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LÉVY-KHINTCHINE RANDOM MATRICES

AND THE POISSON WEIGHTED INFINITE SKELETON TREE

PAUL JUNG

Abstract. We study a class of Hermitian random matrices which includes
Wigner matrices, heavy-tailed random matrices, and sparse random matrices
such as adjacency matrices of Erdős-Rényi random graphs with pn ∼ 1

n
. Our

n× n random matrices have real entries which are i.i.d. up to symmetry. The
distribution of entries depends on n, and we require row sums to converge in
distribution. It is then well-known that the limit distribution must be infinitely
divisible.

We show that a limiting empirical spectral distribution (LSD) exists and,
via local weak convergence of associated graphs, that the LSD corresponds
to the spectral measure associated to the root of a graph which is formed by
connecting infinitely many Poisson weighted infinite trees using a backbone

structure of special edges called “cords to infinity”. One example covered
by the results are matrices with i.i.d. entries having infinite second moments
but normalized to be in the Gaussian domain of attraction. In this case, the
limiting graph is N rooted at 1, so the LSD is the semicircle law.
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1. Introduction

This paper jointly studies the limiting spectral distributions (LSD) for three
classes of Hermitian random matrices that have appeared in the literature. The
first class of random matrices are classic Wigner matrices introduced in the seminal
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work of their namesake, [Wig55]. The literature on this class of random matrices
is overwhelmingly abundant (see [AGZ10,BS10,Tao12]).

The second class of matrices are adjacency matrices of Erdős-Rényi random
graphs on n vertices whose edges are present with probability proportional to 1/n.
The analysis of the LSD in the context of random matrices seems to have started in
[RB88]. These matrices are called sparse1 random matrices, and they can be con-
sidered a Poissonian variation of Wigner matrices. The LSD of sparse random ma-
trices was analyzed using the “moment method” in [Rya98,BG01,KSV04,Zak06],
and using the “resolvent method” in [KSV04]. An insightful modification of the
latter approach led to improved results in [BL10] (see also [Küh08] for references
in the physics literature).

Finally, the third class of random matrices is formed from properly normalized
heavy-tailed entries, and, following [BAG08], we call them heavy-tailed random
matrices. These are also known in the physics literature as Lévy matrices or Wigner-
Lévy matrices, and they were introduced by Cizeau and Bouchaud in [CB94]. Later,
they were studied more rigorously in [Sos04,BAG08,BCC11a]. These matrices are
not to be confused with free Lévy matrices [BG05,BJN+07].

In each of the three classes of matrices above, the entries are i.i.d. up to self-
adjointness, although the distributions may differ for different n. In order to obtain
non-trivial LSDs, a proper rescaling or change in distribution is needed as n → ∞
(such rescaling is often implicit in the formulation). After respectively rescaling, if
one sums all the entries in a single row or column and takes n → ∞, then one obtains
a Gaussian, Poisson, or stable distribution in each of the respective classes. These
are all examples of infinitely divisible distributions, which suggests that all three
classes of matrices can many times be thought of under this umbrella, and various
papers (for example [Rya98, Sec. 3.1]) have done exactly that. More recently,
[BGGM13] establishes a functional central limit theorem for the Cauchy-Stieltjes
transforms of the LSDs of all three classes, and [Mal12] studies the joint LSDs of
a pair of independent ensembles in these three classes using algebraic techniques
inspired by free probability.

Here, we also view these three classes as examples from this larger class of matrix
ensembles characterized by the Lévy-Khintchine formula, and, in particular, the
matrices are viewed as (weighted) adjacency matrices. As was done in the heavy-
tailed setting in [BCC11a], our main objective is to equate the LSD of the limiting
adjacency operator with the spectral measure associated to the root (or vacuum
state) vector in L2(V ) where V is the vertex set of the limiting graph in the sense
of local weak convergence (see below). This allows for further analysis of the LSD
using the recursive structure of the limiting graph.

The ensembles we consider have i.i.d. complex entries for each n, up to self-
adjointness, with zeros on the diagonal. It is well-known that any weak limit of row
sums must be infinitely divisible in C (viewed as R2). Actually, the “identically
distributed” condition may be weakened to require only that the moduli of the
entries are identically distributed. In this weakened form one still has that the sum
of the square-moduli of entries in a row, i.e., the Euclidean norm-squared of a row
as a vector in R2n, converges in distribution to a positive law which is the marginal
distribution of a Lévy subordinator.

1Here, the random number of non-zero entries in each row remains bounded in distribution as
n → ∞. The term “sparse” sometimes refers to what others call dilute random matrices for which
the order of non-zero entries in each row is o(n).
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In particular, recall (see [Kyp06] or [Kal02]) that a probability measure μ on R

is infinitely divisible with distribution ID(σ2, b,Π) and Lévy exponent Ψ,

eΨ(θ) :=

∫
R

eiθxμ(dx) for θ ∈ R,

if and only if there exists a triplet of characteristics (σ2, b,Π) such that

(1.1) Ψ(θ) := −1

2
θ2σ2 + iθb+

∫
R

(
eiθx−1 − iθx

1 + x2

)
Π(dx),

where σ2 ≥ 0, b ∈ R, and Π(dx) concentrates on R\{0} and satisfies

(1.2)

∫
R

(1 ∧ |x|2) Π(dx) < ∞.

If μ concentrates on (0,∞), then the exponent corresponds to the subordinator
characteristics (bs,Πs) and takes the simplified form

(1.3) Ψs(θ) := iθbs +

∫
(0,∞)

(eiθx−1) Πs(dx),

where Πs(dx) also concentrates on (0,∞), but instead of (1.2), it satisfies∫
(0,∞)

(1 ∧ x) Πs(dx) < ∞.

