).

Since t is fixed, we drop t from our notation and write ρt = ρ. The equation (4.4)
in terms of u is an elliptic partial differential equation of the form

Δu = 1 − ρ =: η,(4.5)

with η(q, p) = η̄(τqω, p) and
∫ 1

−1
Eη(ω, p)dp = 0. This concludes Step 1. �

Step 2 (Applying the Spectral Theorem to solve (4.5)). To apply the Spectral
Theorem for each p, set

η̂(ω, p) = η̄(ω, p) − k(p)

for k(p) = Eη̄(ω, p), and write

R(q; p) := Eη̂(ω, p)η̂(τqω, p) =

∫ ∞

−∞
eiqz G(dz, p).

Note that Eη̂(ω, p) = 0 for every p and
∫ 1

−1
k(p)dp = 0. We have the representation

η(q, p) = k(p) + η̄(τqω, p) = k(p) +

∫ ∞

−∞
eiqz Y (dz, p),(4.6)

where Y (dz, p) = Y (dz, p;ω) satisfies

(4.7) Y (dz, p; τqω) = eiqzY (dz, p;ω).

We want to find a solution to the partial differential equation

Δu(q, p) = η(q, p),

which is still stationary in the q variable. First choose h0(p) such that h′′
0(p) = k(p)

and satisfy the boundary conditions

h0(±1) = 0.(4.8)

We write u = h0 + v and search for a random v satisfying

Δv(q, p) = η̂(q, p) := η̂(τqω, p).

Since γ(q, p) = e(iq±p)z is harmonic for each z ∈ R, the function h given by

h(q, p) :=

∫ ∞

−∞
eiqz

(
ezp Γ1(dz) + e−zp Γ2(dz)

)
(4.9)
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is harmonic for any measures Γ1 and Γ2. We will find a solution of the form
v = w + h where Δw = η and h will be selected to satisfy the boundary conditions
vp(q,±1) = 0. Indeed w given by

w(q, p) :=

∫ p

−1

∫ ∞

−∞

eiqz

z
sinh((p− a)z)Y (dz, a)da

=

∫ p

−1

∫ ∞

−∞
eiqz

e(p−a)z − e(a−p)z

2z
Y (dz, a)da

satisfies all of the required properties. In order to verify this observe that

wqq(q, p) = −1

2

∫ p

−1

∫ ∞

−∞
zeiqz

(
e(p−a)z − e(a−p)z

)
Y (dz, a)da,

wp(q, p) =
1

2

∫ p

−1

∫ ∞

−∞
eiqz

(
e(p−a)z + e(a−p)z

)
Y (dz, a)da,

wpp(q, p) =
1

2

∫ p

−1

∫ ∞

−∞
zeiqz

(
e(p−a)z − e(a−p)z

)
Y (dz, a)da + η̂(q, p).

This clearly implies that Δw = η.
On the other hand, the process w is q-stationary. In other words

w(q, p) = w(q, p;ω) = w̄(τqω, p)

for a process w̄. This can be verified by checking that

w(q + b, p;ω) = w(q, p; τbω),

which is an immediate consequence of (4.7):

w(q + b, p;ω) =

∫ ∞

−∞

∫ p

−1

eiqz

z
sinh((p− a)z)eibzY (dz, a;ω)da = w(q, p; τbω).

This concludes Step 2. �
Step 3 (Checking that Γ1 and Γ2 in (4.9) can be chosen to satisfy the boundary
conditions (4.8)). At p = ±1, ±∇u should point in the direction of the q-axis. We
need to have that

up(q,±1) = vp(q,±1) = 0,

because h0(±1) = 0. First, the condition vp(q, 1) = 0 means∫ ∞

−∞
eiqzz(ezΓ1(dz) − e−zΓ2(dz))(4.10)

+
1

2

∫ 1

−1

∫ ∞

−∞
eiqz(e(1−a)z + e(a−1)z)Y (dz, a)da = 0,

and the condition vp(q,−1) = 0 means∫ ∞

−∞
eiqzz(e−zΓ1(dz) − ezΓ2(dz)) = 0.

Since we need to verify the above conditions for all q, we must have that Γ1 = e2zΓ2

and
zez(e2z − e−2z)Γ2(dz) + Y ′(dz) = 0,

where

Y ′(dz) =
1

2

∫ 1

−1

(e(1−a)z + e(a−1)z)Y (dz, a)da.
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In summary,

(4.11) Γ2(dz) = −z−1e−z(e2z − e−2z)−1Y ′(dz), Γ1 = e2zΓ2.

Since Y satisfies (4.7), the same property holds true for both Γ1 and Γ2. From
this it follows that the process h (and hence u) is q-stationary; this is proven in
the same way we established the stationarity of w. The q-stationarity of u implies
that X is q-stationary. This in turn implies that the flow φθ is a q-stationary lift for
each θ. To see this, observe that since both φθ(q+ a, p;ω) and (a, 0)+φθ(q, p; τaω)
satisfy the ordinary differential equation y′(θ) = X(y(θ), θ;ω) for the same initial
data (q + a, p), we deduce φθ(q + a, p;ω) = (a, 0) + φθ(q, p; τaω), which concludes
this step. �

Step 4 (Producing a twist decomposition for F from the path Λ). We claim that
there exists a q-stationary process H(q, p, t;ω) = H̄(τqω, p, t) such that

dΛt

dt
= J ∇H ◦ Λt

holds. Indeed, since Λt is a q-stationary lift, dΛt

dt is q-stationary. Hence by Propo-

sition 4.3, the composite d
dtΛ

t ◦ (Λt)−1 is q-stationary. Set

A(t, q, p;ω) =
dΛt

dt
◦ (Λt)−1(q, p, ω).

We need to express A as J ∇H. Observe that since Λt is area preserving, A is
divergence free. Write A(t, q, p;ω) = (a(τqω, p, t), b(τqω, p, t)). We have aω +bp = 0.
Set

H(q, p, t;ω) =

∫ p

0

a(τqω, p
′, t)dp′ − b(τqω, 0, t).

Clearly Hq = −b, Hp = a, and H is stationary. Note that since dΛt

dt and (Λt)−1 are

bounded in C1, A is bounded in C1. �
�

Proof of Theorem F. Set A(ω) = (ωp,−ωq),

Ω2(k) = {ω : ‖A(ω)‖, ‖DA(ω)‖ ≤ k}.
Let us write (Λs,t | s ≤ t) for the flow of the vector field A so that Λ0,t = Λt and
Λs,s = id. On the other hand

d

dt
Λs,t = A ◦ Λs,t

implies that
d

dt
DΛs,t = DA ◦ Λs,t DΛs,t.

Hence for ω ∈ Ω2(k),

‖DΛs,t‖ � ek(t−s)

and ‖DΛs,t − id‖ � (t− s)ek(t−s). It follows that

sup
0≤s≤t≤1

‖Λs,t − id‖C1 � c0 (t− s)

for a constant c0. So we may write

F = Λ1 = ψ1 ◦ ψ2 ◦ . . . ◦ ψn with ψj = Λ
jt
n ,

(j−1)t
n



620 ÁLVARO PELAYO AND FRAYDOUN REZAKHANLOU

satisfying ‖ψj − id‖ � c0 n
−1. Hence, for large n, we can arrange

max
1�j�n

‖ψj − id‖C1 � δ.

Let ϕ0(q, p) = (q + p, p). Then

‖ψj ◦ ϕ0 − ϕ0‖C1 � δ.

