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INTRINSIC DIOPHANTINE APPROXIMATION

ON MANIFOLDS: GENERAL THEORY

LIOR FISHMAN, DMITRY KLEINBOCK, KEITH MERRILL, AND DAVID SIMMONS

Abstract. We investigate the question of how well points on a nondegenerate
k-dimensional submanifold M ⊆ Rd can be approximated by rationals also
lying on M , establishing an upper bound on the “intrinsic Dirichlet exponent”
for M . We show that relative to this exponent, the set of badly intrinsically
approximable points is of full dimension and the set of very well intrinsically
approximable points is of zero measure. Our bound on the intrinsic Dirichlet
exponent is phrased in terms of an explicit function of k and d which does
not seem to have appeared in the literature previously. It is shown to be
optimal for several particular cases. The requirement that the rationals lie
on M distinguishes this question from the more common context of (ambient)
Diophantine approximation on manifolds, and necessitates the development
of new techniques. Our main tool is an analogue of the simplex lemma for
rationals lying on M which provides new insights on the local distribution of
rational points on nondegenerate manifolds.

1. Introduction and motivation

In its classical form, the field of Diophantine approximation addresses questions
regarding how well points x ∈ Rd can be approximated by rational points, where
the quality ‖x − r‖ of a rational approximation r ∈ Qd is compared with the size
of the denominator of r. The most fundamental theorem in the field is Dirichlet’s
theorem, dating back to 1842, which establishes a rate of approximation which holds
for every point.1 The full significance of this result was realized two years later
when Liouville established that certain real numbers, namely quadratic irrationals,
do not admit a better rate of approximation. Liouville’s result was later generalized
to higher dimensions by Perron [27]; together, these results show that Dirichlet’s
theorem is optimal in every dimension, in a sense to be made rigorous below.

Questions related to Diophantine approximation can be asked in a much broader
context. Consider a closed subset M of a complete metric space (X, dist), a count-
able subset Q ⊆ X and a height function H : Q → (0,∞). Modifying the terminol-
ogy recently introduced in [13], we will refer to such a collection as a Diophantine
triple, and denote it by (M,Q, H). Given such a triple, we can then look for a
function ψ : (0,∞) → (0,∞) such that for every x ∈ M , there exists a constant Cx
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and a sequence rn ∈ Q (n ∈ N) satisfying

rn → x and dist(x, rn) ≤ Cxψ
(
H(rn)

)
for all n.

We will call such a function ψ a Dirichlet function for approximation of points in M
by Q. (Note that M has to be contained in the closure of Q in order for a Dirichlet
function to exist.) Using this terminology, and defining the height H : Qd → (0,∞)
as H(p/q) := q, where p ∈ Zd and q ∈ N are chosen so that p/q is in reduced form,
it follows from Dirichlet’s theorem that

(1.1) ψ1+1/d is a Dirichlet function for the triple (Rd,Qd, H),

where here and hereafter we write

(1.2) ψc(t) := 1/tc

and use the max norm to define distance on Rd. Once a Dirichlet function has been
identified, a natural question is whether it is optimal in the following sense. Call
a Dirichlet function ψ optimal if there does not exist another Dirichlet function φ

for which φ(t)
ψ(t) → 0 as t → ∞, i.e., that we cannot find a faster decaying Dirichlet

function. The optimality of a Dirichlet function ψ is clearly implied by2 the set
BA(M,Q, H, ψ) of ψ-badly approximable points being nonempty, where we define

BA(M,Q, H, ψ) :=
{
x ∈ M : ∃ cx > 0 such that dist(x, r) ≥ cxψ

(
H(r)

)
∀ r ∈ Q

}
.

Thus the aforementioned result of Perron shows that ψ1+1/d is an optimal Dirichlet

function for the triple (Rd,Qd, H). Note that Perron’s result was later strengthened
by Schmidt, who showed that the set

(1.3) BAd := BA(Rd,Qd, H, ψ1+1/d)

of badly approximable vectors is of full Hausdorff dimension, and, moreover, is a
winning set. As a way to interpret these results, for a Diophantine triple (M,Q, H)
let us define the Dirichlet exponent δ(M,Q, H) to be the supremum of c > 0 such
that ψc is a Dirichlet function for (M,Q, H). The theorems of Dirichlet and Perron
then imply that the Dirichlet exponent of (Rd,Qd, H) is equal to 1 + 1/d.

Another class of examples of Diophantine triples is provided by the field of
(ambient) Diophantine approximation on manifolds (see, for instance, [3, 4, 20]).
Namely, let M be a smooth submanifold of Rd, and consider the triple (M,Qd, H).
Clearly, by (1.1), ψ1+1/d is still a Dirichlet function. On the other hand, it is easy

to choose a manifold M , for example a rational affine subspace of Rd, such that
every point of M admits a much better rate of approximation than the rate given
by ψ1+1/d. In order to rule out such behavior one is led to impose a nondegeneracy
condition (see Definition 2.1). Indeed, recently, Beresnevich [4] proved that for any
real-analytic nondegenerate submanifold M of Rd, the set

BA(M,Qd, H, ψ1+1/d) = M ∩ BAd

has full Hausdorff dimension, thereby showing the optimality of ψ1+1/d; earlier
this was established by Badziahin and Velani [2] for smooth nondegenerate planar
curves. Consequently, the ambient Dirichlet exponent

δamb
M := δ(M,Qd, H)

is equal to 1 + 1/d whenever M is nondegenerate.

2And in many cases equivalent to; see [13, §2] for a thorough discussion.
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The goal of this paper is to develop the theory of intrinsic approximation on
manifolds; that is, we will set (X, dist) to be Rd equipped with the max norm, M
as a smooth submanifold of dimension k ≤ d, Q := Qd ∩ M , and H(p/q) = q as
before. So we are interested in the triple (M,Qd ∩ M,H). The field of intrinsic
approximation has seen a lot of recent activity in many diverse contexts; see e.g.
[6, 11, 15, 16, 23, 30]. Most recently, in the companion paper [9] we have obtained
definitive results for M being a nonsingular rational quadric hypersurface of Rd

containing a dense set of rational points. In particular, it is proved there [9, The-
orem 5.1] that for such M , ψ1 is a Dirichlet function for intrinsic approximation,
and, moreover, it is optimal because [9, Theorem 4.5] when ψ = ψ1, the set

BAM (ψ) := BA(M,Qd ∩M,H,ψ)

has full Hausdorff dimension. Earlier this was established in [23] for the unit sphere
M = Sd−1.

Now let M be an arbitrary k-dimensional nondegenerate smooth submanifold
of Rd. Is it possible to establish similar results? Clearly for that one needs some
information on the set of rational points inside M . As an extreme case, Dirichlet
functions do not exist if M ∩ Qd = ∅. However, the following example shows
that even if Qd ∩M is dense in M , the “quantitative denseness” which determines
Diophantine properties might depend on M .

Example 1.1. Fix n ≥ 2, let Φn : R → R2 be the map x → (x, xn), and let Cn :=
Φn(R) denote the image curve in R2. Then it is easy to see that Q2 ∩Cn = Φn(Q)
and H

(
Φn(p/q)

)
= qn. Since ψ1+1/d is an optimal Dirichlet function on R, this

implies that ψ2/n is an optimal Dirichlet function for intrinsic approximation on Cn.

Note that as n → ∞, the functions ψ2/n decay more and more slowly3, yet none of
them decays faster than ψ1. So we can ask: does there exist a nondegenerate curve
with an intrinsic Dirichlet function decaying faster than ψ1? Our first theorem
shows that the answer is no. More generally, it establishes an upper bound on
the rate of decay of a Dirichlet function for intrinsic approximation on any k-
dimensional nondegenerate submanifold M ⊆ Rd. This is done by exhibiting for
every k ≤ d an explicit constant c = c(k, d) such that for any M as above, the set
BAM (ψc) has full Hausdorff dimension.

The constant c(k, d) is arrived at via combinatorial considerations and to the
authors’ knowledge has not appeared previously. In some sense, it represents the
heart of the paper. Given the natural way it arises in a volume computation (cf.
the proof of Claim 4.2), we suspect that it will play a significant role in intrinsic
Diophantine approximation moving forward. Here is how it is defined.