Here, the s subscript indicates the subordinator form of the Lévy exponent.
We say a sequence of n × n random matrices (Cn)n∈N

is a Lévy-Khintchine

random matrix ensemble with characteristics (σ2, 0,Π) if for each n, the moduli
of entries Cn(j, k) = C̄n(k, j), j �= k are i.i.d. (up to self-adjointness, with zeros on
the diagonal) and the

(1.4) weak limit lim
n→∞

n∑
k=1

±|Cn(1, k)| is infinitely divisible

with characteristics (σ2, 0,Π),

where the signs ± are independent Rademacher random variables (independent also
from Cn). This implies that Π is a symmetric measure. It is not hard to see that
(1.4) is true if and only if

lim
n→∞

n∑
k=1

Cn(1, k)

is infinitely divisible with some other characteristics (σ2, b̃, Π̃) where σ2 remains

unchanged, but b̃may be non-zero and Π̃ is not in general symmetric. An equivalent
form of the above is that the

(1.5) weak limit lim
n→∞

n∑
k=1

|Cn(1, k)|2 is infinitely divisible

with subordinator characteristics (σ2, Π̂s),

where Π̂s can be easily found in terms of Π (see [Kal02, Ch. 15]). Note that in
this form σ2 plays the role of the drift coefficient bs. We note that by standard
arguments, one could set the diagonal elements to any real number which converges
to 0 fast enough, and this would not affect the LSD (see the remarks following
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Theorem 1.1 below). For the sake of simplicity, we will always set diagonal entries
to zero.

In the context of Lévy processes, the three components of the triplet (σ2, b,Π)
correspond to a Brownian component, a drift component, and a jump component
(with possibly additional “compensating drift”), respectively. We will see in our
context that σ2 corresponds to a Wigner component, the drift component is incon-
sequential since by using the random signs it becomes 0 (cf. [BAG08, Remark 1.9]),
and the Lévy measure Π generalizes both heavy-tailed and sparse random matrices.

1.1. Main results. For a given Lévy-Khintchine ensemble, let {λj}nj=1 denote the
eigenvalues of the nth matrix in the sequence. The empirical spectral measure is
defined as

(1.6) μCn
:=

1

n

n∑
j=1

δλj
,

and their cumulative distribution functions are the empirical spectral distributions
(ESDs).

Theorem 1.1 (Existence of the LSD). For any Lévy-Khintchine random matrix
ensemble (Cn)n∈N

with characteristics (σ2, 0,Π) (or alternatively with subordinator

characteristics (σ2, Π̂s)), there exists a symmetric non-random probability measure
μC∞ depending only on the characteristics to which (μCn

)n∈N weakly converges,
almost surely, as n → ∞. In other words,

(1.7) P
(
lim
n→∞

〈μCn
, f〉 = 〈μC∞ , f〉 for all bounded continuous f

)
= 1.

Moreover, the limiting measure μC∞ has bounded support if and only if Π is trivial.

Remarks.

(1) One can of course also consider a situation where the matrices of the en-
semble (Cn)n∈N

are not defined on the same probability space. In that case,
(μCn

)n∈N weakly converges, in probability, as n → ∞.
(2) As mentioned above, setting the diagonal entries to zero was a matter

of convenience for the proofs below, and the result still holds true if the
diagonal entries are real i.i.d. satisfying (1.4) with Cn(1, k) replaced by
Cn(k, k). The argument is, briefly, that one may appeal to Lemma 5.3
below to assume that the diagonal entries are bounded and then use an
argument similar to [AGZ10, Theorem 2.1.21].

(3) If (An)n∈N
is a non-Hermitian sequence, an extension of the above proof

technique to the singular values of (An − zIn)n∈N
in the spirit of [DS07]

follows by way of Section 2 in [BCC11b] (see also [FZ97]). Briefly, the idea
is to associate a 2n × 2n matrix Bn ∈ M2n(C) to each An by thinking of
Bn as an n×n quaternionic-type matrix in Mn(M2(C)) with entries given
by the 2× 2 matrices

Bn(j, k) :=

[
0 An(j, k)

Ān(j, k) 0

]
.

In place of the usual resolvent matrix, used in the proof of Theorem 1.1,
one then uses

Rn(U) = (Bn − U ⊗ In)
−1
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where In ∈ Mn(C) and U = U(z, w) = [w z
z̄ w ] . We refer the reader to

[BCC11b, Sec. 2] for more details.

As indicated in the introduction, the three main examples of Wigner matrices,
heavy-tailed matrices, and sparse random matrices have all been previously studied
(see above for references). Let us briefly present a few examples handled by the
above theorem where we know of no previous proof in the literature.

Examples.

(1) Sparse random matrices plus noise with characteristics (σ2, 0, δ1): This is
just the case

Cn = C(1)
n + C(2)

n

where (C(1)
n )n∈N are sparse random matrices and (C(2)

n )n∈N are Wigner ma-
trices. Similar “information plus noise” random matrices have recently been
considered in the literature [DS07,EK10].

(2) Gamma(α, β) random matrices with characteristics (0, 0, αβ

Γ(β)x
β−1e−αxdx):

here the entries are such that Cn(j, k) has a Gamma(α/n, β) distribution
and the matrix entries are i.i.d. up to the symmetry condition. In particu-
lar, one can consider the ensemble for which the first row corresponds to a
Gamma process where Cn(1, k) denotes the increment of the process from
time k−1

n to time k
n .

(3) Infinite-variance Wigner matrices (σ2, 0, 0): One can consider Wigner-type
matrices where the entries have a symmetric distribution such that

P
(
|Cn(j, k)| > x

√
n log n

)
= x−2

for x ≥ 1. The entries have infinite variance, but are in the domain of
attraction of a Gaussian distribution. The above result implies that the
limiting spectral measure is Wigner’s semicircle law (see Remark 1.10 in
[BAG08]).

In the case where Π has exponential moments, an extension of the standard mo-
ment method is enough to handle the proof of Theorem 1.1, and in Section 3 we
do just that under the slightly stronger assumption that Π has bounded support.
When Π has some moments which are infinite and σ = 0, the proof follows by gener-
alizing insightful local weak convergence arguments of [BL10,BCC11a] (see Section
4). To extend this to the general case, we combine the local weak convergence
arguments with a generalized moment method and tail truncation arguments.

As a by-product of local weak convergence, one can view the limiting empiri-
cal spectral measure of the random matrix ensembles as the spectral measure of
a weighted adjacency operator, at the root vector, of some new infinite graph.
For ensembles with characteristics (0, 0,Π), this idea is again a generalization of
arguments in [BCC11a]. However, when σ > 0 a non-trivial generalization of Al-
dous’ Poisson weighted infinite tree, which we call a Poisson weighted infinite
skeleton tree (PWIST), is required.

The idea of local weak convergence was introduced by Benjamini and Schramm
[BS01] and further developed by Aldous and Steele [AS04]. Aldous and Steele
describe the technique as finding “a new, infinite, probabilistic object whose local
properties inform us about the limiting properties of a sequence of finite problems.”
When the limiting object has a tree structure, local weak convergence provides a
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Figure 1. The root and its children (first generation offspring).

general framework to make the cavity method in physics rigorous. In our context,
the cavity method was used in [CB94], and our new infinite object (with a tree
structure) generalizes Aldous’ Poisson infinite weighted trees (PWIT) by adding
to it “cords” of infinite length which connect to independent copies of other PWITs.
These cords form a backbone structure for a collective object which we refer to as a
PWIST.