The map ϕ0 is a positive monotone twist map and we can readily show that ψj ◦ϕ0

is a positive monotone twist if δ < 1. Hence ψj = ηj ◦ (ϕ0)−1 where ηj is a positive
monotone twist and (ϕ0)−1 is a negative monotone twist. In summary, we have
established (2.6) for ω ∈ Ω2(k), for a positive integer N that depends only on k.
However, if we define N(ω) for the smallest nonnegative integer such that (2.6) is
true, then we can readily check that N(ω) = N(τaω). Since P is ergodic, we deduce
that N(ω) is constant P-almost surely. This concludes the proof of Theorem F. �

Next we give an application to random generating functions of complexity N .
For the following, recall the definition of Ā in (3.1).

Lemma 4.4. Let F be an area-preserving random twist map of the form F =
FN ◦ . . . ◦ F0, where each Fi is a monotone area-preserving random twist with gen-
erating function of the form Gi(q,Q;ω) := Li(τqω,Q−q). Then F has a generalized
generating function L : Ā× RN → R of complexity N , L(ω, v; ξ), that is given by

L0(ω, ξ1) +

N−1∑
j=1

Lj(τξjω, ξj+1 − ξj) + LN (τξNω, v − ξN ),

or equivalently

G(q, Q; ξ) = G0(q, ξ1) +

N−1∑
j=1

Gj(ξj , ξj+1) + GN (ξN , Q),

where ξ = (ξ1, . . . , ξN ) ∈ RN .

Proof. We write ξ0 = q, ξN+1 = Q. To verify (3.2), observe that Gξ = 0 means that
Gi
Q(ξi, ξi+1) = −Gi+1

q (ξi+1, ξi+2) for i = 0, . . . , N − 1. We have that Fi(qi, pi) =

(Qi(qi, pi), Pi(qi, pi)), with Gi
Q(qi, Qi) = Pi, G

i
q(qi, Qi) = −pi. By definition we

have that F0(q1,−G0
q(q, ξ1)) = (ξ1, G

0
Q(q, ξ1)). Since G0

Q(q, ξ1) = −G1
q(ξ1, ξ2) we

have that

F1(ξ1, −G1
q(ξ1, ξ2)) = (ξ2, G

1
Q(ξ1, ξ2)).

Iterating N times we get

FN (ξN , −GN
q (ξN , Q)) = (Q, GN

Q (ξN , Q)),

so F (q, −Gq(q, Q; ξ)) = (Q, GQ(q, Q; ξ)). �

5. Area-preserving random monotone twists

5.1. Existence of random generating functions. The map v �→ p̄(ω, v) is de-
fined to be the inverse of the map p �→ Q̄(ω, p). This means that

Q �→ p(q,Q) = p̄(τqω,Q− q)

is the inverse of

p �→ Q(q, p) = q + Q̄(τqω, p).
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Note that the map p̄ is defined on the set Ā so that v ∈ [Q̄(ω,−1), Q̄(ω, 1)]. The
following explicit description is needed in upcoming proofs.

Proposition 5.1. Write Q±(ω) = Q̄(ω,±1) and set

L(ω, v) :=

∫ v

Q−(ω)

P̄ (ω, p̄(ω, a)) da−Q−(ω).(5.1)

Then L(ω, v) is a generating function of F of complexity 0.

Proof. We prove it if F is positive monotone; the negative monotone case is similar.
From (5.1) we deduce that the corresponding G(q,Q;ω) = L(τqω,Q− q) is equal to∫ Q

q+Q−(τqω)

P (q, p(q, Q̃)) dQ̃−Q−(τqω) =: G′(q,Q;ω) − (Q− q)

which is equal to ∫ Q

q+Q−(τqω)

(
P (q, p(q, Q̃)) + 1

)
dQ̃− (Q− q)

=

∫ Q+q−(τQω)

q

(p(q̃, Q) + 1) dq̃ − (Q− q)

=

∫ Q+q−(τQω)

q

p(q̃, Q)dq̃ + q−(τQω).(5.2)

For the first equality in (5.2), we used that F is area-preserving. Here F−1(Q,P ) =
(q(Q,P ), p(Q,P )) and q± is defined by q(Q,±1) = Q + q±(τQω) so that Q �→
Q+ q±(τQω) is the inverse of the map q �→ q+Q±(τqω) (see Figure 5.1). Applying
the Fundamental Theorem of Calculus to (5.2) we obtain that GQ(q, Q) = P (q, p)
and −Gq(q, Q) = p. Then (3.2) follows. �

G(q, Q) G(q, Q)

�+

�−

�+

�−

q(Q, 1)

q(Q, −1) Q(q, −1)

Q(q, 1)

F−1

F

q Q

Figure 5.1. Area-preserving random twist F : S → S and inverse.
The area of the shaded regions is G(q, Q) in (5.2).

5.2. Fixed points.

Proposition 5.2. Let F : S× Ω → S be an area-preserving random montone twist
with generating function L : Ā → R. Then ψ : Ā0 → R given by

ψ(a, ω) = ψ̄(τaω) := L(τaω, 0)

has infinitely many critical points. Furthermore, except for degenerate cases, ψ has
maximum and minimum critical points. In degenerate cases ψ has a continuum of
critical points. If ψ is bounded and nonconstant, it oscillates infinitely many times,
so it has maximums and minimums.
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Proof. We prove the last statement by contradiction. Suppose that ψ(a, ω) is
monotone for large a. Then lima→∞ ψ(a, ω) = ψ(∞, ω) is well defined. By ergod-
icity ψ(∞, ω) = ψ(∞) is independent of ω. On the other hand, for any bounded
continuous function J : R → R we have that E J(ψ(a, ω)) = E J(ψ̄(ω)) for every
a, and therefore J(ψ(∞)) = E J(ψ̄(ω)). Thus ψ̄(ω) = ψ(∞) a.s. In other words, if
ψ(a, ω) doesn’t oscillate, then ψ(a, ω) is constant. �
5.3. Construction of random monotone twists and spectral nature of fixed
points. As we argued in Proposition 5.1, a monotone twist map may be determined
in terms of its generating function. We now explain how we can start from a scalar-
valued function H(ω, v) and construct a monotone twist map from it. To explain
this construction, let us derive a useful property of generating functions. Recall
Q±(ω) = Q̄(ω,±1).

Proposition 5.3. Let L(ω, v) be as in Proposition 5.1. Then the function

(5.3) L(ω,Q+(ω)) −Q+(ω)

is constant and L(ω,Q−(ω)) = −Q−(ω).

Proof. From F (q,−Gq(q,Q;ω)) = (Q,GQ(Q, q;ω)), we deduce

F̄ (ω,Lv(ω, v) − Lω(ω, v)) = (v,Lv(ω, v)).

Since P = ±1 if and only if p = ±1, we obtain Lω(ω,Q±(ω)) = 0 and Lv(ω,Q
±(ω))

= ±1. But

∇ω

(
L(ω,Q±(ω))

)
= Lω(ω,Q±(ω)) + Lv(ω,Q

±(ω))Q±
ω (ω) = ±Q±

ω (ω),

which means that the function L(ω,Q±(ω))∓Q±(ω) is constant by the ergodicity of
P. On the other hand, by the definition of L (see (5.1)) we know that L(ω,Q−(ω)) =
−Q−(ω). �

We are ready to give a recipe for constructing a monotone twist map from a C2

function H : Ω × R → R, which satisfies the following conditions:⎧⎨
⎩

H(ω, 0) = 0, H(ω, a) > 0 for a > 0,

η(ω) = inf{a > 0 | H(ω, a) = 2} < +∞,
(5.4)

almost surely. For such a function H, we set

σ(ω) = η(ω) − 1

2

∫ η(ω)

0

H(ω, a)da

and

Q−(ω) = −σ(ω), Q+(ω) = (η − σ)(ω);(5.5)

Ḡ(ω, v) = H(ω, v + σ(ω)), G(q,Q;ω) = Ḡ(τqω,Q− q);(5.6)

L(ω, v) =

∫ v+σ(ω)

0

H(ω, a)da− v; G(q,Q;ω) = L(τqω,Q− q).