Notation 1.2. Denote [n,m] :=
(
n+m
m

)
=

(
m+n
n

)
, and for 1 ≤ k ≤ d, let nk,d ∈ N be

maximal such that

d = [k − 1, 1] + [k − 1, 2] + . . .+ [k − 1, nk,d] +mk,d(1.4)

for some mk,d ≥ 0, and let mk,d be the unique integer satisfying (1.4). Let

Nk,d := 1[k − 1, 1] + 2[k − 1, 2] + . . .+ nk,d[k − 1, nk,d] + (nk,d + 1)mk,d,

and define c(k, d) := (d+ 1)/Nk,d.

3Note that the existence of these examples does not rule out the possibility that some function
decaying slower than all of the functions ψ2/n, e.g., ψ(t) = 1/ log(t), is a Dirichlet function for
every nondegenerate manifold whose intrinsic rationals are dense. It would be interesting to

investigate this question further.
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We can now state our main theorem.

Theorem 1.3. Let M ⊆ Rd be a nondegenerate submanifold of dimension k. Then

dim
(
BAM (ψc(k,d))

)
= k.

Consequently, no Dirichlet function for intrinsic approximation on M decays faster
than ψc(k,d).

As a way to interpret this theorem, we can consider the intrinsic Dirichlet expo-
nent of M , that is,

δintM := δ(M,Qd ∩M,H).

The above theorem implies that δintM ≤ c(k, d) if M is a nondegenerate submanifold
of Rd of dimension k.

The following remarks may help shed some light on the constant c(k, d):

• When k = d, one has nk,d = 1 and mk,d = 0; thus Nk,d = d and c(k, d) =
1+ 1/d. Therefore the k = d case of Theorem 1.3 coincides with Schmidt’s
theorem, that is, with full Hausdorff dimension of BAd.

• When k = d − 1, one has nk,d = 1 and mk,d = 1; thus Nk,d = d + 1 and
c(k, d) = 1. In particular, this gives a different proof of [9, Theorem 4.5].
The latter theorem establishes full Hausdorff dimension of BAM (ψ1), and
hence the optimality of Dirichlet function ψ1, for any nonsingular rational
quadric hypersurface M . Our result extends this to an arbitrary nondegen-
erate hypersurface M , in particular showing that whenever ψ1 is a Dirichlet
function for intrinsic approximation on M , it must be optimal.

• The reader can check that if d is fixed, then c(k, d) is strictly increasing
with respect to k. This confirms the intuitive logic that higher-dimensional
manifolds may have more intrinsic rationals and therefore points on these
manifolds should be expected to be better approximable by intrinsic ra-
tionals, so their intrinsic Dirichlet exponent should be higher. This also
implies that for k < d, we have c(k, d) ≤ 1. Therefore for proper nonde-
generate submanifolds M ⊆ Rd, the bound on δintM given by Theorem 1.3 is
strictly stronger than the “trivial” bound

δintM ≤ δamb
M = 1 + 1/d

given by considering all rational points, not just intrinsic ones, and using the
aforementioned result of Beresnevich on existence of badly approximable
vectors on nondegenerate manifolds.

• It is also easy to compute that when k = 1, one has nk,d = d and mk,d = 0;
thus Nk,d = d(d + 1)/2 and c(1, d) = 2/d. For other values of k, d the
computation is more involved. Below is a table of values of c(k, d) for
k, d ≤ 6, with rows corresponding to k and columns to d:

1 2 3 4 5 6
1 2 1 2/3 1/2 2/5 1/3
2 3/2 1 5/6 3/4 7/11
3 4/3 1 6/7 7/9
4 5/4 1 7/8
5 6/5 1
6 7/6
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Note that for some values of k, d we can construct a k-dimensional nondegen-
erate submanifold M of Rd such that ψc(k,d) is a Dirichlet function for intrinsic
approximation on M ; for those cases, Theorem 1.3 demonstrates the optimality of
this Dirichlet function and shows the constant c(k, d) to be best possible. This is
formalized in the following definition.

Definition 1.4. We will call a nondegenerate submanifold M ⊆ Rd of dimension
k maximally approximable if ψc(k,d) is a Dirichlet (and hence an optimal Dirichlet)
function.

Example 1.1 shows that when n > 2, the curve Cn is not a maximally approx-
imable submanifold of R2. So we know that ψc(k,d) is not a Dirichlet function for
some submanifolds. Nonetheless, our theorem immediately suggests the following
question: for which 1 ≤ k ≤ d does there exist a k-dimensional maximally approx-
imable submanifold of Rd? We will collect examples and give some partial answers
to this question in section 2.

We will prove Theorem 1.3 by showing that BAM (ψc(k,d)) is a winning set of a

certain game. Recall that in order to prove the special case M = Rd of Theorem
1.3, Schmidt developed a powerful tool now known as Schmidt’s game, a two-player
game whose winning sets enjoy many remarkable properties, including having full
dimension. In recent years, many variants of the game have been introduced, of
particular note the absolute game of McMullen [25], and the hyperplane absolute
game introduced in [5] (see section 3 below for more details). It is this last variant
which we will utilize here. Note that a key ingredient in Schmidt’s proof is the
Simplex Lemma, whose original statement and proof go back to Davenport and
Schmidt [29, p. 57]. A crucial step in our proof, and one which we believe to
be of independent interest, is establishing an analogue of the Simplex Lemma for
rationals constrained to lie on a fixed nondegenerate manifold of Rd (Lemma 4.1).
We also develop new tools for utilizing the hyperplane absolute game, which enables
us to show that BAM (ψc(k,d)) is hyperplane absolute winning.

Now let λM be a smooth volume measure on M . It is worthwhile to point
out that the conclusion of Theorem 1.3, that is, full Hausdorff dimension of the
set BAM (ψc(k,d)), cannot in general be upgraded to positive measure. Indeed, it
follows from Khintchine’s theorem [29, Theorem III.3A] that the Lebesgue measure
of the set BAd is zero. Also, a similar result for BAM (ψ1) where M is a nonsingular
rational quadric hypersurface is a special case of [9, Theorem 6.2].

However, the situation is different if the exponent c(k, d) gets replaced with a
slightly bigger one. For an arbitrary Diophantine triple (M,Q, H) and c > 0 let us
introduce the set

(1.5)

VWA(M,Q, H, ψc) := M �
⋃
ε>0

BA(M,Q, H, ψc+ε)

=

{
x ∈ M :

∃ ε > 0 and a sequence rn ∈ Q such that rn → x

and dist(x, rn) ≤ ψc+ε

(
H(rn)

)
for all n

}

of ψc-very well approximable points. The fact that the set

VWAd := VWA(Rd,Qd, H, ψ1+1/d)
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of very well approximable vectors in Rd is Lebesgue null is an easy consequence
of the Borel–Cantelli Lemma. A similar statement for ambient approximation—
namely, that λM (VWAd) = 0, where M ⊆ Rd is a nondegenerate submanifold—is
much tricker. It has been conjectured by Sprindǔk in 1980 [31, Conjecture H1] and
demonstrated by Margulis and the second-named author in 1998 [20]. Later it was
shown that VWAd is μ-null for other interesting measures μ on Rd. In particular, it
follows from [18, Theorem 1.1 and Proposition 7.3] that μ(VWAd) = 0 whenever μ
is an absolutely friendly measure (see Definition 4.4) on a submanifold M as above.

Our second main theorem gives an intrinsic approximation analogue of the above
statement.

Theorem 1.5 (Restated as Theorem 4.5). Let M ⊆ Rd be a submanifold of di-
mension k. If λM -almost every point of M is nondegenerate, then

(1.6) VWAM (ψc(k,d)) := VWA(M,Qd ∩M,H,ψc(k,d))

is a λM -nullset. More generally, let Ψ : U → M be a local parameterization of M ,
let μ be an absolutely friendly measure on U , and let ν = Ψ[μ]. If the ν-almost
every point of M is nondegenerate, then VWAM (ψc(k,d)) is a ν-nullset.