Let us first recall the definition of the PWIT(λΠ). Start with a single root vertex
∅ with an infinite number of (first generation) children indexed by N. The weight
on the edge to the kth child is the kth arrival (ordered by absolute value) of a
Poisson process on R\{0} with some intensity λ. In our situation the intensity λΠ

is derived from the measure Π on R\{0} by inverting:

(1.8) λΠ{x : 1/x ∈ B} := Π(B).

For example, if Π(dx) is equivalent to Lebesgue measure with density fΠ(x)dx, then
λΠ(dx) is also equivalent to Lebesgue measure with density x−2fΠ(1/x)dx where
x−2 is the change-of-measure factor.

If G has a root at ∅ we write G[∅] for the rooted graph with (random) weights
assigned to each edge. Slightly abusing notation, we denote the subgraph of a
PWIT(λΠ) formed by the root ∅, its children, and the weighted edges in between,
by N[∅]; see Figure 1.

We continue now with other generations. Every vertex v in generation (or depth)
g ≥ 1 has edges to an infinite number of children indexed by N forming the subgraph
N[v], with weights assigned by repeating the procedure for the weights in the first
generation (for N[∅]), namely, according to the points of an independent Poisson
random measure with intensity λΠ(dx). Therefore each N[v] is an i.i.d. copy of
N[∅]. The union of the children vertices of N[v] (in other words, not including v
itself) over all v in some generation g − 1 is denoted Ng. Thus the total vertex set
is

(1.9) N
F :=

⋃
g≥0

N
g

where N0 = ∅; see Figure 2.
The PWIST will depend on both characteristics σ2 and Π (via λΠ). To construct

a PWIST(σ, λΠ), we start with a single PWIT(λΠ)[∅] rooted at ∅ and, for each
vertex v of PWIT(λΠ)[∅], we create a new vertex ∞v which is the root of a new
independent PWIT(λΠ)[∞v]. We draw an edge from v to ∞v for each v and assign
this edge a non-random weight of

(1.10) 1/σ ∈ (0,∞].
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Figure 2. A Poisson Weighted Infinite Tree rooted at ∅. Weights
on offspring edges from different vertices are determined by inde-
pendent Poisson processes of intensity λΠ.

Next, we create a new independent PWIT(λΠ)[∞u] for each vertex u of each
PWIT(λΠ)[∞v] and draw an edge with weight 1/σ between u and ∞u. We con-
tinue this procedure ad infinitum. If we also identify ∞v with the integer 0 so
that by concatenation, ∞v is written v0, then we may write the vertex set of a
PWIST(σ, λΠ) as

(1.11) N
F
0 :=

⋃
g≥0

N
g
0

where N0 = N∪{0} and by concatenation we write v = v1v2 · · · vg ∈ N
g
0. As can be

seen in Figure 3, edges with the weight 1/σ connect infinitely many PWITs with a
backbone structure in order to form a PWIST.

Our next theorem justifies the choice (1.10) for the weight on the edge between
v and ∞v. Let us however attempt a brief heuristic explanation as to why this is
the correct weight to assign to this edge. First of all, identify each weight with its
absolute value so that all weights are thought of as non-negative conductances. Now,
if σ = 0, then the connected graph containing the root ∅ is simply a PWIT(λΠ)
with the weights on edges representing non-negative conductances. If σ > 0, we use
the interpretation that v and ∞v are infinitely far apart, but also that there are
infinitely many parallel edges (or a multi-edge) between v and ∞v. Since distance
is equivalent to resistance on electrical networks and resistance is the reciprocal of
conductance, the conductance of each parallel edge is zero; however, their collective
effective conductance is greater than 0, and in particular is of order σ. We can thus
identify the multiple parallel edges with a single edge between v and ∞v called a
cord to infinity with effective resistance 1/σ.
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Figure 3. A Poisson Weighted Infinite Skeleton Tree rooted at
∅. The thick, shaded edges have a deterministic weight of 1/σ.
All other weights are determined randomly as before.

Let us now consider a random weighted adjacency matrix CGn
associated to a

complete rooted geometric graph (see Section 4 for definitions) Gn = Gn[∅] =
(Vn, En,Rn) where Vn = {1, . . . , n} and Rn are the (possibly signed) random
weights/lengths/resistances of the edges En. We refer to such a real-valued matrix
as a random conductance matrix with entries given simply by the reciprocals of the
signed resistances:

(1.12) CGn
(j, k) :=

1

Rn(j, k)
.

When a sequence of random conductance matrices satisfies (1.4) or (1.5), it forms
a Lévy-Khintchine random matrix ensemble.

This notion generalizes to a random conductance operator on L2(G∞) ≡
L2(V∞) for an infinite weighted graph G∞ = (V∞, E∞,R∞). Let the core Dfs ⊂
L2(V∞) be the set of vectors with finite support, i.e., all finite linear combinations
of the basis vectors ev which are 1 at v and 0 elsewhere. We consider the operator
on Dfs which is defined by

(1.13) CG∞(u, v) = 〈eu, CG∞ev〉 :=
{

1/R∞(u, v) if u ∼ v,

0 otherwise.

This operator is closable as a graph in L2(V∞)×L2(V∞) since it is symmetric, i.e.,
Hermitian and densely defined [WS80, Theorem 5.4]. Abusing notation we also
denote its unique closure by CG∞ . In particular, we will see that the closure is self-
adjoint. In the case where G∞ is a PWIST(σ, λΠ), by (1.8), the conductances are
given by the points of a Poisson random measure with symmetric intensity Π(dx)
on R\{0}.
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Figure 4. When there is no Lévy measure, the graph is just N

with constant weights. It is well-known that the spectral measure
at the root is a semicircle.

Now, recall [RS80, Secs. VII.2 and VIII.3] that the spectral measure μϕ of a
self-adjoint operator C associated to the vector ϕ is defined by the relation

(1.14) 〈ϕ, f(C)ϕ〉 =:

∫
R

f(x)μϕ(dx), for bounded continuous f.