Theorem 5.4. Assume that H : Ω×R → R satisfies (5.4) and the condition Gq < 0
with G defined as in (5.6). Then there exists a unique monotone twist map F
such that F (q,−Gq(q,Q)) = (Q,GQ(q,Q)), and F (q,±1) = (q +Q±(τqω),±1) with
Q± defined by (5.5). Moreover, if q̄ is a local maximum (respectively minimum)
for q �→ ψ(q) = G(q, q), then DF at the F -fixed point (q̄,−Gq(q̄, q̄)) has negative
(respectively positive) eigenvalues.
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Proof. By the definition,

G(q,Q) =

∫ Q

q+Q−(τqω)

G(q,Q′) dQ′ − (Q− q),

which implies

GQ = G− 1, GQq = Gq < 0.(5.7)

From (5.7) we learn that the map Q �→ Gq(q,Q) is decreasing and, as a result, the
equation

Gq(q,Q) = −p(5.8)

may be solved for Q, to yield a p-increasing function Q = Q(q, p). We set

P (q, p) = GQ(q,Q(q, p)) = G(q,Q(q, p))− 1,

so that

F (q, p) = (Q(q, p), P (q, p)).

Note that the monotonicity condition is satisfied because Q is increasing in p.
We need to show that the boundary conditions are satisfied and that F is area-
preserving. For the latter, observe that by differentiating both sides of the rela-
tionship (5.8), we obtain Gqq + GQqQq = 0, GqQQp = −1, Pq = GQq + GQQQq, and
Pp = GQQQp. It follows that

(5.9) DF = −G−1
Qq

[
Gqq 1

GqqGQQ − G2
qQ GQQ

]
.

It follows from (5.9) that if the eigenvalues of DF are λ and λ−1, then λ > 0 if and
only if

Trace(DF ) =
Gqq + GQQ

−GqQ
= λ + λ−1 � 2.

Equivalently DF has positive eigenvalues if and only if

ψ′′(q) = (Gqq + GQQ + 2GqQ)(q, q) > 0.

The case of negative eigenvalues may be treated in the same way.
For the boundary conditions, we first establish

(5.10) Lω(ω,Q±(ω)) = 0, Lv(ω,Q
±(ω)) = ±1.

For the second equality in (5.10), observe that Lv = Ḡ − 1, and by definition
Ḡ(ω,Q−(ω)) = H(ω, 0) = 0, and Ḡ(ω,Q+(ω))=H(ω,Q+(ω)−Q−(ω))=H(ω, η(ω))
= 2. As for the first equality in (5.10), observe that by the definition of σ, G and
L,

L(ω,Q−(ω)) + Q−(ω) = 0,

L(ω,Q+(ω)) −Q+(ω) =

∫ Q+(ω)+σ(ω)

0

H(ω, a)da− 2Q+(ω)

=

∫ η(ω)

0

H(ω, a)da− 2(η − σ)(ω) = 0.

As a result

L(ω,Q±(ω)) ∓Q±(ω) = 0.(5.11)
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Differentiating (5.11) with respect to ω yields

0 = Lω(ω,Q±(ω)) + Lv(ω,Q
±(ω))Q±

ω (ω) ∓Q±
ω (ω) = Lω(ω,Q±(ω)),

which is precisely the first equality in (5.10).
We are now ready to verify the boundary conditions. We wish to show that

Q(q,±1) = q + Q±(τqω), or equivalently

±1 = −Gq(q, q + Q±(τqω)) = (Lv − Lω)(τqω,Q
±(τqω)).

This is an immediate consequence of (5.10). It remains to verify P (q,±1) = ±1.
We certainly have

P (q,±1) = GQ(q, q + Q±(τqω)) = G(q, q + Q±(τqω)) − 1 = Ḡ(τqω,Q
±(τqω)) − 1.

This and (5.10) imply P (q,±1) = ±1, because Ḡ− 1 = Lv. �

Remark 5.5. σ in (5.5) is motivated by (5.3). It is chosen so that L(ω,Q+(ω)) =
Q+(ω).

Remark 5.6. The monotonicity condition Gq = GQq < 0 may be expressed as
Hω(ω, a) < Ha(ω, a)(1−σ′(ω)). The derivative of σ may be calculated with the aid
of (5.5):

σ′(ω) = η′(ω) − 1

2
H(ω, η(ω))η′(ω) − 1

2

∫ η(ω)

0

Hω(ω, a)da

= −1

2

∫ η(ω)

0

Hω(ω, a)da.

Example 5.7. We now give a concrete example of H that satisfies the assumptions
of Theorem 5.4. Consider H(a, ω) = R̄(ω)a for R(q, ω) = R̄(τqω) a positive C1

stationary process. For such H, we have η = 2σ = 2R̄−1, and Q± = ±R−1. The
condition Gq < 0 is equivalent to

(5.12) R′(Q− q) −R < 0

for q,Q ∈ [Q−, Q+]. Eqivalently,

R′ > 0 ⇒ 2R′R−1 ≤ R,

R′ < 0 ⇒ −2R′R ≤ R.

In summary, we need 2|R′| ≤ R2 to hold.

5.4. The density of fixed points. When F is a positive twist map, it has a
generating function G(q,Q, ω) = L(τqω,Q−q) and any fixed point of F is of the form
(q0,Lv(τq0ω, 0)) where q0 is a critical point of the random process ψ(q, ω) = ψ̄(τqω)
(Propositions 3.3 and 5.1). We have also learned that any random process ψ has
infinitely many local maximums and minimums. In this section we give sufficient
conditions to ensure that such a random process has a positive density of critical
points, which in turn yields a positive density for fixed points of a monotone twist
map. Let �B be the cardinality of a set B.

Definition 5.8. The density of A ⊂ R is den(A) := lim
→∞ (2�)−1�(A ∩ [−�, �]).

Let us state a set of assumptions for the random process ψ(q, ω) = ψ̄(τqω) that
would guarantee the existence of a density for the set

Z(ω) := {q | ψ′(q, ω) = 0}.
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Hypothesis 5.9.

(i) ψ(q, ω) is twice differentiable almost surely and if

φ
(δ;ω) = sup
{
|ψ′′(q, ω) − ψ′′(q̂, ω)| | q, q̂ ∈ [−�, �], |q − q̂| � δ

}
,

then limδ→0 E φ
(δ;ω) = 0 for every � > 0.
(ii) The random pair (ψ̄ω(ω), ψ̄ωω(ω)) has a probability density ρ(x, y). In other

words, for any bounded continuous function J(x, y),

EJ(ψ′(q, ω), ψ′′(q, ω)) =

∫
R

J(x, y) ρ(x, y) dxdy.

(iii) There exists ε > 0 such that ρ(x, y) is jointly continuous for x satisfying
|x| � ε.

We define Z̄±(ω) := {q | ψ′(q, ω) = 0, ±ψ′′(q, ω) > 0} and N±

 (ω) := Z̄±(ω) ∩

[−�, �]. It is well known that if we assume Hypothesis 5.9, then

(5.13) E N
(ω) = 2�

∫
R

ρ(0, y)y± dy.

This is the celebrated Rice Formula and its proof can be found in [Ad00, Az09].
Next we state a direct consequence of the Rice Formula and the Ergodic Theorem.

Theorem 5.10. If ψ satisfies Hypothesis 5.9, then Z̄(ω) = Z(ω) almost surely and

(5.14) lim

→∞

E

∣∣∣∣ 1

2�
N±


 (ω) −
∫
R

ρ(0, y)y± dy

∣∣∣∣ = 0.