Remark 1.6. Theorem 1.5 immediately implies a result about extrinsic approxima-
tion, i.e., the approximation of points on a manifold M by rational points in the
complement of M , described by the Diophantine triple (M,Qd �M,H). Namely,
since the exponent c(k, d) is strictly less than the exponent 1 + 1/d appearing in
Dirichlet’s theorem, Theorem 1.5 implies that for almost all x ∈ M , only finitely
many of the approximants from Dirichlet’s theorem can lie inside M , so x is ex-
trinsically ψ1+1/d-approximable. For further discussion of extrinsic approximation
see [12], where a result is proven for every point in M (not just almost every point)
which cannot be deduced from a corresponding “intrinsic badly approximable” re-
sult.

Question 1.7. An interesting question is whether Theorem 1.5 can be strengthened
by estimating the Hausdorff dimension of VWAM (ψc) for a fixed c > c(k, d). We
do this for nonsingular quadric hypersurfaces in [9] (see [10] for a generalization),
where the structure of quadric hypersurfaces is explicitly used.

Outline. In section 2, we discuss some ways of constructing maximally approx-
imable manifolds. In section 3, we recall the definition of the hyperplane absolute
game and introduce two variants, which turn out to be equivalent to the original
game. In section 4, we prove the main lemma of this paper, an intrinsic analogue
of the Simplex Lemma, and use it to prove our main Theorems 1.3 and 1.5.

Convention 1. Throughout the paper, the symbols �×, �×, and �× will denote
multiplicative asymptotics. For example, A �×,K B means that there exists a
constant C > 0 (the implied constant), depending only on K, such that A ≤ CB.
In general, dependence of the implied constant on universal objects such as the
manifold M will be omitted from the notation.

Convention 2. The symbol � will be used to indicate the end of a nested proof.
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2. A discussion of maximal approximability in special cases

We start by giving a more detailed definition of a nondegenerate submanifold
of Rd.

Definition 2.1 (Cf. [20, p. 341]). Let M ⊆ Rd be a submanifold of dimension k.
For each x ∈ M and j ∈ N, let

T (j)
x (M) :=

j⋃
i=1

{γ(i)(0) � γ : (−ε, ε) → M, γ(0) = x} ⊆ Rd;

equivalently, if Φ : U → M is a coordinate chart satisfying Φ(v) = x,

(2.1) T (j)
x (M) = Span

({
∂αΦ(v) : α ∈ Nk

0 , 0 < |α| ≤ j
})

.

Here N0 := N ∪ {0}, and the power ∂α is taken using multi-index notation: if
α = (α1, . . . , αk), then ∂α = ∂α1

1 · · · ∂αk

k . Also, |α| := α1 + . . . + αk. We will call

T
(j)
x (M) the tangent space of order j of M at x.

A point x ∈ M is said to be D-nondegenerate for M if T
(D)
x (M) = Rd, and

nondegenerate if it is nondegenerate for some D ∈ N. Finally, M is nondegenerate
if some point of M is nondegenerate for M .

Observation 2.2.

(i) If M is contained in an affine hyperplane of Rd, then M is degenerate at
every point.

(ii) If M is real-analytic and connected, and M is not contained in an affine
hyperplane, then every point of M is nondegenerate.

(iii) For each D ∈ N, the set of D-nondegenerate points of M is relatively open
in M .

Proof.

(i) IfM ⊆ L+v where L is a linear hyperplane and v ∈ Rd, then T
(D)
x (M) ⊆ L

for all x ∈ M and D ∈ N.
(ii) IfM is real-analytic and degenerate at x∈M , thenM⊆x+

⋃
D∈N

T
(D)
x (M).

(iii) This follows from (2.1) together with the lower semicontinuity of the func-
tion sending a matrix to its rank. �

Connected manifolds which are degenerate at every point but are not contained
in a hyperplane exist but are very pathological; we refer to [32] for a detailed
account, stated in somewhat different language.

The next example describes an important family of nondegenerate submanifolds
of Rd.

Example 2.3 (Veronese variety). Fix k, n ∈ N, let d = [k, n] − 1 (see Notation
1.2), and consider the Veronese embedding Ψk,n : Rk → Rd defined by

Ψk,n(t) = (tα) α∈N
k
0

0<|α|≤n

,

where the power tα is taken using multi-index notation. Then it can be straight-
forwardly verified that the Veronese variety Vk,n = Ψk,n(Rk) is a nondegenerate4

submanifold of Rd.

4Even stronger, every point of Vk,n is n-nondegenerate. Moreover, by (2.1), dim
(
T

(n)
x (M)

)
≤

[k, n] for any manifold M . Thus the ambient dimension of Vk,n is maximal among all n-

nondegenerate k-dimensional manifolds.
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The one-dimensional special case (k = 1, d = n) is usually called Veronese curve
or rational normal curve. Letting k = 1 and n = 2 yields V1,2 = C2 (cf. Example
1.1). Recall that the latter curve was our first example of a maximally approximable
manifold (see Definition 1.4).

The following lemma shows that the map Ψk,n is an “isomorphism” between the
Diophantine triples (Rk,Qk, Hn) and (Vk,n, Vk,n ∩Qd, H).

Lemma 2.4. The map Ψk,n is a diffeomorphism between Rk and Vk,n; moreover,

Vk,n ∩Q[k,n]−1 = Ψk,n(Qk) and H
(
Ψk,n(r)

)
= Hn(r) ∀r ∈ Qk.5

The proof is a straightforward computation which is left to the reader.

Corollary 2.5. For any k, n ∈ N, Vk,n is a maximally approximable submanifold
of Rd.

Proof. We begin by proving the following more general assertion.

Lemma 2.6. Fix d, n ∈ N, and let M be a maximally approximable submanifold
of Rd of dimension k. Suppose that Ψd,n(M) is a nondegenerate submanifold of

R[d,n]−1.6 Then Ψd,n(M) is maximally approximable if and only if

(2.2)
1

n

d+ 1

Nk,d
=

[d, n]

Nk,[d,n]−1
·

Proof. Since M is maximally approximable, ψc(k,d) is an optimal Dirichlet function

for the Diophantine triple (M,M∩Qd, H). Now fix Ψd,n(x) ∈ Ψd,n(M). Then there
exists a sequence M∩Qd � rm → x with ‖rm−x‖ �× ψc(k,d)◦H(rm), so by Lemma

2.4, Ψd,n(M) ∩ Q[d,n]−1 � Ψd,n(rm) → Ψd,n(x) and ‖Ψd,n(rm) − Ψd,n(x)‖ �×
ψc(k,d) ◦ H(rm) = ψc(k,d)/n) ◦ H(Ψd,n(rm)). Since x was arbitrary, ψc(k,d)/n is a
Dirichlet function for the Diophantine triple

(2.3)
(
Ψd,n(M),Ψd,n(M) ∩Q[d,n]−1, H

)
.

A similar argument shows that ψc(k,d)/n is optimal for (2.3). Consequently, for
any c > 0 the function ψc is an optimal Dirichlet function for (2.3) if and only if
c = c(k, d)/n. So

Ψd,n(M) is maximally approximable

⇔ ψc(k,[d,n]−1) is an optimal Dirichlet function for (2.3)

⇔ c(k, [d, n]− 1) = c(k, d)/n

⇔ (2.2) holds. �

5The map Ψk,n is not the only embedding which is an isomorphism in this sense; more generally,

if Ψ : R → Rd is an embedding defined by polynomials with integer coefficients, then a relation
between H ◦Ψ and H was found in [8, Proof of Lemma 2]. Similarly to Corollary 2.5, this relation
can be used to discover an optimal Dirichlet function on the corresponding curve. However, in
most cases the resulting curve is not maximally approximable.

6This follows, for example, if M is connected, real-analytic, and Zariski dense in Rd.
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Since Rk is a maximally approximable submanifold of itself, to complete the
proof it suffices to show that (2.2) holds when k = d. Indeed,7

nk,k = 1, mk,k = 0, Nk,k = k,

nk,[k,n]−1 = n, mk,[k,n]−1 = 0, Nk,[k,n]−1 = k[k + 1, n− 1] =
kn

k + 1
[k, n],

which implies the desired result. �

It will be observed that Corollary 2.5 is simply the end result of transferring
Dirichlet’s theorem in Rk into Vk,n via the map Ψk,n. Thus, intrinsic Diophantine
approximation on Vk,n is essentially the same as Diophantine approximation on Rk,
and does not introduce any new phenomena.