Theorem 1.2 (LSD as the root spectral measure of a limiting operator). For
any Lévy-Khintchine ensemble (Cn)n∈N

with characteristics (σ2, 0,Π), the limiting
empirical spectral measure μC∞ of Theorem 1.1 is the expected spectral measure, at
the root vector e∅, of a self-adjoint random conductance operator CG∞ on L2(NF

0 )
where G∞ is a PWIST(σ, λΠ).

Remark. The above matrix ensembles can be decomposed by the Lévy-Itō decompo-
sition into (Cn)n∈N and (C′

n)n∈N, which are independent with characteristics (0, 0,Π)
and (σ2, 0, 0). The sequence (Cn + C′

n)n∈N then has characteristics (σ2, 0,Π). One
approach is to try to generalize Voiculescu’s asymptotic freeness theorem to estab-
lish the above result. However, we have been unable to do so due to the randomness
of the PWIT associated to the Lévy measure Π (if the graphs were deterministic,
one could use the approach of [ALS07]).

The following result is an application of the resolvent identity, and it may be
used in conjunction with Theorem 1.2 to further analyze μC∞ . It can be viewed as
an operator version of the Schur complement formula.

Proposition 1.3 (Recursive distributional equation). Suppose that G∞ is a
PWIST(σ, λΠ). For all z ∈ C+ the random variable

R∅∅(z) := 〈e∅, (CG∞ − zI)−1e∅〉
satisfies R∅∅(−z̄) = −R̄∅∅(z) and the recursive distributional equation (RDE)

(1.15) R∅∅(z)
d
= −

(
z + σ2R00(z) +

∑
k∈N

|C(k)|2Rkk(z)

)−1

where for all k ≥ 0, Rkk has the same distribution as R∅∅ and {C(k)}k∈N are the
points of an independent Poisson random measure with intensity Π(dx) on R\{0}.
Remark. For an example of how the above proposition may be used, consider
Wigner matrices with i.i.d. entries with possibly infinite second moments, but nor-
malized to be in the Gaussian domain of attraction. In this case, the Lévy measure
Π is trivial and the PWIST(σ, 0) is just N rooted at 1; see Figure 4.

Since the edge-weights of the limiting graph are non-random, a simple argument
shows (see (4.6) below) that the resulting recursive equation is the Cauchy-Stieltjes
transform (see (4.5)) of Wigner’s semicircle law:

R∅∅(z) = Sμsc
(z) = −

(
z + σ2Sμsc

(z)
)−1

.
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The rest of the paper is organized as follows. In the next section, we introduce
a replacement procedure which creates a new sequence of matrices by modifying a
given Lévy-Khintchine ensemble. This modification replaces complex values with
real values and also embodies our notion of “cords to infinity”. It is the key proce-
dure which allows us to generalize PWITs to PWISTs. In Section 3, the moment
method is used to prove a weak version of Theorem 1.1 in the case that the Lévy
measure Π has bounded support. The main point of Section 3, however, is to show
that the limiting root spectral measure of a Lévy-Khintchine ensemble is invariant
under the replacement procedure of Section 2 (in preparation for proofs of the main
results). In Section 4, we precisely define local weak convergence and present an
adaptation of the arguments of [BCC11a]. In particular, we show that the local
weak convergence argument proves Theorem 1.2 for real Lévy-Khintchine ensem-
bles with σ = 0. Finally, in Section 5, we combine the arguments of Sections 3 and
4 to prove the main results in the general case. In the appendix we gather some
known results which are needed along the way.

2. A replacement procedure for cords to infinity

In this section, we define an important sequence of modified matrices (Cσ
n)n∈N

which play a key role in the proofs of the main results. In particular, these ma-
trices are modifications of a Lévy-Khintchine ensemble (Cn)n∈N

under a certain
replacement procedure which we describe below.

For h > 0, by (1.4) and Proposition A.1 we have that as n → ∞,
n∑

k=1

±|Cn(1, k)|1{|Cn(1,k)|≤h}

converges in distribution to ID(σ2
h, 0,Πh) where the ± signs are chosen using inde-

pendent Rademacher variables (independent also from Cn), and

σ2
h := σ2 +

∫
|x|≤h

x2 Π(dx) and

Πh(dx) := 1(−∞,−h]∪[h,∞)(x)Π(dx).

By a diagonalization argument, we may choose a sequence of positive numbers
hn → 0 such that we get the following weak convergence to a Gaussian:

n∑
k=1

±|Cn(1, k)|1{|Cn(1,k)|≤hn} ⇒ N (0, σ2).

In particular, as hn → 0,

lim
n→∞

n∑
k=2

E
(
|Cn(1, k)|21{|Cn(1,k)|≤hn}

)
= lim

n→∞
nE

(
|Cn(1, 2)|21{|Cn(1,2)|≤hn}

)
= σ2.(2.1)

Our replacement procedure is as follows. For all entries such that |Cn(j, k)| > hn

as well as for all diagonal entries Cn(j, j), we set Cσ
n(j, k) := ±|Cn(j, k)| where the

signs ± are given by independent Rademacher variables on the upper triangle and
determined on the lower triangle to preserve self-adjointness. However, the entries
in positions (j, k), j �= k, in the matrix Cσ

n which satisfy the condition |Cn(j, k)| ≤ hn

will remain blank for now and will be assigned values that are either 0 or σ.
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We next describe how to fill in blank entries. We first need to determine the
order of the rows (and columns to preserve self-adjointness) by which we fill in the
blanks. Recall that Cn determines a geometric graph, rooted at 1, with edge-weights
given by 1/Cn(j, k) as in (1.12). Let α be the permutation of {1, . . . , n} such that
α(i) is the ith closest vertex from the root 1 using the distance

(2.2) d(u, v) := inf
γ connects u,v

∑
e∈γ

|1/Cn(e)|

where the infimum is over all paths γ which connect vertices u and v by a sequence
of edges and e stands for one of these edges. If j and k are at equal distance from
the root 1, we break ties by deeming j “closer” to the root whenever j < k. We now
fill in blank entries according to the order determined by the (random) permutation
α. For instance, we fill in blanks in row 1 first since α(1) = 1 (the root is always
closest to itself). Next we fill in blank entries in the row α(2), then row α(3), etc.