Proof. Pick a smooth function ζ : R → [0,∞) such that its support is contained in
the interval [−1, 1], ζ(−a) = ζ(a), and

∫
R
ζ(q)dq = 1. Set ζε(q) := ε−1ζ(q/ε). It is

not hard to show

(5.15)
1

2�
N±


 (ω) � 1

2�

∫ 
−ε

−
+ε

∣∣∣ζ ′ε ∗ ψ̂(q, ω)
∣∣∣ dq =: X±

ε (�, ω),

where ψ̂(q, ω) = �(ψ′(q, ω) > 0) (this is [Az09, Lemma 3.2]). We note that if

ηε(ω) =
∣∣∣∫

R
ζ ′ε(a)ψ̂(a, ω) da

∣∣∣ , then

ηε(τqω) =

∣∣∣∣
∫
R

ζ ′ε(a)ψ̂(a, τqω) da

∣∣∣∣ =

∣∣∣∣
∫
R

ζ ′ε(a)ψ̂(a + q, ω) da

∣∣∣∣
=

∣∣∣ζ ′ε ∗ ψ̂(q)
∣∣∣ .

From this and the Ergodic Theorem we deduce

(5.16) lim

→∞

1

2�

∫ 


−


∣∣∣ζ ′ε ∗ ψ̂(q, ω)
∣∣∣ dq = Eηε

almost surely and in the L1(P) sense.
On the other hand,

(5.17) lim
ε→0

Eηε =

∫
R

ρ(0, y)y± dy =: X̄±.

This follows the proof of the Rice Formula; see [Az09, proof of Theorem 3.4].
Again by the Rice Formula,

0 = E

[
1

2�
N±


 (ω) − X̄±
]

= E

[
1

2�
N±


 (ω) −X±
ε (�, ω)

]
− E

[
X±

ε (�, ω) − X̄±] ,



626 ÁLVARO PELAYO AND FRAYDOUN REZAKHANLOU

which implies

(5.18) lim
ε→0

lim sup

→∞

E

[
1

2�
N±


 (ω) −X±
ε (�, ω)

]
= 0,

because by (5.16) and (5.17)

(5.19) lim
ε→0

lim sup

→∞

E
∣∣X±

ε (�, ω) − X̄±∣∣ = 0.

From (5.15) and (5.18) we deduce

lim
ε→0

lim sup

→∞

E

∣∣∣∣ 1

2�
N±


 (ω) −X±
ε (�, ω)

∣∣∣∣ = 0.(5.20)

Then (5.20) and (5.19) imply (5.14). �

6. Complexity N = 1 area-preserving random twists

6.1. Domain of random generating functions. We begin by describing the
domain of the random generating function of a complexity one twist.

Lemma 6.1. Let F be an area-preserving random twist of complexity one with
decomposition F = F1◦F0, where F1 is a positive monotone area-preserving random
twist and F0 is a negative monotone area-preserving random twist. Let G0, G1 be
the generating functions, respectively, of the monotone twists F0, F1. Then G1 :=
F−1
1 is a negative area-preserving random twist with generating function given by

Ĝ1(q, ξ) := −G1(ξ, q), and if

D0 := Domain(G0) and D1 := Domain(Ĝ1),(6.1)

then we have a proper inclusion of sets D0 � D1 (see Figure 6.1).

Proof. Note that G1(a, ±1) = (Q±
1 (a), ±1) and F0(a, ±1) = (Q±

0 (a), ±1), with
±(Q±

i (a) − a) < 0 and Q±
i increasing. Since F is an area-preserving random twist

map, we may write F−1(q, ±1) = (Q̂±(q), ±1) with Q̂± increasing and such that

±(Q̂±(q) − q) < 0 for all q. For i = 0, 1 let ∂±Di = {(a,Q∓
i (a)) | a ∈ R} denote

the boundary curves of Di. From G1 = F0 ◦ F−1, we deduce Q±
0 (Q̂±(q)) = Q±

1 (q),

D0

D0∂+ ∂− D0D1

Graph(Q0)

Graph(Q1)

∇I

∇I

Figure 6.1. The domains D0 and D1 and the gradient ∇I.
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and therefore

Q−
0 (q) < Q−

1 (q)(6.2)

and

Q+
0 (q) > Q+

1 (q).(6.3)

Then (6.2) (respectively (6.3)) implies that the upper (respectively lower) boundary
of D1 is strictly above (respectively below) D0. It follows that D0 � D1, as desired.

�

6.2. Gradients and geometry of domains. Let D0 be defined by (6.1).

Corollary 6.2. The map

I(q, ξ) := G0(q, ξ) + G1(ξ, q)(6.4)

is well defined on the set D0; cf. (6.1).

Proof. If (ξ, q) ∈ D0 ∩ D1, then the sum G0(q, ξ) + G1(ξ, q) is well defined. The
corollary follows from Lemma 6.1. �

Lemma 6.3. The gradient ∇I of I : D0 → R is inward on ∂±D0 and

∓Iξ,±Iq > 0

on ∂±D0.

Proof. If F0(q, p) = (ξ, η) and F1(ξ, η
′) = (q, P ), then Iq(q, ξ) = P − p and

Iξ(q, ξ) = η−η′ hold. We express the domain D0 of I given by (6.1) as {(ξ, q) | p =
p(q, ξ) = −G0

q(q, ξ) ∈ [−1, 1]}. On ∂−D0, η = p = 1 and P, η′ < 1 (because

D0 � D1). So on ∂−D0 we have Iξ(q, ξ) > 0 and Iq(q, ξ) < 0. On ∂+D0 we have
η = p = −1 and η′, P < 1. So on ∂+D0 we have Iξ(q, ξ) < 0 and Iq(q, ξ) > 0.
The lower boundary ∂−D0 is the graph of an increasing function q �→ h(q), and of
course h′(q) > 0. So, the tangent to ∂−D0 is (1, h′(q)) and the inward normal is
(−h′(q), 1). On ∂−D0 we have Iξ(q, ξ) > 0 and Iq(q, ξ) < 0. So we have that the
dot product 〈(Iq(q, ξ), Iξ(q, ξ)), (−h′(q), 1)〉 = −h′(q)Iq(q, ξ)+ Iξ(q, ξ) > 0. That
is, on the lower boundary ∇I is inward.

The case of the upper boundary is analogous. �

6.3. Fixed points. If we set D̂ := {(q, a) | (q, q + a) ∈ D0}, we have that, for a

pair of random processes B−(τqω), B+(τqω) > 0, D̂ = {(q, a) | − B−(τqω) < a <
B+(τqω)}. We then use the notation of Lemma 4.4 to set Ī(τqω, a) := L0(τqω, a) +
L1(τaτqω,−a) = I(q, q + a). Define the map K̄ : Ω × [−1, 1] → R by

K(q, p;ω) = K̄(τqω, p) = Ī (τqω,B(τqω, p)) ,

where

B(τqω, p) =
p + 1

2
B+(τqω) +

p− 1

2
B−(τqω).

Note that

Kp(q, p;ω) =
1

2
Īa (τqω,B(τqω, p))

(
B+(τqω) + B−(τqω)

)
,

Kq(q, p;ω) =Īω (τqω,B(τqω, p)) + Īa (τqω,B(τqω, p))Bω(τqω, p).(6.5)

Hence there is a one-to-one correspondence between the critical points of K and I.
From (6.5) and Lemma 6.3 we conclude the following.
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Lemma 6.4. The gradient ∇K of K : S× Ω → R is inward on the boundary of S.

Theorem 6.5. Let K̄ : Ω × [−1, 1] → R be a C1-map such that ∓K̄p(·,±1) > 0.
Let K(q, p;ω) := K̄(τqω, p).

(a) K has infinitely many critical points.
(b) Furthermore, the critical points of K occur as follows:

(1) either K has a continuum of critical points;
(2) or K has both infinitely many local maximums, and infinitely many saddle

points or local minimums.