By contrast, new phenomena appear when we study intrinsic approximation
on nonsingular quadric hypersurfaces, demonstrating that this theory cannot be
reduced to Diophantine approximation on Rk in the same way. In [9] we establish a
complete theory of intrinsic approximation on quadric hypersurfaces, in particular
showing that ψ1 is a Dirichlet function for every quadric hypersurface [9, Theorem
5.1], regardless of the dimension k. Since c(k, k + 1) = 1 for every k, this shows
that quadric hypersurfaces are maximally approximable.

We end this section with a discussion of the following question: For what pairs
(k, d) (1 ≤ k ≤ d) can we prove that there exists a maximally approximable sub-
manifold of Rd of dimension k? For convenience let

M = {(k, d) : there exists a maximally approximable submanifold

of Rd of dimension k}.
Trivially (k, k) ∈ M for all k ∈ N. Moreover, since every nonsingular rational
quadric hypersurface is maximally approximable, we have (k, k + 1) ∈ M for all
k ∈ N. On the other hand, by Corollary 2.5, we have (k, [k, n] − 1) ∈ M for all
k, n ∈ N. Taking the special case k = 1, we have (1, d) ∈ M for all d ∈ N. Thus in
every dimension, there exist both a maximally approximable curve and a maximally
approximable hypersurface.

It is theoretically possible to get more pairs in M by using Lemma 2.6. Namely,
if (k, d) ∈ M and if (2.2) holds for some n ∈ N, then (k, [d, n]− 1) ∈ M. However,
we do not have any examples of pairs (k, d) which we can prove to be in M this
way but which were not proven to be in M in the above paragraph.

Although the list of pairs known to be in M is so far quite meager, the elegance
of the calculation which produces the number c(k, d) (cf. Lemma 4.1 and its proof)
leads the authors to believe that there could be many more examples. It is even
conceivable that all dimension pairs are in M.

The smallest pair (k, d) for which we do not know the answer to this question is
the pair (2, 4), which satisfies c(2, 4) = 5/6.

3. The hyperplane game and two variants

In [28], W. M. Schmidt introduced the game which is now known as Schmidt’s
game. A variant of this game was defined by C. T. McMullen [25], and in turn a
variant of McMullen’s game was defined in [5]. For the purposes of this paper, we

7In establishing these formulas, the identity [a, b] = [a− 1, b] + [a, b− 1] is useful.
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will be interested only in this last variant, called the hyperplane absolute game,8

and not in Schmidt’s game or McMullen’s game. However, we note that every
hyperplane winning set is winning for Schmidt’s game [5, Proposition 2.3(a)]. Some
recent papers in which the hyperplane game has appeared are [1, 19, 26].

Given β > 0 and k ∈ N, the β-hyperplane game is played on Rk by two players,
Alice and Bob, as follows:

1. Bob chooses an initial ball B0 = B(x0, ρ0) ⊆ Rk. (In this paper all balls
are closed.)

2. After Bob’s nth move Bn, Alice chooses an affine hyperplane An ⊆ Rk. We
say that Alice “deletes the neighborhood of An”.

3. After Alice’s nth move An, Bob chooses a ball Bn+1 = B(xn+1, ρn+1)
satisfying

Bn+1 ⊆ Bn \A(βρn)
n and ρn+1 ≥ βρn.

Here and elsewhere S(ε) denotes the closed ε-thickening of a set S. If he is
unable to choose such a ball, he loses.9

A set S ⊆ Rk is said to be β-hyperplane winning if Alice has a strategy which
guarantees that

∞⋂
n=1

Bn ∩ S �= ∅.

Note that if β < β′, then any β-hyperplane winning set is β′-hyperplane winning.
We say that S is hyperplane winning if it is β-hyperplane winning for all β > 0,
or equivalently, if there exist arbitrarily small β > 0 such that S is β-hyperplane
winning.

Remark 3.1. By modifying slightly the proof of [14, Proposition 4.4], one can show
that if Bob’s balls are required to satisfy ρn+1 = βρn rather than ρn+1 ≥ βρn, then
the class of sets which are hyperplane winning remains unchanged. Thus we can
assume that ρn → 0, in which case the intersection

⋂∞
1 Bn is a singleton.

We list here three important results regarding hyperplane winning sets, the
proofs of which can be found in [5, Proposition 2.3(b,c), Lemma 4.1, and Proposi-
tion 4.7].

Proposition 3.2.

(i) The countable intersection of hyperplane winning sets is hyperplane win-
ning.

(ii) The image of a hyperplane winning set under a C1 diffeomorphism of Rk is
hyperplane winning.

(iii) The intersection of any hyperplane winning set with any open set has full
Hausdorff dimension.

8In what follows we abbreviate “hyperplane absolute game” to just “hyperplane game”.
9This disagrees with the convention introduced in [5]; however, if we restrict to 0 < β ≤ 1/3

(as is done in [5]), then Bob is always able to make a legal move, so the question is irrelevant. We
use the convention that Bob loses in order to avoid technicalities (cf. [7, p. 4]) in the variants of
the hyperplane game discussed below, where it is not always obvious whether or not Bob has legal
moves. Our convention allows us to ignore the issue in the sense that we do not need to check
whether Bob has legal moves whenever we are trying to prove that a certain strategy of Alice’s is
winning.
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In fact, in (iii) more is true: the intersection of a hyperplane winning set with a
sufficiently nondegenerate fractal (a hyperplane diffuse set) is winning for Schmidt’s
game on that fractal [5, Propositions 4.7 and 4.9] and therefore has Hausdorff
dimension equal to at least the lower pointwise dimension of any measure whose
support is equal to that fractal [21, Proposition 5.1]. In particular, if the fractal is
Ahlfors regular then the intersection has full dimension relative to the fractal.

In [22, §3], the notion of hyperplane winning was generalized from subsets of Eu-
clidean space to subsets of arbitrary manifolds. Namely, a subset S of a manifold
M is hyperplane winning relative to M if whenever Ψ : U → M is a local parame-
terization of M and K ⊆ U is compact, the set Ψ−1(S) ∪ (Rk \K) is hyperplane
winning.10

We now state our main result concerning the abundance of badly intrinsically
approximable points.

Theorem 3.3 (Restated as Theorem 4.3). Let M ⊆ Rd be a submanifold of di-
mension k, and let c(k, d) be as in Notation 1.2. Suppose that for some D ∈ N,
every point of M is D-nondegenerate. Then BAM (ψc(k,d)) is hyperplane winning
relative to M .

Using Theorem 3.3, we deduce as a corollary a theorem stated in the introduc-
tion:

Proof of Theorem 1.3 using Theorem 3.3. For each D ∈ N, let MD ⊆ M be the set
of D-nondegenerate points of M . Since M is nondegenerate, there exists D ∈ N
such that MD �= ∅; then BAM (ψc(k,d))∩MD is hyperplane winning relative to MD.
By (iii) of Proposition 3.2, BAM (ψc(k,d)) ∩MD has Hausdorff dimension k. �

In order to prove Theorem 3.3, we will introduce two variants of the hyperplane
game. The first allows Alice to delete neighborhoods of algebraic sets rather than
just hyperplanes, and the second allows her to delete neighborhoods of levelsets of
smooth functions. It will turn out that each of these variants is equivalent to the
hyperplane game, meaning that any set which is winning for one of the games is
winning for all three games.

Definition 3.4. Fix β > 0 and D ∈ N. The rules of the (β,D) algebraic-set game
are the same as the rules of the β-hyperplane game, except that An is allowed to be
the zero set of any nonzero polynomial of degree at most D. A set is algebraic-set
winning if there exists D ∈ N so that it is (β,D) algebraic-set winning for all β > 0.

Given a ball B ⊆ Rk and a CD function f : B → R, for each x ∈ B let

‖f‖CD,x := max
α∈N

k
0

|α|≤D

|f (α)(x)| ,

where the derivative is taken using multi-index notation. Let

‖f‖CD,B := sup
x∈B

‖f‖CD,x .