The procedure for filling in blank entries in row j = α(i) is as follows, starting
with row 1 = α(1). Out of all k satisfying

(2.3) |Cn(j, k)| ≤ hn, k �= j,

choose one uniformly at random and set this entry, in Cσ
n , to σ. Set other blank

entries in row j, satisfying (2.3), to zero in the matrix Cσ
n . This completes the

filling of row j of Cσ
n , and we use the symmetry condition Cσ

n(j, k) = Cσ
n(k, j) to fill

in blank entries in the column j.
When row and column j = α(i) are completely filled, we repeat the procedure

on row and column α(i+ 1). We continue the replacement procedure described in
the previous paragraph until all blank entries have been filled; then we call (Cσ

n)n∈N

the modified sequence of matrices.

3. The moment method

In this section, we use the moment method to prove a convergence in expectation2

version of Theorem 1.1 in the case where there exists an almost sure bound 0 <
τ < ∞ on the entries of the Lévy-Khintchine ensemble (Cn)n∈N

,

(3.1) |Cn(1, 2)| ≤ τ for all n.

In particular, using the associated Poisson approximation for the distribution of
Cn(1, 2) (see [Kal02, Corollary 15.16]) one sees that Π must be supported on [−τ, τ ].

Let

Mp(μ) :=

∫
R

xpμ(dx)

be the pth moment of the measure μ. The moment method in this section consists
of showing

(3.2) lim
n→∞

Mp(EμCn
) = Mp(EμC∞), for all p ∈ N,

and then verifying that the moments Mp(EμC∞) determine EμC∞ . However, the
main result of this section is the following important consequence of such a verifi-
cation. Recall from (1.14) the notion of a spectral measure associated to a vector.

2See [Tao12, Remark 2.4.1] for a definition and short discussion of this type of convergence.
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Proposition 3.1 (Invariance of expected LSD under replacement procedure). If
the expected limiting empirical spectral measure for a Lévy-Khintchine ensemble
(Cn)n∈N

exists and is determined by its moments, then it is equal to the limiting
expected spectral measure associated to e1 (the first vector of the standard basis) for
any modified sequence (Cσ

n)n∈N
.

Proof. A standard argument (see [AGZ10, Ch. 2] or [Tao12, Sec. 2.3.4] for details)
shows that the p-moments are given by

Mp(EμCn
) = E

1

n
tr(Cp

n)

=

n∑
j2,...,jp=1

E(Cn(1, j2)Cn(j2, j3) · · · Cn(jp, 1))(3.3)

where we have set j1 = 1 by exchangeability. The ordered listings of subscript pairs(
(1, j2)(j2, j3), . . . , (jp, 1)

)n
j2,...,jp=1

are viewed as distinct paths of length p which start and end at 1 in the complete
graph on {1, . . . , n}, with edges having orientations and with the possibility that
edges are crossed multiple times. These paths are called cycles rooted at 1.

We now make some preliminary observations in order to rewrite (3.3) as (3.9).
The expression of the pth moment in (3.9) below allows us to then prove the result.

By Proposition 4 in [Zak06], in the limit as n → ∞, the only cycles that con-
tribute to the limiting sum on the right side of (3.3) are “trees” in the following
sense. For a given contributing term, if the oriented edge (jk, jk+1) is crossed
q = q(k) times, then it must also be crossed q times in the opposite orientation.
Thus, for each k there is a corresponding k′ �= k such that

(3.4) Cn(jk, jk+1) = Cn(jk′ , jk′+1), jk = jk′+1, jk+1 = jk′ .

Moreover, the partition of {1, . . . , p} which pairs each k with its corresponding k′

must be a non-crossing pair partition (see [NS06] for details). In particular, p must
be even in order to have a non-trivial moment.

If Cn(jk, jk+1) appears q = q(k) distinct times in a given term, then its conjugate
(or reversed edge from jk′ to jk′+1) also appears q = q(k′) distinct times. Using
independence and exchangeability, each term of the sum in (3.3) takes the form

(3.5) E|Cn(1, 2)|2q1E|Cn(1, 2)|2q2 · · ·E|Cn(1, 2)|2q�

where 2q1 + · · ·+ 2q	 = p.
Fix the value of j2 and consider a cycle rooted at 1 corresponding to a term

in the sum (3.3) such that (1, j2) is crossed q = q(1) times in each direction for a
total of 2q times. Removing these 2q edges from our cycle leaves us with several
sub-cycles. These sub-cycles can be permuted and then concatenated to form two
sub-cycles L and L̃ rooted at L1 := j2 and L̃1 := 1 which avoid the edges (1, j2)
and (j2, 1) (one or both of the cycles may be trivial); see Figure 5.

Write L(j2, q) for the set of all pairs of cycles (L, L̃) which are possible, where,

in particular, different permutations/concatenations leading to the same L or L̃ are

each listed separately in L(j2, q); i.e., L and L̃ remember their original sub-cycle

structure. Also, let s, s̃ be the lengths of L, L̃ so that s + s̃ = p− 2q, and write
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Figure 5

L ≡ ((L1, L2), . . . , (Ls, L1)) and similarly for L̃. Discarding some terms which do
not contribute to the limiting sum, we have that (3.3) can be rewritten as

p/2∑
q=1

n∑
j2=2

∑
(L,L̃)∈L(j2,q)

E|Cn(1, j2)|2qE(Cn(L1, L2) · · · Cn(Ls, L1)

Cn(L̃1, L̃2) · · · Cn(L̃s̃, L̃1))

=

p/2∑
q=1

n∑
j2=2

{E
[
|Cn(1, j2)|2q(1{|Cn(1,j2)|≤hn} + 1{|Cn(1,j2)|>hn})

]
×

∑
L,L̃∈L(j2,q)

E(Cn(L1, L2) · · · Cn(Ls, L1)Cn(L̃1, L̃2) · · · Cn(L̃s̃, L̃1))}.

(3.6)

Recall from (2.1) that for ε > 0, we may find N such that n ≥ N implies

(3.7) nE
(
|Cn(1, 2)|21{|Cn(1,2)|≤hn}

)
≤ σ2 + ε,

which in turn implies

(3.8) nE
(
|Cn(1, 2)|2q1{|Cn(1,2)|≤hn}

)
≤ h2q−2

n (σ2 + ε).

To see this, note that a distribution satisfying (3.7) with maximum 2qth moment

is given by Cn(1, 2) = ±hn with probability σ2+ε
nh2

n
and Cn(1, 2) = 0 otherwise.