Proof. We prove (b). If K̂(ω) := maxa∈[−1,1] K̄(ω, a), then either K̂ is constant or

K̂(τqω) oscillates almost surely. In the former case for almost all ω, there exists
a(ω) such that K̄(ω, a(ω)) is a maximum and (of course) a(ω) /∈ {−1, 1} by the
assumption ∓K̄p(·,±1) > 0. More concretely, we set

a(ω) = max{p ∈ [−1, 1] | K̄(ω, p) = K̂(ω)}.

Hence K has a continuum of critical points of the form {(q, a(τqω)) | q ∈ R}. In the

latter case, there are infinitely many local maximums. Choose q̄ so that K̂(τq̄ω) is

a local maximum. For such (q̄, ω) choose a(τq̄ω) so that K̄(τq̄ω, a(τq̄ω)) = K̂(τq̄ω).
Therefore K has infinitely many local maximums by Proposition 5.2.

Note that if

Ω0 :=
{
ω | {τaω | a > a0} is dense for every a0

}
,

then P(Ω0) = 1. This is true because the family {τa : a ∈ R} is ergodic and by
assumption P(U) > 0 for every open set U . Given ω ∈ Ω0, consider the ordinary
differential equation with initial value condition⎧⎪⎨

⎪⎩
q′(t) = K̄ω(τq(t)ω, p(t)),

p′(t) = K̄p(τq(t)ω, p(t)),

q(0) = 0, p(0) = a.

(6.6)

There are two possibilities; the first possibility is that for some a, we have that q(t)
is unbounded as t → ∞, and in this case we claim that there is a continuum of
critical points. The second possibility is that q(t) is always bounded as t → ∞,
and in this case we claim that K has either infinitely many saddle points or local
minimums. We proceed case by case.

Case 1 (The map q(t) is unbounded as t → ∞ for some ω ∈ Ω0). We want to prove
that K has a continuum of critical points. Define ω(t) := τq(t)ω, and let φr be the
flow of (6.6). Note that

d

dt
K̄(ω(t), p(t)) = |∇K̄(ω(t), p(t))|2 � 0.

Since q(t) is unbounded, ω(t) can approach almost any point in Ω. Moreover
if τq(tn)ω → ω and p(tn) → p, then we claim that ∇K̄(ω, p) = 0. Indeed, if

λ := supt>t0 K̄(ω(t), p(t)), we have λ = K̄(ω, p), and since

λ = sup
t>t0

K̄(ω(t + r), p(t + r)),
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we have, for any r > 0, that λ = K̄(ω, p) = K̄(φr(ω, p)). Hence ∇K̄(ω, p) = 0;
otherwise

d

dr
K̄(φr(ω, p))|r=0 > 0,

which is impossible. Note that ω could be any point in Ω and therefore for such
ω there exists p = p(ω) such that ∇K(ω, p(ω)) = 0, i.e. we have a continuum of
critical points. This concludes Case 1.

�1

�−1

γ
a

a

a′
a′′

Γ(a) Γ(a′) Γ(a′′)

−

Figure 6.2. Note that a ∈ γ while a is enclosed by γ.

Case 2 (The map q(t) = q(t, ω) is bounded for every ω ∈ Ω0). We claim that if
K̄ does not have a continuum of fixed points, then K has infinitely many critical
points which are local minimums or saddle points. Suppose that this is not the
case; then we want to arrive at a contradiction. In order to do this let x̄ = (q, p)
be a local maximum, which we know always exists by the paragraphs preceding
Case 1. In fact we may take a δ > 0 such that K(x) � K(x̄) for every x = (q, p)
with q ∈ (q̄ − δ, q̄ + δ). Now take a closed curve γ such that (q, p) is inside γ and
if a ∈ γ, then limt→∞ φt(a) = (q, p) = a. For example, we may take γ to be part
of a level set of the function (q, p) �→ K(q, p) with value c < K(x̄) very close to
K(x̄). Since K does not have a continuum of critical points, we may choose such
a level set γ such that K has no critical point on γ. From this latter property we
deduce that γ is homeomorphic to a circle. Let a ∈ γ (see Figure 6.2). If there
is no other type of critical points, then the curve t �→ φt(a), where t � 0, must
reach the boundary for some ta < 0, because d

dtK(φt(a)) � 0. This defines a map
Γ: γ → (R × {−1}) ∪ (R × {1}), Γ(a) := φta(a). We now argue that in fact Γ is
continuous. To show the continuity of Γ at a ∈ γ, extend K continuously near Γ(a),
choose ε > 0 and set

η = (φθ(a) | θ ∈ [ta − ε, ε]).

Choose ε sufficiently small so that φθ(a) is inside γ for θ ∈ (0, ε], and φt(a) is outside
the strip for t ∈ (ta − ε, ta). Choose â ∈ γ close to a so that η′ = (φθ(b) | θ ∈
[ta − ε, ε]) is uniformly close to η. Since φta(â) is near Γ(a), we can choose â close
enough to a to guarantee that Γ(â) is close to Γ(a). Moreover, we can easily show
that Γ(c) is between Γ(a) and Γ(â) for any c between a and â on γ. Hence Γ is a
homeomorphism from a neighborhood of a onto its image. Since γ is homeomorphic
to S1, its homeomorphic image Γ(γ) cannot be fully contained inside of R×{−1}∪
R × {+1}. Therefore there exists a ∈ γ such that any limit point z of φt(a) as
t → −∞ is a critical point inside the strip that is not a local maximum. Clearly
z /∈ (q̄− δ, q̄+ δ). Let us assume for example that z = (q1, p1) with q1 > q̄+ δ. Take
another local maximum x̂ = (q̂, p̂) to the right of x̄ and assume that K(x̂) � K(x)
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for all x ∈ (q̂ − δ̂, q̂ + δ̂) × [−1, 1]. Since φt(a) cannot enter (q̂ − δ̂, q̂ + δ̂) × [−1, 1]

we deduce that q1 ∈ (q̄ + δ, q̂ − d̂).

Repeating the above argument for other local maximums, we deduce that there
exist infinitely critical points in between local maximums that are not local maxi-
mums. �

6.4. Nature of the fixed points in terms of generating function. A result
similar to Theorem 5.4 holds for complexity N = 1 twist maps.

Theorem 6.6. Let F and I be as in Lemma 6.1 and Corollary 6.2.
Let (q̄, ξ̄) be a critical point of I and �x be the corresponding fixed point of F as in

Proposition 3.3. Assume that Iξξ(q̄, ξ̄) �= 0. Then DF (�x) has positive (respectively
negative) eigenvalues if and only if det I(q̄, ξ̄) � 0 (respectively � 0).

Proof. Recall that S(q,Q; ξ) = S0(q, ξ) + S1(ξ,Q) and:

Gξ(q,Q; ξ) = 0 ⇒ F (q, −Gq(q,Q; ξ)) = (Q,GQ(q,Q; ξ)).

Observe that if cI(q̄, ξ̄) = cGξξ(q̄, q̄; ξ̄) �= 0, then near (q̄, q̄, ξ̄), we can solve
Gξ(q,Q; ξ) = 0 as ξ = ξ(q,Q). Write T(q,Q) = G(q,Q; ξ(q,Q)). Then Tq =
Gq, TQ = GQ, and F (q,−Tq(q,Q)) = (Q,TQ(q,Q)). As a result, we can show

DF =
1

−TqQ

[
Tqq 1

TqqTQQ − T2
qQ TQQ

]
,

in the same way we derived (5.9). Observe that Trace(DF ) =
Tqq+TQQ

−TqQ
. Since

Tqq = Gqq+Gqξξq, TQQ = GQQ+GQξξQ, TqQ = GqQ+GqξξQ, and TQq = GQq+GQξξq,
we have that

Tqq + TQQ + 2TqQ = Gqq + GQQ + 2GqQ + (Gqξ + GQξ)(ξq + ξQ).