10In [22] the definition is given in a slightly different way, depending on the notion of hyperplane
winning subsets of an open set. However, it is easily verified that the two definitions are equivalent.
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Definition 3.5. The rules of the (β,D,C1)-levelset game are the same as the rules
of the β-hyperplane game, except that An is allowed to be the zero set of any
nonzero CD+1 function f : Bn → R satisfying

(3.1) ‖f‖CD+1,Bn
≤ C1‖f‖CD ,Bn

.

A set is levelset winning if there exist D ∈ N and C1 > 0 so that it is (β,D,C1)-
levelset winning for all β > 0.

The condition (3.1) should be interpreted heuristically as meaning that “f is
close to being a polynomial of degree D”.

Clearly, any hyperplane winning set is algebraic-set winning and any algebraic-
set winning set is levelset winning. The remainder of this section is devoted to the
proof of the following theorem.

Theorem 3.6. Any levelset winning set is hyperplane winning.

We begin by introducing some notation.
Notation 3.7.

• For f : U → R, Zf will denote the zero set of f , i.e. Zf = f−1(0).
• For D ∈ N, PD will denote the set of all polynomials of degree at most
D whose largest coefficient has magnitude 1. Note that PD is a compact
topological space; moreover, every nonzero polynomial of degree at most D
is a nonzero scalar multiple of an element of PD.

Lemma 3.8. Fix k ∈ N and 0 < β ≤ 1, and let f : Rk → R be a nonzero
polynomial. Suppose that Bob and Alice are playing the β-hyperplane game, and
suppose that Bob’s first move is B0 = B(0, 1). Then there exists γ > 0 so that Alice
has a strategy to guarantee that Bob’s first ball of radius less than γ (assuming that

such a ball exists) is disjoint from Z
(γ)
f .

Proof. The proof is by induction on the degree of f . If deg(f) = 0, then f is a
nonzero constant and Zf = ∅, so the lemma is trivially satisfied. Next, suppose that
the lemma is true for all polynomials of degree strictly less than the degree of f . In

particular, it is true for f̃ := ∂if , where i = 1, . . . , d is chosen so that f̃ is nonzero.
Let γ̃ > 0 be the value given by the induction hypothesis. Since L := Zf \ Z

˜f is a

smooth (k− 1)-dimensional submanifold of Rk, for all x ∈ L and for all sufficiently
small ρ > 0, L ∩ B(x, ρ) is contained in L(βρ/4) for some hyperplane L ⊆ Rk

(specifically, the tangent plane of L at x). Thus since K := Zf∩B(0, 2)\Int(Z(γ̃/2)
˜f

)

is a compact subset of L, there exists δ > 0 with the following property:

For every ball B(x, ρ) ⊆ Rk satisfying 0 < ρ ≤ δ,

there exists a hyperplane L ⊆ Rk such that K ∩B(x, 2ρ) ⊆ L(βρ/2).
(3.2)

(If K ∩ B(x, 2ρ) �= ∅, then L may be chosen to be the tangent plane of L at some
point of K ∩B(x, 2ρ).) Let γ = β2 min(γ̃, δ)/2.

Alice’s strategy is now as follows: Use the strategy from the induction hypothesis

to guarantee that Bob’s first ball of radius less than γ̃ is disjoint from Z
(γ̃)
˜f

. If

the radius of this ball is greater than δ, make further moves arbitrarily until Bob
chooses a ball of radius less than δ. Either way, let B = B(x, ρ) denote Bob’s first
ball satisfying ρ ≤ min(γ̃, δ), and note that ρ ≥ βmin(γ̃, δ) = 2γ/β. In particular
ρ > γ, so Bob has not yet chosen a ball of radius less than γ. Let L be a hyperplane
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such that K ∩ B(x, 2ρ) ⊆ L(βρ/2), guaranteed to exist by (3.2). Alice’s next move
will be to delete the βρ-neighborhood of the hyperplane L. Following that, she will

make arbitrary moves until Bob chooses a ball B̃ of radius less than γ.

We claim that B̃ is disjoint from Z
(γ)
f . Indeed, fix y ∈ B̃ ⊆ B \ L(βρ). Then for

z ∈ Zf , either

(1) z ∈ K ∩B(x, 2ρ) ⊆ L(βρ/2), in which case

‖z− y‖ ≥ dist(L(βρ/2),Rk \ L(βρ)) = βρ/2 ≥ γ,

(2) z /∈ B(x, 2ρ), in which case

‖z− y‖ ≥ dist
(
Rk \B(x, 2ρ), B(x, ρ)

)
= ρ ≥ γ,

(3) z /∈ B(0, 2), in which case

‖z− y‖ ≥ dist
(
Rk \B(0, 2), B(0, 1)

)
= 1 ≥ γ, or

(4) z ∈ Zf ∩B(0, 2) \K ⊆ Z
(γ̃/2)
˜f

, in which case

‖z− y‖ ≥ dist(Z
(γ̃/2)
˜f

,Rk \ Z(γ̃)
˜f

) ≥ γ̃/2 ≥ γ.

Thus y /∈ Z
(γ)
f . �

We next show that the constant γ can be made to depend only on the degree of
f and not on f itself.

Lemma 3.9. Fix k,D ∈ N and 0 < β ≤ 1. There exists γ > 0 such that for
any nonzero polynomial f : Rk → R of degree at most D, if Bob and Alice play
the β-hyperplane game and if Bob’s first move is B0 = B(0, 1), then Alice has a
strategy to guarantee that Bob’s first ball of radius less than γ (assuming that such

a ball exists) is disjoint from Z
(γ)
f .

Proof. The map PD � f → Zf is upper semicontinuous in the Vietoris topology
(cf. [17, §4.F]), meaning that for any f ∈ PD, γ > 0, and K ⊆ Rk compact,
there exists a neighborhood of f in PD such that all g in the neighborhood satisfy

Zg ∩K ⊆ Z
(γ)
f . In particular, for each f ∈ PD, let γf be as in Lemma 3.8, and let

Uf ⊆ PD be a neighborhood of f such that for all g ∈ Uf , Zg ∩ B(0, 2) ⊆ Z
(γf/2)
f .

Since PD is compact, there exists a finite sequence (fi)
n
i=1 such that the collection

(Ufi)
n
i=1 covers PD. Let γ = minni=1 γfi/2. Then for all g ∈ PD, we have g ∈ Ufi

for some i, and so

Z(γ)
g ∩B(0, 1) ⊆ Z

(γfi
/2+γ)

fi
⊆ Z

(γfi
)

fi
.

Since Alice has a strategy to avoid Z
(γfi

)

fi
by the time Bob’s radius is less than γfi ,

she has a strategy to avoid Z
(γ)
g by the time Bob’s radius is less than γ. �

Let k, D, β, and γ be as above. Fix x ∈ Rk and ρ > 0, and let

(3.3) Tx,ρ(w) = x+ ρw,

so that Tx,ρ

(
B(0, 1)

)
= B(x, ρ). Translating Lemma 3.8 via the map Tx,ρ, we see

that if Bob and Alice play the β-hyperplane game, then after Bob makes a move
B(x, ρ), Alice may devote the next several turns to ensuring that Bob’s first ball

of radius less than γρ is disjoint from Z
(γρ)

f◦T−1
x,ρ

. This allows her to translate any

winning strategy for the (βγ,D) algebraic-set game into a winning strategy for the
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β-hyperplane game. Indeed, if in the algebraic-set game Alice responds to Bob’s

move B(x, ρ) by deleting the set Z
(γρ)
f , then in the β-hyperplane game Alice simply

spends the next several turns avoiding Z
(γρ)
f . Bob’s first ball of radius less than

γρ will still have radius ≥ βγρ by the rules of the β-hyperplane game, so it can be
interpreted as Bob’s next move in the (βγ,D) algebraic set game. Summarizing,
we have the following corollary.

Corollary 3.10. Any algebraic-set winning set is hyperplane winning.

Proof. For each k,D ∈ N and 0 < β ≤ 1, if γ > 0 is as in Lemma 3.9, then every
(βγ,D) algebraic-set winning subset of Rk is β-hyperplane winning. �

To complete the proof of Theorem 3.6, we must show that every levelset winning
set is algebraic-set winning. For this, we will need three more lemmas.