Since hn → 0 we see that (3.8) goes to zero for q > 1. Multiplying out the right
side of (3.6), we have that any term with a factor of 1{|Cn(1,j2)|≤hn} must have
q(1) = 1 in order to contribute to the limiting sum. It should perhaps be noted
that since we must have that q(1) = 1, for terms with a factor of 1{|Cn(1,j2)|≤hn},

the permuting/concatenating of sub-cycles which form L and L̃ is not needed.
We now write

Cn(jk, jk+1) = Cn(jk, jk+1)(1{|Cn(jk,jk+1)|≤hn} + 1{|Cn(jk,jk+1)|>hn})

for all factors in all terms of (3.3) and (3.6). For fixed j2 ≡ L1, we will categorize
terms containing the factor 1{|Cn(1,j2)|≤hn} by the number of other factors in the
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Figure 6

term which are of the form

|Cn(1, jk)|21{|Cn(1,jk)|≤hn} for any k.

There are at most p/2 such factors. In particular, consider terms of (3.6) which

include the factor |Cn(1, L̃2)|21{|Cn(1,L̃2)|≤hn}; see Figure 6. The above procedure

on our cycle rooted at 1 is repeated on the cycle L̃ =: L̃(1), which is also rooted at 1.
In other words, we fix the value of L̃2 and consider cycles such that the edge (1, L̃2)

is crossed exactly once in each direction. We remove these 2 edges from L̃ leaving

us with two sub-cycles L(2) and L̃(2) rooted at L
(2)
1 := L̃

(1)
2 and L̃

(2)
1 := 1. We then

repeat the procedure on the cycle L̃(2) to get two more sub-cycles L(3) and L̃(3)

and continue this process until all edges of the form (1, ·) or (·, 1) are “removed”.
Thus, for any term containing 1{|Cn(1,j2)|≤hn} there is a corresponding list of cycles

(L(1), L(2), . . . , L(M)). The list is of length M ≤ p/2 where M depends on the term
(thus terms are categorized by their associated M value), and each cycle in the list
is rooted at a different vertex in {2, . . . , n}. Let LM (n) denote the set of all possible
lists of cycles of length M .

Finally, recalling that L
(1)
1 ≡ j2, the sum of all contributing terms in (3.6) can

be written in the form

p/2∑
M=0

∑
LM (n)

M∏
i=1

(
E
[
|Cn(1, L(i)

1 )|21{|Cn(1,j2)|≤hn}

]

× E

[
M∏
i=1

Cn(L(i)
1 , L

(i)
2 ) · · · Cn(L(i)

s(i)
, L

(i)
1 )

])
.
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Summing over the possible first coordinates of each cycle in the list of cycles, L
(i)
1 ∈

{2, . . . , n}, and taking the limit gives us

(3.9) lim
n→∞

p/2∑
M=0

∑
(L(1),...,L(M))∈LM (n)

σ2ME

[
M∏
i=1

Cn(L(i)
1 , L

(i)
2 ) · · · Cn(L(i)

s(i)
, L

(i)
1 )

]
.

Let (Cσ,1
n ) be matrices which are modified using only the first step of the replacement

procedure, i.e., where only a single cord to infinity (from 1) has been substituted.
Using the fact that

|Cn(jk, jk+1)| = |Cσ,1
n (jk, jk+1)| on the event {|Cn(jk, jk+1)| > hn},

a relatively straightforward calculation of Mp(EμC̃σ
n
) using (3.3), also gives (3.9) by

(a) conditioning on the number of times that a given cycle rooted at 1 crosses
the cord from 1 to infinity (in either direction) to be 2M , and

(b) for a fixed set of loops L(1), . . . , L(M) in (3.9) with different roots, one can
identify their different roots with one single root. This single root should
be thought of as the vertex at infinity which is connected to 1 by the cord
in (a) above. One need only check that the two configurations of loops give
the same value for the expression

(3.10) lim
n→∞

E

[
M∏
i=1

Cn(L(i)
1 , L

(i)
2 ) · · · Cn(L(i)

s(i)
, L

(i)
1 )

]
.

There is a slight subtlety regarding the invariance of (3.10) under the identification
of roots. The subtlety is that the dependence structure of edges crossed in (3.10) is
changed under the identification of roots. However, note that we can approximate
the Lévy measure by a sum of Dirac point measures, and without loss of generality,
we will assume it has this form. Then, it turns out that the dependence structure
of edges crossed in (3.10) does not affect the value of (3.10) since (i) the depen-
dence structure only changes on the event that the various edges crossed have a
common weight λ, and (ii) in this event, the 2qth moment of λ times a Rademacher
random variable is λ2q. Thus, for example, the product of the variances of two in-
dependent λ-scaled Rademachers is exactly the fourth moment of a single λ-scaled
Rademacher.

The proof of the theorem is now complete for the first step of the replacement
procedure. Equivalence of moments for other steps in the replacement procedure
follows similarly, and the rest of the proof is left as an exercise. �

Remark 3.2. When Π is trivial, all the qi’s in (3.5) are all equal to 2. This leads
to the well-known fact that (3.3) is the number of Dyck words of length 2p which
is just the pth Catalan number

cp =
(2p)!

p!(p+ 1)!
.

We next have a result which relates the moments of the matrix entries to the
moments of the Lévy measure. Both sets of moments are also related to the mo-
ments of the LSD using (3.5); moreover, together with the proposition below, (3.5)
proves existence of the limit in (3.2).
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Proposition 3.3 (Triangular array moments are related to Lévy measure mo-
ments). Suppose that {C(n, k), 1 ≤ k ≤ n}n∈N is a triangular array of random vari-
ables which are i.i.d. in each row and for which

∑n
k=1 |C(n, k)|2 converges weakly

as n → ∞ to an infinitely divisible law with subordinator characteristics (σ2,Πs).
If the random variables are uniformly bounded,

(3.11) |C(n, k)| ≤ τ for all n and k,

then

lim
n→∞

nE|C(n, 1)|2 = σ2 +M1(Πs) ,

and for p > 1

lim
n→∞

nE|C(n, 1)|2p = Mp(Πs).

Proof. Set Xn := |C(n, 1)|2 with characteristic function ϕXn
. The characteristic

function of

lim
n→∞

n∑
k=1

|C(n, 1)|2 d
= X

in (1.3) takes the form

(3.12) ϕX(θ) = exp

(
iθσ2 +

∫ τ2

0

(eiθx − 1)Πs(dx)

)
,

and by convergence in distribution of the row sums and Lemma 5.8 in [Kal02],

lim
n→∞

n(ϕXn
− 1) = iθσ2 +

∫ τ2

0

(eiθx − 1)Πs(dx)

uniformly in θ on compact subsets of R. Since the {Xn} are bounded and since
Πs has bounded support we may expand both sides in terms of power series and
switch summations with integrals. This gives us

(3.13) lim
n→∞

n
∑
k≥1

(iθ)kEXk
n

k!
= iθσ2 +

∑
k≥1

∫ τ2

0

(iθx)k

k!
Π(dx)

uniformly on compact subsets, from which the lemma follows. �

To verify the “moment problem” required to use Proposition 3.1, we adapt ar-
guments from [BG01,KSV04, Zak06]. Let Qp be the set of (q1, . . . , q	) such that

qi ∈ N,
∑	

i=1 qi = p, and

q1 ≥ q2 ≥ · · · ≥ q	.