On the other hand, by differentiating the relationship Gξ(q,Q; ξ(q,Q)) = 0, we have

Gξq + Gξξξq = 0 and GξQ + GξξξQ = 0, or equivalently, ξq = −Gξq

Gξξ
, ξQ = −GξQ

Gξξ
. In

particular, Gξq + GξQ + Gξξ(ξq + ξQ) = 0, which in turn implies

Tqq + TQQ + 2TqQ = Gqq + GQQ + 2GqQ − 1

Gξξ
(Gqξ + GQξ)

2.

Furthermore, if I(q, ξ) = G(q, q; ξ), then Iq = Gq + GQ, Iξ = Gξ, and

D2I =

[
Gqq + GQQ + 2GqQ GξQ + Gξq

GξQ + Gξq Gξξ

]
.

So Tqq + TQQ + 2TqQ = det(D2I)
Gξξ

. Also, TqQ = GqQ − GqξGQξ

Gξξ
. Now

Trace(DF ) − 2 =
Tqq + TQQ + 2TqQ

−TqQ
=

det(D2I)

GqQGξξ − GqξGQξ
.(6.7)

Recall G(q,Q; ξ) = G0(q, ξ) + G1(ξ,Q) with G0
qξ > 0, and G1

Qξ < 0 because F 0 is

a negative monotone twist and F 1 is a positive monotone twist. Hence we obtain
−GqξGQξ > 0. On the other hand GqQ = 0, which simplifies (6.7) to

Trace(DF ) − 2 =
Tqq + TQQ + 2TqQ

−TqQ
=

det(D2I)

−GqξGQξ
.
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This expression has the same sign as det(D2I). Finally DF has positive eigenvalues
if and only if Trace(DF ) � 2, if and only if det(D2I) ≥ 0, which concludes the
proof. �

7. Complexity N = 2 area-preserving random twists

7.1. Domain of random generating functions. Next we describe the domain
of a random generating function associated to a complexity N = 2 twist.

Lemma 7.1. Let F be an area-preserving random twist of complexity N = 2.
Suppose that F decomposes as F = F2 ◦ F1 ◦ F0, where F1 is a positive monotone
area-preserving random twist and Fj is a negative monotone area-preserving random
twist for j = 0, 2. Let G0,G1,GN be the corresponding generating functions. Write
Gi = F−1

i and define Q±
i and Q̂±

i by Fi(q,±1) = (Q±
i (q),±1) and Gi(q,±1) =

(Q̂±
i (q),±1). Then the function I(q, ξ1, ξ2) := G0(q, ξ1) + G1(ξ1, ξ2) + G2(ξ2, q), is

well defined on the set

D =
{

(q, ξ1, ξ2) | Q+
0 (q) � ξ1 � Q−

0 (q), Q̂−
2 (q) � ξ2 � Q̂+

2 (q)
}
.

Moreover, if (q, ξ1, ξ2) ∈ D, then Q−
1 (ξ1) < ξ2 < Q+

1 (ξ1).

Proof. Since F1 = G2 ◦ F ◦G0, we have

(7.1) Q̂±
2 ◦Q± ◦ Q̂±

0 = Q±
1 ,

where Q± are defined by the relationship F (q,±1) = (Q±(q),±1). On the set D,
G0(q, ξ1) and G2(ξ2, q) are well defined. It is sufficient to check that if (q, ξ1, ξ2) ∈ D,
then G1(ξ1, ξ2) is well defined. That is, Q−

1 (ξ1) < ξ2 < Q+
1 (ξ1). To see this observe

that by (7.1),

±Q±
1 (ξ1) = ±

(
Q̂±

2 ◦Q± ◦ Q̂±
0

)
(ξ1) � ±

(
Q̂±

2 ◦Q±
)

(q) > ±Q̂±
2 (q) � ±ξ2,

as desired. Here for the first inequality we used the fact that Q± and Q̂±
2 are

increasing and that in D, we have Q̂−
0 (ξ1) � q � Q̂+

0 (ξ1); for the second inequality
we used ±Q±(q) > ±q, which concludes the proof. �

We define B±
0 (ω), B±

2 (ω) > 0, by Q±
0 (q) = q ∓ B±

0 (τqω) and Q̂±
2 (q) = q ±

B±
2 (τqω). Let

K(q, p;ω) = K̄(τqω, p) = I(q, ξ(q, p)) = Ī(τqω, q + ξ̄(τqω, p)),(7.2)

where ξ̄(ω, p) = (ξ̄1(ω, p1), ξ̄2(ω, p2)), ξ(q, p) = (q + ξ̄1(τqω, p1), q + ξ̄2(τqω, p2)),

p = (p1, p2), and ξ̄1 and ξ̄2 are defined by ξ̄1(ω, p1) := p1+1
2 B−

0 (ω) + p1−1
2 B+

0 (ω)

and ξ̄2(ω, p2) := p2+1
2 B+

2 (ω) + p2−1
2 B−

2 (ω).

Lemma 7.2. Let K : R× [−1, 1]2 × Ω → R be as in (7.2). The following hold:

(i) There exists a one-to-one correspondence between critical points of I and K.
(ii) The vector ∇K is pointing inward on the boundary of R× [−1, 1]2.

Proof. Evidently K(q, p1, p2) = K(q, p;ω) satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kp1
(q, p1, p2) = 1

2Iξ1(q, ξ(q, p))
(
B+

0 + B−
0

)
(τqω),

Kp2
(q, p1, p2) = 1

2Iξ2(q, ξ(q, p))
(
B+

2 + B−
2

)
(τqω),

Kq(q, p1, p2) = Iq(q, ξ(q, p)) + Iξ1(q, ξ(q, p)) + Iξ2(q, ξ(q, p))

+Iξ1(q, ξ(q, p))
(
p1+1

2 ∇B−
0 + p1−1

2 ∇B+
0

)
(τqω)

+Iξ2(q, ξ(q, p))
(
p1+1

2 ∇B−
2 + p1−1

2 ∇B+
2

)
(τqω).

(7.3)
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It follows from (7.3) that there exists a one-to-one correspondence between the
critical points of I and K because B±

i > 0 for i = 0, 2. This proves (i).
We now examine the behavior of K across the boundary. Observe that the

functions Kp1
and Iξ1 (respectively Kp2

and Iξ2) have the same sign. Moreover,

p1 = ±1 ⇔ ξ1 = Q∓
0 (q),

p2 = ±1 ⇔ q = Q±
2 (ξ2).

It remains to verify

ξ1 = Q∓
0 (q) ⇒ ±Iξ1 < 0,

q = Q±
2 (ξ2) ⇒ ±Iξ2 < 0.

Let us write ξ0 for q and ξ3 for Q. We define functions pi(ξi, ξi+1) and P i(ξi, ξi+1)
by F i

(
ξi, p

i(ξi, ξi+1)
)

=
(
ξi+1, P

i(ξi, ξi+1)
)
. We then have Iξ1 = G0

Q+G1
q = P 0−p1

and Iξ2 = G1
Q + G2

q = P 1 − p2. Finally we assert,

p1 = ±1 ⇒ ξ1 = Q∓
0 (q) ⇒ p0 = P 0 = ∓1 ⇒ ±Iξ1 < 0,

p2 = ±1 ⇒ ξ2 = Q̂±
2 (q) ⇒ p2 = P 2 = ±1 ⇒ ±Iξ2 < 0,

as desired. Here we are using the fact that if p0 = P 0 = ∓1 or p2 = P 2 = ±1, then
Q−

1 (ξ1) < ξ2 < Q+
1 (ξ1) or equivalently p1, P 1 /∈ {−1, 1}. �

7.2. Fixed points. The following proof is sketched because it is similar to that of
Theorem 6.5.

Theorem 7.3. Let K : R × [−1, 1]2 × Ω → R, and K(q, p;ω) := K̄(τqω, p) be C1

up to the boundary with ∇K pointing inwards on the boundary. Then:

(a) K has infinitely many critical points.
(b) The critical points of K occur as follows:

(1) either K has a continuum of critical points;
(2) or K has both infinitely many local maximums, and infinitely many saddle

points or local minimums.