Lemma 3.11. Fix k,D ∈ N and β > 0. Then there exists γ > 0 such that for any
f ∈ PD, there exists g ∈ PD such that

f−1(−γ, γ) ∩B(0, 1) ⊆ Z(β)
g .

Proof. For each g ∈ PD, |g| is bounded uniformly away from 0 on B(0, 1) \ Z(β)
g .

Let γg > 0 be strictly less than this uniform bound, and let Ug be the set of
all polynomials f ∈ PD such that min

B(0,1)\Z(β)
g

|f | > γg. Then Ug is an open

set containing g. Letting (Ugi)
n
i=1 be a finite subcover, the lemma holds with

γ = minni=1 γgi . �

Lemma 3.12. Fix k,D ∈ N and β > 0, and let B = B(0, 1). There exists δ > 0
such that if f : B → R is a CD+1 function satisfying

sup
B

|f (α)| ≤ δ‖f‖CD,B ∀α ∈ Nk
0 with |α| = D + 1,

then there exists g ∈ PD such that

Zf ⊆ f−1(−δ‖f‖CD,B , δ‖f‖CD,B) ⊆ Z(β)
g .

In particular, Z
(β)
f ⊆ Z

(2β)
g .

Proof. Fix δ > 0 small to be determined, and let f : B → R be as above. For
convenience of notation, without loss of generality we assume that ‖f‖CD ,B = 1.
By the definition of ‖f‖CD ,B , there exists a point z ∈ B such that ‖f‖CD ,z ≥ 1/2.
Let hz denote the Dth order Taylor polynomial for f centered at z. Then

(3.4) ‖hz‖CD,B ≥ ‖hz‖CD,z = ‖f‖CD ,z ≥ 1/2 .

By Taylor’s theorem, for all x ∈ B,

|f(x)− hz(x)| �× max
|α|=D+1

sup
B

|f (α)| · ‖x− z‖D+1 �× δ ,

and so

|hz(x)| �× δ ∀x ∈ f−1(−δ, δ) .

Write hz = cj for some c > 0 and j ∈ PD; then ‖j‖CD,B �× 1 since PD is compact.
Combining with (3.4), we see that c �× 1, and thus

(3.5) |j(x)| �× δ ∀x ∈ f−1(−δ, δ).
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Let γ > 0 be as in Lemma 3.11, and let δ be γ divided by the implied constant of
(3.5). Then

f−1(−δ, δ) ⊆ j−1(−γ, γ).

Moreover, by Lemma 3.11 there exists g ∈ PD such that j−1(−γ, γ) ⊆ Z
(β)
g . This

completes the proof. �

Lemma 3.13. Fix k,D ∈ N and β,C1 > 0. Then there exists ε > 0 such that for
any ball B = B(x, ρ) ⊆ Rk satisfying ρ ≤ ε and for any CD+1 function f : B → R
satisfying

‖f‖CD+1,B ≤ C1‖f‖CD ,B ,

there exists a polynomial g : Rk → R of degree at most D such that Zf ⊆ Z
(βρ)
g ,

and thus Z
(βρ)
f ⊆ Z

(2βρ)
g .

Proof. Fix 0 < ε ≤ 1 small to be determined, and let B = B(x, ρ) and f : B → R
be as above. Let Tx,ρ be given by (3.3), and let f̃ = f ◦ Tx,ρ. Then for all α ∈ Nk

0

with |α| = D + 1,

sup
B(0,1)

|f̃ (α)| = ρD+1 sup
B(0,1)

|f (α) ◦ Tx,ρ| ≤ ρD+1‖f‖CD+1,B �× ρD+1‖f‖CD,B ,

and on the other hand

‖f̃‖CD,B(0,1) = max
|α|≤D

sup
B(0,1)

f̃ (α) = max
|α|≤D

ρ|α| sup
B(0,1)

|f (α) ◦ Tx,ρ| ≥ ρD‖f‖CD,B .

Combining, we have

sup
B(0,1)

|f̃ (α)| �× ρ‖f̃‖CD,B(0,1) ∀α ∈ Nk
0 with |α| = D + 1.

So for ε sufficiently small, f̃ satisfies the hypotheses of Lemma 3.12. Let g̃ be the
polynomial given by Lemma 3.12, and let g = g̃ ◦T−1

x,ρ , so that Zg = Tx,ρ(Zg̃). This
completes the proof. �

Let k, D, β, C1, and ε be as above. Lemma 3.13 gives us a way of translating a
winning strategy for Alice in the (β,D,C1)-levelset game into a winning strategy for
Alice in the (2β,D) algebraic-set game. Indeed, without loss of generality suppose
that Bob’s first move in the (β,D,C1)-levelset game has radius ≤ ε. (Otherwise
Alice makes dummy moves until this is true.) Now if Alice responds to Bob’s move

B(x, ρ) in the (β,D,C1)-levelset game by deleting the set Z
(βρ)
f , then in the (2β,D)

algebraic-set game, she will simply delete the set Z
(2βρ)
g , where g is given by Lemma

3.13. Summarizing, we have the following corollary.

Corollary 3.14. Any levelset winning set is algebraic-set winning.

Proof. For each k,D ∈ N and β,C1 > 0, then every (β,D,C1)-levelset winning
subset of Rk is (2β,D) algebraic-set winning. �

Combining Corollaries 3.10 and 3.14 completes the proof of Theorem 3.6.
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4. The simplex lemma and its consequences

The paradigmatic example of a hyperplane winning set is the set BAd defined
by the formula (1.3), which was proven to be hyperplane winning in [5, Theorem
2.5], as a consequence of the so-called simplex lemma [5, Lemma 3.1]. Essentially,
the simplex lemma states that for each ball B(x, ρ) ⊆ Rd, the set of rational points
in B(x, ρ) whose denominators are less than ερ−d/(d+1) is contained in an affine
hyperplane, where ε > 0 is small and depends only on d. As a result, when playing
the hyperplane game Alice can simply delete the neighborhood of the hyperplane
given by the simplex lemma, and it turns out that this strategy is winning for
BAd. In this section we prove an analogue of the simplex lemma for rational points
in a fixed manifold M . We then use the simplex lemma to prove two general
negative results about intrinsic approximation on manifolds: that BAM (ψc(k,d)) is
hyperplane winning, and that λM (VWAM ) = 0.

Lemma 4.1 (Simplex lemma for intrinsic approximation on manifolds). Let M ⊆
Rd be a submanifold of dimension k, let Ψ : U → M be a local parameterization of
M , and let V ⊆ U be compact. Then there exists κ > 0 such that for all s ∈ U and
0 < ρ ≤ 1, the set

Ss,ρ := {p/q ∈ Qd ∩Ψ
(
V ∩B(s, ρ)

)
: q ≤ κρ−1/c(k,d)}

is contained in a hyperplane.

Proof. For all s ∈ U let Φ(s) = (1,Ψ(s)). Define a function f : Ud+1 → R by

f(s1, . . . , sd+1) = det[Φ(s1) · · · Φ(sd+1)].

Then f vanishes along the diagonal

Δ = {(t, . . . , t) : t ∈ U}.
In fact, the first several derivatives of f vanish along the diagonal, due to repeated
columns:

Claim 4.2. The smallest order derivative of f which does not vanish identically
along the diagonal is no less than Nk,d.

Proof. Suppose that for some sequence of multi-indices α1, . . . , αd+1 ∈ Nk
0 , the

expression

(4.1)
∂

∂α1t1
· · · ∂

∂αd+1td+1
f(t1, . . . , td+1)

does not vanish identically along the diagonal {t1 = · · · = td+1}. Here we use the
multi-index notation

∂

∂αiti
=

(
∂

∂ti,1

)αi,1

· · ·
(

∂

∂ti,k

)αi,k

.

Since the determinant of a matrix is linear with respect to the columns of that
matrix, we have

∂

∂α1t1
· · · ∂

∂αd+1td+1
f(t1, . . . , td+1) = det[∂α1Φ(t1) · · · ∂αd+1Φ(td+1)].