Also, fix a sequence of distinct colors {Ki}∞i=0. We define T ((q1, . . . , qp)) to be the
number of colored rooted trees which satisfy the following:

• There are p+ 1 vertices.
• There are exactly qi vertices of color Ki with the root being the only vertex
of color K0.

• If u and v are the same color, then the distance from u to the root is equal
to the distance from v to the root.

• If u and v have the same color, then so do their parents.

Define

Ip,	 :=
∑

(q1,...,q�)∈Qp

T ((q1, . . . , q	)).



LÉVY-KHINTCHINE RANDOM MATRICES 657

Proposition 3.4 (LSD determined by its moments). Under assumption (3.1),

(3.14) M2p(EμC∞) ≤ τ2p
∑
	

Ip,	
(
M2(Π) + Π([−1, 1]c) + σ2

)	
,

and thus EμC∞ exists and is determined by its moments.

Proof. By splitting the support of Π into [−1, 1] and its complement, note that
M2q(Π) ≤ M2(Π) + τ2qΠ([−1, 1]c). Also, without loss of generality, τ ≥ 1. We use
Proposition 3.3 in conjunction with the argument of [Zak06, Theorem 2] (see also
[BG01, Sec. 5.3] and [KSV04, Sec. IV]) to get

M2p(EμC∞)

= lim
n→∞

∑
(q1,...,q�)∈Qp

T ((q1, . . . , q	))nE(|Cn(1, 2)|2q1) · · ·nE(|Cn(1, 2)|2q�)

≤
∑

(q1,...,q�)∈Qp

T ((q1, . . . , q	))(M2q1(Π) + σ2) · · · (M2q�(Π) + σ2)

≤ τ2p
∑

(q1,...,q�)∈Qp

T ((q1, . . . , q	))
(
M2(Π) + Π([−1, 1]c) + σ2

)	
= τ2p

∑
	

Ip,	
(
M2(Π) + Π([−1, 1]c) + σ2

)	
.(3.15)

Next, we use equation (9) in [BG01], which gives the bound

(3.16) Ip,	 ≤ cpSp,	

(see also Proposition 10 in [Zak06]) where cp is the pth Catalan number and

Sp,	 =
1

�!

	∑
k=0

(−1)	−k

(
�

k

)
k2p

is a Stirling number of the second kind. By (3.15), (3.16), and Theorem 30.1 in
[Bil86], EμC∞ is determined by its moments if for any R > 0,

(3.17)
cp

(2p)!

p∑
	=1

R	Sp,	

is o(rp) for some r as p → ∞, and this is easily verified. For example Section 5.5
of [BG01] shows (3.17) is less than (pp + eR(p−1))/(p!(p+ 1)!). �

Remark 3.5. In [BG01], the lower bound S2p,	 ≤ I2p,	 was also established and
used to show that the LSD has unbounded support (see also [Zak06, Proposition
12]). In our situation, this tells us that the Lévy-Khintchine ensembles for which
the LSD has bounded support are precisely those with only a Wigner portion, i.e.,
those with characteristics of the form (σ2, 0, 0).

4. From local weak convergence to spectral convergence

In this section, to simplify things we restrict our attention to random conduc-
tance matrices Cn with real entries. The goal of this section is to present Theorem
4.2, which uses strong resolvent convergence to connect the notions of local weak
convergence and convergence in distribution of the empirical spectral measures.
Theorem 4.2 below is similar to [BCC11a, Theorem 2.2] (see also [BL10,BCC11b,
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BC12]), and its proof is an adaptation of the arguments there which treat the
symmetric α-stable case:

(σ2, 0,Π) = (0, 0, sign(x)α|x|−1−αdx).

Here we replace the α-stable Lévy measure with an arbitrary symmetric Lévy mea-
sure Π(dx) on R\{0}. In particular, if one assumes self-adjointness of the limiting
operator (which follows from Lemma 5.2 below), then the arguments in this section
are enough to handle Theorem 1.2 in the case when σ = 0 and the entries are real.

Let us now present the precise notion of local weak convergence following the
treatment in [AS04]. Let G[∅] = (V,E) be a ∅-rooted graph with vertex set V
and edge set E both of which are at most countably infinite. Recall the distance
function d defined in (2.2). The distance d naturally turns G[∅] into a metric
space. We include ±∞ as a possible edge-weight where ±∞ is thought of as the
same weight using the one-point compactification of R\{0}.

If G[∅] is connected and undirected and the edge-weight function R is such that
for every vertex v and every r < ∞, the number of vertices within distance r of
v is finite, then G[∅] = (V,E,R) is a rooted geometric graph. Henceforth all
graphs will be rooted geometric graphs, and when they are rooted at the default
root ∅, we may simply write G instead of G[∅]. The set of all rooted geometric
graphs is written G�.

In the case that the range of R is positive and the underlying graph is a tree, we
can interpret R as assigning resistances to edges. However, for technical reasons
required by the proofs of our main results, we allow R to take negative values. The
possibility of negative weights makes our treatment here differ slightly from [AS04].
But, using the modulus in (2.2) nevertheless permits us to reap the benefits of the
metric of [AS04] on G�.

Let Nr,∅(G) be the r-neighborhood of ∅. This is the ∅-rooted subgraph of G
formed by restricting the graph to the set of all vertices v ∈ V such that d(∅, v) ≤ r
and restricting to the set of edges that can be crossed by journeying at most distance
r from the root ∅. We say r is a continuity point of G if there is no vertex of exact
distance r from the root.

Definition 4.1 (The topology of G�). We say (Gn = (Vn, En,Rn))n∈N
converges

to G = (V,E,R) in G� if for each continuity point r of G there is an nr such that
n > nr implies there exists a graph isomorphism

πn : Nr,∅(G) → Nr,∅(Gn)

which preserves the root and for which

(4.1) lim
n→∞

Rn(π
−1
n (u), π−1

n (v)) = R(u, v).