Proof. We prove (b). As in the proof of Theorem 6.5, we assume that K does
not have a continuum of critical points and deduce that K has infinitely many
isolated local maximums. The q component of the flow remains bounded almost
surely. We take a local maximum a and a connected component γ of a level set
of K associated with a regular value c of K, very close to the value K(a). The
surface γ is an oriented closed manifold and if K has no other type of critical point,
then Γ : γ → R × ∂[−1, 1]2, is a homeomorphism from γ onto its image. Since
the set R × ∂[−1, 1]2 cannot contain a homeomorphic image of γ, we arrive at a
contradiction. From this we deduce the conclusion of the theorem as in the proof
of Theorem 6.5. �

8. Complexity N � 3 area-preserving random twists

8.1. Geometry of the domain of the generating function. Let F be an area-
preserving random twist of complexity N . As in Theorem F, we assume that N is
an odd number and that F decomposes as in (2.6). Recall that G0, . . . ,GN denote
the generating functions, respectively, of the monotone twists F0, . . . , FN . Set

I(q, ξ) = G(q, q; ξ) = L(τqω, 0; ξ − q), I′(q, η) = I(q, η + q) =: Ī(τqω, η),
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where G and L are defined by Lemma 4.4, and η+q = (η1 +q, . . . , ηN +q). Given a
realization ω, we write D = D(ω) for the domain of the definition of I. We also set
D′(ω) = {η ∈ RN | (0, η) ∈ D(ω)} so that the domain of the function I′ is exactly
{(q, η) | η ∈ D′(τqω)}. To simplify the notation, we write ξ0 for q and ξN+1 for Q.
In this way, we can write

F i(ξi, p
i) = (ξi+1, P

i),

where

pi = pi(ξi, ξi+1) = −Gi
q(ξi, ξi+1)

and

P i = P i(ξi, ξi+1) = Gi
Q(ξi, ξi+1).

Here by Gi
q and Gi

Q we mean the partial derivatives of Gi with respect to its first

and second arguments respectively. As before, we write Gi for the inverse of F i and
define increasing functions Q±

i and Q̂±
i by F i(q,±1) = (Q±

i (q),±1) and Gi(q,±1) =

(Q̂±
i (q),±1). Let

E(ξ1, ξN )=

N−1⋂
i=1

{
(ξ2, . . . , ξN−1) | (−1)i+1Q−

i (ξi)�(−1)i+1ξi+1 � (−1)i+1Q+
i (ξi)

}
.

Then the set D consists of points (q, ξ) such that ξ1 ∈ [Q+
0 (q), Q−

0 (q)], ξN ∈
[Q̂+

N (q), Q̂−
N (q)] and (ξ2, . . . , ξN−1) ∈ E(ξ1, ξN ). Alternatively, we can write

E(ξ1, ξN ) =

N−1⋂
i=1

{
(ξ2, . . . , ξN−1) | − 1 � pi(ξi, ξi+1), P i(ξi, ξi+1) � 1

}
.

We write ∂D = ∂+D ∪ ∂−D, where ∂+D and ∂−D represent the upper and lower

boundaries of D. Then ∂+D =
⋃N

i=0 ∂
+
i D and ∂−D =

⋃N
i=0 ∂

−
i D, where

∂±
0 D =

{
(q, ξ) ∈ D | ξ1 = Q∓

0 (q)
}

=
{
(q, ξ) ∈ D | p0(q, ξ1) = P 0(q, ξ1) = ∓1

}
,

∂±
ND =

{
(q, ξ) ∈ D | ξN = Q̂∓

N (q)
}

=
{
(q, ξ) ∈ D | pN (ξN , q) = PN (ξ1, q) = ∓1

}
,

∂±
i D =

{
(q, ξ) ∈ D | ξi+1 = Q±

i (ξi)
}

for i odd and 1 < i < N,

∂±
i D =

{
(q, ξ) ∈ D | ξi = Q̂±

i (ξi+1)
}

for i even and 1 < i < N.

We also write ∂iD = ∂+
i D ∪ ∂−

i D, ∂̄±
i D = ∂±

i D \
(
∂±
i−1D ∪ ∂±

i D
)
, ∂̄±

0 D = ∂±
0 D \(

∂±
1 D ∪ ∂±

ND
)
, ∂̄±

ND = ∂±
ND \

(
∂±
0 D ∪ ∂±

N−1D
)
.

8.2. The gradient. Next examine the behavior of ∇I across the boundary. The
randomness of D(ω) and I play no role and the proof is analogous in the periodic
case ([Go01]).

Proposition 8.1. Let F = FN ◦ · · · ◦ F1 ◦ F0 be an area-preserving random twist
decomposition as in (2.6). Then the following properties hold:

(P.i) If 1 < i < N is even, ∇I is inward along ∂̄±
i D.

(P.ii) If 1 < i < N is odd, ∇I is outward along ∂̄±
i D.

(P.iii) ∇I is outward along ∂̄±
ND.

(P.iv) ∇I is inward along ∂̄±
0 D.
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Proof. Evidently, Iq(q, ξ) = PN − p0 and Iξi(q, ξ) = P i−1 − pi, for i = 1, . . . , N .
We wish to study the behavior of the function I across the boundary of D. On
∂±
0 D, we have p0 = P0 = ∓1. Since Iξ1 = P 0 − p1, we deduce

(8.1) ±Iq > 0, ±Iξ1 < 0 on ∂̄±
0 D.

On ∂±
ND, we have pN = PN = ∓1. Since IξN = PN−1 − pN , we deduce

(8.2) ±IξN−1
< 0, ±IξN > 0 on ∂̄±

ND.

On ∂±
i D we have P i = pi = ±(−1)i+1; hence

±(−1)iIξi(q, ξ) = ±(−1)i(P i−1 − pi) � 0

and

±(−1)iIξi+1
(q, ξ) = ±(−1)i(P i − pi+1) � 0

if 1 < i < N . The inequalities are strict on ∂̄±
i D.

The boundary ∂±
0 D is the set of points (q, ξ) such that ξ1 = Q∓

0 (q) with q �→
Q∓

0 (q) increasing. So, if we write Q̇∓
0 (q) for the derivative of Q∓

0 (q), then any vector

that has (1, Q̇∓
0 (q)) for its projection onto (q, ξ1)-space would be tangent to ∂±

0 D.

Hence a vector n0 that has ±(Q̇∓
0 (q), −1) for the first two components and 0 for

the other components, is an inward normal vector to the ∂±
0 D part of boundary.

As a result, we have that on ∂±
0 D

〈∇I, n0〉 = ±
(
Q̇∓

0 (q)Iq − Iξ1

)
> 0,

by (8.1). Here 〈·, ·〉 denotes the dot product. That is, on ∂̄±
0 D, the gradient ∇I is

inward, proving (P.iv). Similarly we use (8.2) to establish (P.iii).
Assume that i is odd. The boundary ∂±

i D is the set of points (q, ξ) such that
the components ξi and ξi+1 lie on the graph ξi+1 = Q±

i (ξi). Again, if we write

Q̇±
i for the derivative of Q±

i , then any vector that has (1, Q̇±
i (ξi)) for its projection

onto (ξi, ξi+1)-space would be tangent to ∂±
i D. As a result, the vector ni that

has ±(Q̇±
i (ξi), −1) for (i, i + 1) components and 0 for the other components, is an

inward normal to the ∂±
i D portion of the boundary. Hence on Q̇±

i ,

〈∇I, ni〉 = ±
(
Q̇±

i Iξi − Iξi+1

)
< 0,

proving (P.ii). (P.i) is established similarly. �

Define ∂inD := {x ∈ ∂D | ∇I(x) is inward}, and similarly define

∂outD := {x ∈ ∂D | ∇I(x) is outward} .