Since this does not vanish identically along the diagonal, there exists t ∈ U such
that

det[∂α1Φ(t) · · · ∂αd+1Φ(t)] �= 0.
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In particular, the rows (∂αiΦ(t))d+1
i=1 are all distinct, so the multi-indices α1, . . . , αd+1

must be distinct. Thus for each j ∈ N,

(4.2) nj := #{i = 1, . . . , d+ 1 : |αi| = j} ≤ #{α ∈ Nk
0 : |α| = j} = [k − 1, j],

and, on the other hand,

(4.3)

∞∑
j=0

nj = d+ 1.

The order of the derivative (4.1) is

d+1∑
i=1

|αi| =
∞∑
j=1

jnj ,

so computing the smallest order derivative of f which potentially does not van-
ish along the diagonal becomes a combinatorial problem of minimizing

∑∞
j=1 jnj

subject to (4.2) and (4.3). The reader will verify that the minimum is attained
when

nj =

⎧⎪⎨⎪⎩
[k − 1, j] if j < nk,d + 1,

mk,d if j = nk,d + 1

0 if j > nk,d + 1,

(j ≥ 0),

and that the value of
∑∞

j=1 jnj on this sequence is Nk,d, where nk,d, mk,d, and Nk,d

are as in Notation 1.2. �

Thus by Taylor’s theorem and the compactness of V , we have

(4.4) |f(s1, . . . , sd+1)| �× dist
(
(si)

d+1
1 ,Δ

)Nk,d

for all s1, . . . , sd+1 ∈ V .
Now by contradiction, suppose that the points r1, . . . , rd+1 ∈ Ss,ρ do not lie in

a hyperplane. For each i write ri = Ψ(si) = pi/qi. Let

D = f(s1, . . . , sd+1) = det

[
1 · · · 1
r1 · · · rd+1

]
�= 0.

Since si ∈ B(s, ρ), we have dist
(
(si)

d+1
1 ,Δ

)
�× ρ. Thus by (4.4) we have

(4.5) |D| �× ρNk,d .

On the other hand, we have

D =

d+1∏
i=1

1

qi
det

[
q1 · · · qd+1

p1 · · · pd+1

]
∈

d+1∏
i=1

1

qi
Z.

Thus,

|D| ≥ 1∏d+1
i=1 qi

·

Since by assumption qi ≤ κρ−Nk,d/(d+1), we have

|D| ≥ κ−(d+1)ρNk,d .

For κ > 0 sufficiently small, this contradicts (4.5). �

Using the simplex lemma, we proceed to prove two results about intrinsic ap-
proximation on M . The first is the following.
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Theorem 4.3. Let M ⊆ Rd be a submanifold of dimension k, and let c(k, d) be as in
Notation 1.2. Suppose that for some D ∈ N, every point of M is D-nondegenerate.
Then BAM (ψc(k,d)) is hyperplane winning relative to M .

Proof. Let Ψ : U → M be a local parameterization of M , and let K ⊆ U be
compact. We need to show that the following set is hyperplane winning:

(4.6) Ψ−1
(
BAM (ψc(k,d))

)
∪ (Rk \K).

Fix C1 > 0 large to be determined, and let β > 0. We will show that the set (4.6)
is (β,D,C1)-levelset winning, where D is as in the statement of Theorem 4.3. Let
λ = β−1/c(k,d) (so that λ > 1). Denote Bob’s first move by B0 = B(s0, ρ0) ⊆ Rk.
Fix an open set V ⊇ K which is relatively compact in U ; without loss of generality
we may assume that B(s0, 2ρ0) ⊆ V , since Alice may make dummy moves until
either this is true or Bob’s ball is disjoint from K. Now Alice’s strategy is as
follows: If Bob has just made his nth move Bn = B(sn, ρn) ⊆ V , then Alice will
delete the βρn-neighborhood of the set Ψ−1(Ln), where Ln is the affine hyperplane
containing the set Ssn,2ρn

. To complete the proof we need to show (i) that this
is legal (given C1 > 0 large enough), and (ii) that the strategy guarantees that⋂∞

1 Bn ∩Ψ−1
(
BAM (ψc(k,d))

)
�= ∅.

(i) For each s ∈ U let Φ(s) = (1,Ψ(s)). Since every point of M is D-
nondegenerate, for each s ∈ U and w ∈ Rd+1 \ {0} we have

‖t → w · Φ(t)‖CD,s > 0,

and by continuity, this quantity is bounded from below uniformly for s ∈ V
and w ∈ Sd.

Now consider Alice’s nth move. Write Ln = {x ∈ Rd : w · (1,x) = 0} for
some w ∈ Sd. Define f : U → R by

f(s) = w · Φ(s),
so that Zf = Ψ−1(Ln). Then by the first paragraph, ‖f‖CD,Bn

≥ ‖f‖CD,sn

is bounded from below. On the other hand,

‖f‖CD+1,Bn
≤ ‖w‖ · ‖Φ‖CD+1,Bn

≤ ‖Φ‖CD+1,V �× 1,

so ‖f‖CD+1,Bn
�× ‖f‖CD ,Bn

. Letting C1 be the implied constant finishes
the proof.

(ii) By Remark 3.1, we may assume that
⋂∞

1 Bn is a singleton, say
⋂∞

1 Bn =
{s}. For each r = p/q ∈ Qd ∩ M , let n ∈ N be minimal such that q ≤
κρ

−Nk,d/(d+1)
n . If r ∈ Ψ

(
V ∩ B(sn, 2ρn)

)
, then by Lemma 4.1 we have r ∈

Ln. Since Alice deleted the set Ψ−1(Ln)
(βρn), we have s /∈ Ψ−1(Ln)

(βρn)

and thus

dist(Ψ(s), r) �× ‖s−Ψ−1(r)‖ ≥ βρn �×,β,κ q−(d+1)/Nk,d .

On the other hand, if r /∈ Ψ
(
V ∩B(sn, 2ρn)

)
, then either r /∈ Ψ(V ), which

implies

dist(Ψ(s), r) ≥ dist
(
Ψ(s),M \Ψ(V )

)
�× 1,

or r ∈ Ψ
(
V \B(sn, 2ρn)

)
, in which case

dist(Ψ(s), r) �× ‖s−Ψ−1(r)‖ ≥ ρn �×,β,κ q−(d+1)/Nk,d .

In all cases we have dist(Ψ(s), r)�×ψc(k,d)(q), so Ψ(s)∈BAM (ψc(k,d)). �
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To state our last theorem regarding general manifolds, we need a definition.

Definition 4.4. A measure μ on an open set U ⊆ Rk is absolutely decaying if
there exist C,α > 0 such that for all x ∈ Supp(μ), for all 0 < ρ ≤ 1 such that
B(x, ρ) ⊆ U , for all ε > 0, and for every affine hyperplane L ⊆ Rk, we have

μ
(
L(ερ) ∩B(x, ρ)

)
≤ Cεαμ

(
B(x, ρ)

)
.

We call μ doubling if μ
(
B(x, 2ρ)

)
�× μ

(
B(x, ρ)

)
for all x ∈ Supp(μ) and 0 < ρ ≤ 1.

If μ is both absolutely decaying and doubling, then μ is called absolutely friendly.

Theorem 4.5. Let M ⊆ Rd be a submanifold of dimension k, and fix D ∈ N.
Let Ψ : U → M be a local parameterization of M , let μ be an absolutely friendly
measure on U , and let ν = Ψ[μ]. If ν-a.e. point of M is D-nondegenerate, then
VWAM (ψc(k,d)) is a ν-nullset. In particular, λM

(
VWAM (ψc(k,d))

)
= 0.

Proof. Let κ > 0 be as in Lemma 4.1. Fix λ > 1 arbitrary, and for each n ∈ N let

Tn := κλn/c(k,d),

ρn :=
1

2
λ−n.

Let K ⊆ U be a compact set, and let V ⊇ K be open and relatively compact in U .
Then by Lemma 4.1, we have the following corollary.

Corollary 4.6. For all s ∈ V and for all n ∈ N, the set

Sn,s =
{
p/q ∈ Qd ∩Ψ

(
V ∩B(s, 2ρn)

)
: q ≤ Tn

}
is contained in a hyperplane.

Denote the hyperplane guaranteed by Corollary 4.6 by Ln,s. For each n ∈ N,
let (s

(n)
i )Nn

i=1 be a maximal ρn-separated subset of K. Then {B(s
(n)
i , ρn) : i =

1, . . . , Nn} is a cover of K whose multiplicity is bounded depending only on d. For
each i = 1, . . . , Nn, let Ln,i = L

n,s
(n)
i

.

Claim 4.7.

Ψ−1
(
VWAM (ψc(k,d))

)
∩K ⊆ lim

γ→0
lim sup
n→∞

Nn⋃
i=1

[(
Ψ−1(Ln,i)

)(ρ1+γ
n ) ∩B(s

(n)
i , ρn)

]
.

Proof. Fix s ∈ Ψ−1
(
VWAM (ψc(k,d))

)
∩ K, and recall the definition of the set

VWAM (ψc(k,d)) given by (1.5) and (1.6). Since Ψ(s) ∈ VWAM (ψc(k,d)), there

exists ε > 0 such that there are infinitely many r = p/q ∈ Qd ∩M satisfying

(4.7) ‖Ψ(s)− r‖ ≤ q−(c(k,d)+ε).

Fix such an r, and let n ∈ N satisfy Tn−1 ≤ q < Tn. Then

‖s−Ψ−1(r)‖ �× ‖Ψ(s)− r‖ ≤ T
−(c(k,d)+ε)
n−1 �× ρ1+ε/c(k,d)

n .

Fix 0 < γ < ε/c(k, d). If n is sufficiently large, then we have

‖s−Ψ−1(r)‖ ≤ ρ1+γ
n ≤ ρn.
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On the other hand, since s ∈ K, we have s ∈ B(s
(n)
i , ρn) for some i = 1, . . . , Nn.

It follows that r ∈ Ψ
(
V ∩ B(s

(n)
i , 2ρn)

)
, and so by Corollary 4.6 we have r ∈ Ln,i.

Thus

s ∈
(
Ψ−1(Ln,i)

)(ρ1+γ
n ) ∩B(s

(n)
i , ρn).

Since this argument holds for all r satisfying (4.7), it follows that

s ∈
Nn⋃
i=1

[(
Ψ−1(Ln,i)

)(ρ1+γ
n ) ∩B(s

(n)
i , ρn)

]
for infinitely many n ∈ N. �

Claim 4.8. For each γ > 0, there exists α > 0 such that for all n ∈ N and
i = 1, . . . , Nn,

(4.8) μ
(
Ψ−1(Ln,i)

(ρ1+γ
n ) ∩B(s

(n)
i , ρn)

)
�× ραnμ

(
B(s

(n)
i , ρn)

)
.

Proof. For each s ∈ U let Φ(s) = (1,Ψ(s)). Let B = B(s
(n)
i , ρn). By [18, Propo-

sition 7.3], there exist C,α > 0 such that for any linear map P : Rd+1 → R, if
f = P ◦ Φ, then

(4.9) μ

(
f−1

(
−ργ/2n sup

B
|f |, ργ/2n sup

B
|f |

)
∩B

)
≤ ραnμ(B).

On the other hand, if P is the linear functional whose zero set is the hyperplane
Ln,i, then

Ψ−1(Ln,i) = Zf .

So to complete the proof, we must show that

(4.10) Z
(ρ1+γ

n )
f ∩B ⊆ f−1

(
−ργ/2n sup

B
|f |, ργ/2n sup

B
|f |

)
.

Let T = T
s
(n)
i ,ρn

be as in (3.3), and let f̃ = f ◦ T . Translating (4.10) via T gives

Z
(ργ

n)
˜f

∩B(0, 1) ⊆ f̃−1

(
−ργ/2n sup

B(0,1)

|f̃ |, ργ/2n sup
B(0,1)

|f̃ |
)
.(4.11)

To demonstrate (4.11), we observe that if s ∈ Z
(ργ

n)
˜f

∩ B(0, 1), then there exists

t ∈ Z
˜f for which ‖s− t‖ ≤ ργn. By Taylor’s theorem, we have

|f̃(s)| �× ‖f̃‖C1,B(0,2)‖s− t‖ ≤ ‖f̃‖CD,B(0,2)ρ
γ
n.

So to complete the proof, we must show that

‖f̃‖CD,B(0,2) �× sup
B(0,1)

|f̃ |.(4.12)
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To demonstrate (4.12), let β > 0 be small enough so that for every polynomial

g of degree at most D, B(0, 1) � Z
(2β)
g . Such a β exists, e.g., by a compactness

argument. Let δ > 0 be given by Lemma 3.12. For n sufficiently large, the argument

of Lemma 3.13 shows that the hypotheses of Lemma 3.12 are satisfied for f̃ , and
thus that

f̃−1(−δ‖f̃‖CD ,B(0,2), δ‖f̃‖CD,B(0,2)) ⊆ Z(2β)
g � B(0, 1).

Thus there exists s ∈ B(0, 1) for which |f̃(s)| ≥ δ‖f̃‖CD ,B(0,2), demonstrating
(4.12). �

Fix γ, α as in Claim 4.8. From (4.8), we see that

Nn∑
i=1

μ
((

Ψ−1(Ln,i)
)(ρ1+γ

n ) ∩B(s
(n)
i , ρn)

)
�× ραn

Nn∑
i=1

μ
(
B(s

(n)
i , ρn)

)
�× ραnμ(V ),

∞∑
n=0

Nn∑
i=1

μ
((

Ψ−1(Ln,i)
)(ρ1+γ

n ) ∩B(s
(n)
i , ρn)

)
�×

∞∑
n=0

λ−αn < ∞.

Thus by the Borel–Cantelli lemma, for each γ > 0,

μ

(
lim sup
n→∞

Nn⋃
i=1

[(
Ψ−1(Ln,i)

)(ρ1+γ
n ) ∩B(s

(n)
i , ρn)

])
= 0,

and so μ
(
VWAM (ψc(k,d))

)
= 0 by Claim 4.7. �
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[27] Oskar Perron, Über diophantische Approximationen (German), Math. Ann. 83 (1921), no. 1-
2, 77–84, DOI 10.1007/BF01464229. MR1512000

[28] Wolfgang M. Schmidt, On badly approximable numbers and certain games, Trans. Amer.
Math. Soc. 123 (1966), 178–199, DOI 10.2307/1994619. MR0195595

http://www.ams.org/mathscinet-getitem?mr=3035957
http://www.ams.org/mathscinet-getitem?mr=2604984
http://arxiv.org/abs/1405.7650
http://arxiv.org/abs/1502.07648
http://www.ams.org/mathscinet-getitem?mr=3237740
http://www.ams.org/mathscinet-getitem?mr=3350721
http://www.ams.org/mathscinet-getitem?mr=3320484
http://arxiv.org/abs/1301.5630
http://arxiv.org/abs/1301.5630
http://www.ams.org/mathscinet-getitem?mr=3123673
http://www.ams.org/mathscinet-getitem?mr=3252026
http://www.ams.org/mathscinet-getitem?mr=1321597
http://www.ams.org/mathscinet-getitem?mr=2134453
http://www.ams.org/mathscinet-getitem?mr=3474376
http://www.ams.org/mathscinet-getitem?mr=1652916
http://www.ams.org/mathscinet-getitem?mr=2581371
http://www.ams.org/mathscinet-getitem?mr=3330339
http://www.ams.org/mathscinet-getitem?mr=3430242
http://www.ams.org/mathscinet-getitem?mr=2859036
http://www.ams.org/mathscinet-getitem?mr=2720230
http://www.ams.org/mathscinet-getitem?mr=3224831
http://www.ams.org/mathscinet-getitem?mr=1512000
http://www.ams.org/mathscinet-getitem?mr=0195595


INTRINSIC DIOPHANTINE APPROXIMATION ON MANIFOLDS 599

[29] Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785,
Springer, Berlin, 1980. MR568710

[30] Eric Schmutz, Rational points on the unit sphere, Cent. Eur. J. Math. 6 (2008), no. 3, 482–
487, DOI 10.2478/s11533-008-0038-4. MR2425007
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