We write Dk for the k-dimensional unit ball.
With the same proof as Golé [Go01, Proposition 8.1], the proposition implies the

following lemma.

Lemma 8.2. Suppose that N = 2k + 1 with k ≥ 1. Then the sets ∂outD and ∂inD
are homeomorphic to R× Dk+1 × ∂Dk and R× ∂Dk+1 × Dk respectively.
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8.3. Fixed points.

Theorem 8.3. Let Z(ω) be the set of critical points of I and

Ẑ := {q | (q, ξ) ∈ Z(ω)}.
Then:

(a) sup Ẑ = +∞ and inf Ẑ = −∞ with probability 1;
(b) I has infinitely many critical points in D almost surely.

Proof. (b) follows from (a). Consider the ordinary differential equation{
q′(t) = Iq(q(t), ξ(t);ω) = Īω(τq(t)ω, ξ(t)),

ξ′(t) = Iξ(q(t), ξ(t);ω) = Īξ(τq(t)ω, ξ(t)).

Now we distinguish two cases (in analogy with the proof of Theorem 6.5).

Case 1 (The map q(t) is unbounded either as t → ∞ or t → −∞). Analogously to
Case 1 in Theorem 6.5, we are assuming that for a realization ω ∈ Ω0, either

(x(t) = (q(t), ξ(t)) : t ≥ 0)

or

(x(t) = (q(t), ξ(t)) : t ≤ 0)

remains inside the domain D(ω) and the q-component is unbounded. As in the
proof of Case 1 in Theorem 6.5, we can show that for all ω ∈ Ω there exists ξ(ω)
such that (ω, ξ(ω)) is a critical point for Ī. In particular I has a continuum of
critical points.

Case 2 (The map q(t) is always bounded as t → ±∞). We want to show that I

has critical points strictly inside of D = D(ω). Let us first assume by contradiction
that I has no critical point inside of D(ω) for a realization of ω. Consider the flow

φt(q, ξ) := (q(t), ξ(t)) = x(t),

which starts at the point x = (q, ξ) ∈ ∂inD. Since q(t) stays bounded and we are
assuming that there is no critical point inside, the flow must exist at some positive

time e(x). Write φ̂(x) = φe(x)(x). Note that the sets ∂inD and ∂outD are open

relative to ∂D. We now argue that the function φ̂(x) is continuous. For example, φ̂

is continuous at x simply because we may extend I near φ̂(x) across the boundary
so that for some small ε > 0, the flow φt(x) is well defined and lies outside D
for t ∈ (e(x), e(x) + ε). We can then guarantee that φt(y) is close to φt(x) for
t ∈ [0, e(x) + ε) and y sufficiently close to x. As a result, for y sufficiently close to

x, the point φe(y)(y) is close to φe(x)(x), concluding the continuity of φ̂. In fact by

interchanging ∂outD with ∂inD, we can show that φ̂−1 is continuous. As a result

φ̂ is a homeomorphism from ∂inD onto ∂outD. This is impossible because ∂inD is
not homeomorphic to ∂outD by Lemma 8.2. Hence I has at least one critical point
in Int(D) and Z(ω) �= ∅.

It remains to show that the set Z(ω) is unbounded on both sides. We only verify
the unboundedness from above as the boundedness from below can be established
in the same way. Suppose to the contrary that Z(ω) is bounded above with positive
probability. Since

(8.3) Z(τqω) = τ−qZ(ω) = {(a− q, ξ) | (a, ξ) ∈ Z(ω)}
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by stationarity, we learn that the set Z(ω) is bounded above almost surely. Define
x̄(ω) = (q̄(ω), ξ̄(ω)) by

q̄(ω) = max{q | (q, ξ) ∈ Z(ω)}
and

ξ̄(ω) = max{ξ | (q̄(ω), ξ) ∈ Z(ω)}.
Again by (8.3), q̄(τaω) + a = q̄(ω) and ξ̄(τaω) = ξ̄(ω), for every a ∈ R. As a result,

P
(
q̄(ω) � �

)
= P

(
q̄(τaω) + a � �

)
= P

(
q̄(τaω) � �− a

)
= P

(
q̄(ω) � �− a

)
for every a and �. Since this is impossible unless q̄ = ∞, we deduce that the set
Z(ω) is unbounded from above. �
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toniens (French, with English summary), C. R. Acad. Sci. Paris Sér. I Math. 298
(1984), no. 13, 293–296. MR765426

[Ch84b] Marc Chaperon, An elementary proof of the Conley-Zehnder theorem in symplec-
tic geometry, Dynamical systems and bifurcations (Groningen, 1984), Lecture Notes
in Math., vol. 1125, Springer, Berlin, 1985, pp. 1–8, DOI 10.1007/BFb0075631.
MR798078

[Ch89] Marc Chaperon, Recent results in symplectic geometry, Dynamical systems and er-

godic theory (Warsaw, 1986), Banach Center Publ., vol. 23, PWN, Warsaw, 1989,
pp. 143–159. MR1102710

[CZ83] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and
a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49, DOI
10.1007/BF01393824. MR707347

[Di83] Wei Yue Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math.
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of Math. (2) 128 (1988), no. 1, 139–151; MR0951509], Ann. of Math. (2) 164
(2006), no. 3, 1097–1098, DOI 10.4007/annals.2006.164.1097. MR2259255

http://www.ams.org/mathscinet-getitem?mr=1555218
http://www.ams.org/mathscinet-getitem?mr=0209095
http://www.ams.org/mathscinet-getitem?mr=3076060
http://www.ams.org/mathscinet-getitem?mr=0448339
http://www.ams.org/mathscinet-getitem?mr=1301328
http://www.ams.org/mathscinet-getitem?mr=637039
http://www.ams.org/mathscinet-getitem?mr=765426
http://www.ams.org/mathscinet-getitem?mr=798078
http://www.ams.org/mathscinet-getitem?mr=1102710
http://www.ams.org/mathscinet-getitem?mr=707347
http://www.ams.org/mathscinet-getitem?mr=695272
http://www.ams.org/mathscinet-getitem?mr=950166
http://www.ams.org/mathscinet-getitem?mr=0077443
http://www.ams.org/mathscinet-getitem?mr=965228
http://www.ams.org/mathscinet-getitem?mr=1001276
http://www.ams.org/mathscinet-getitem?mr=987770
http://www.ams.org/mathscinet-getitem?mr=1126912
http://www.ams.org/mathscinet-getitem?mr=951509
http://www.ams.org/mathscinet-getitem?mr=967632
http://www.ams.org/mathscinet-getitem?mr=2259255
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[Go01] Christophe Golé, Symplectic twist maps: Global variational techniques, Advanced
Series in Nonlinear Dynamics, vol. 18, World Scientific Publishing Co., Inc., River
Edge, NJ, 2001. MR1992005
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theorem, J. Differential Equations 20 (1976), no. 1, 37–52, DOI 10.1016/0022-
0396(76)90094-2. MR0393673

[Ja77] Howard Jacobowitz, Corrigendum: The existence of the second fixed point: a correc-
tion to “Periodic solutions of x′′+f(x, t) = 0 via the Poincaré-Birkhoff theorem” (J.
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