As noted in [AS04], the above convergence determines a topology which turns
G� into a complete separable metric space. Using the usual theory of convergence
in distribution, one can therefore say that a sequence of random rooted geometric
graphs (Gn)n∈N

⊂ G�, with distributions μn, converge weakly to G ∈ G� with
distribution μ if for all bounded continuous f : G� → R

(4.2)

∫
G�

fdμn →
∫
G�

fdμ.

Such weak convergence is called local weak convergence.
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The following connection between local weak convergence and strong resolvent
convergence was first noticed in [BL10] and [BCC11a] in the context of sparse
matrices and heavy-tailed matrices, respectively (see [HO07] for related arguments).

Theorem 4.2 (Local weak convergence implies strong resolvent convergence). Let
(CGn

)n∈N
, which are associated to (Gn = (Vn, En,Rn))n∈N

as in (1.13), be essen-
tially self-adjoint. Suppose that the graphs converge in the local weak sense to a
tree G = (V,E,R) with respect to the isomorphisms (πn)n∈N and that CG is also
essentially self-adjoint.

If for each u ∈ V ,

lim
ε↘0

lim
n→∞

∑
v∈Vn:v∼πn(u)

|CGn
(πn(u), v)|21{|CGn (πn(u),v)|2≤ε} = 0 a.s.,(4.3)

then for all z ∈ C+, as n → ∞:

(4.4) 〈e∅, (CGn
− zI)−1e∅〉 w→ 〈e∅, (CG − zI)−1e∅〉.

Remark 4.3. By Proposition A.1, condition (4.3) simply says that σ2 = 0 in (1.5).

Once one checks the local weak convergence of (Gn[1])n∈N
to a PWIT(λΠ) and

verifies self-adjointness, then the above result essentially handles the case where
the Wigner component vanishes. Let us briefly outline this. First of all σ = 0 will
imply condition (4.3). Next, recall that the Cauchy-Stieltjes transform (or simply
Stieltjes transform) is defined as

(4.5) Sμ(z) := 〈μ, (x− z)−1〉 =
∫
R

μ(dx)

x− z
, z ∈ C\R.

Recall from (1.6) that μCn
is the empirical spectral measure of Cn. Using the fact

that entries in Cn are i.i.d.,

(4.6) SEμCn
(z) = ESμCn

(z) =
1

n
Etr(Cn − zI)−1 = E(Cn − zI)−1(1, 1).

Therefore, by (4.6), the above theorem, and a bound on the modulus of the Green’s
function

|(Cn − zI)−1(1, 1)| ≤ (�z)−1

for z ∈ C\R, we obtain convergence of (SEμCn
)n∈N to SEμCG∞

where G∞ is a

PWIT(λΠ). Lemma A.2, which tells us that the Cauchy-Stieltjes transform de-
termines the LSD, then implies weak convergence of the expected ESDs (since e∅
has unit norm, the limit is a probability measure). A concentration of measure
argument from [GL09], Lemma 5.1 below, extends this to a.s. weak convergence
for the random ESDs.

For the proof of Theorem 4.2 we need a lemma which appears as Theorem VIII.25
in [RS80]. We state it without proof.

Lemma 4.4 (Strong resolvent convergence characterization). Suppose Cn and C∞
are self-adjoint operators on L2(V ) with a common core D (for all n and ∞). If

Cnϕ → C∞ϕ in L2(V ),

for each ϕ ∈ D, then Cn converges to C∞ in the strong resolvent sense.
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Proof of Theorem 4.2. To match the setting for which we employ this theorem, let
the vertex set of Gn be a subset of N and the vertex set of G be NF . By assumption,
the local weak limit of (Gn)n∈N

is the tree G, with respect to the mappings

(4.7) πn : NF → Vn ⊂ N,

which are injective when restricted to some random subset of NF with the same
cardinality as Vn. By the Skorokhod representation theorem we will in fact assume
that this weak convergence in G� is almost sure convergence on some probability
space. Note that when the sequence (CGn

)n∈N
is a sequence of n×n Lévy-Khintchine

matrices, one may set Vn = {1, . . . , n}; however, in general Vn may even be infinite
(in which case it is just N).

Since NF is countable we can fix some bijection with N and think of Vn as a subset
of NF . In this case, the maps πn can each be extended to (random) bijections from
NF to N, and abusing notation we write πn for these extensions. The essentially
self-adjoint operators CGn

extend to self-adjoint operators on L2(NF ), using the
core Dfs consisting of vectors with finite support, by defining

(4.8) 〈eu, CGn
ev〉 :=

{
CGn

(πn(u), πn(v)) if {π(u), π(v)} ⊂ Vn,

0 otherwise.

By assumption, the closure of CG is also self-adjoint using the core Dfs. Again
abusing notation, we identify this closure with CG.

By local weak convergence and Skorokhod representation, we have that almost
surely

(4.9) 〈eu, CGn
ev〉 → 〈eu, CG ev〉.

By Lemma 4.4, we are left to show that∑
u∈NF

|〈eu, CGn
ev〉 − 〈eu, CG ev〉|2 → 0

almost surely, as n → ∞. This follows from the Vitali convergence theorem since
(4.9) provides almost sure convergence and (4.3) provides uniform square integra-
bility. �

A common tool for showing local weak convergence is the following lemma about
Poisson random measures which is similar to [Ste02, Lemma 4.1].

Lemma 4.5 (Convergence to a Poisson random measure). Suppose {C(n, k), 1 ≤
k ≤ n}n∈N is a triangular array of real random variables which are i.i.d. in each
row and for which

∑n
k=1 C(n, k) converges in law, as n → ∞, to an ID(σ2, b,Π)

random variable. Then as n → ∞,

n∑
k=1

δC(n,k)

converge vaguely, as measures on R\{0}, to a Poisson random measure η with
intensity Eη = Π.

Proof of Lemma 4.5. Note that any Lévy measure Π is also a Radon measure on
R\{0}. Even though there is a possible singularity at 0, this is no concern since
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0 /∈ R\{0}. Therefore, by the basic convergence theorem of empirical measures to
Poisson random measures (see Theorem 5.3 in [Res07]) we need only check that

nP(Cn(1, 2) ∈ ·) vag→ Π

vaguely as measures on R\{0}. This follows from Proposition A.1. �

Remark 4.6. It is instructive to recognize that the Lévy characteristics σ2 and b
bear no influence on the above lemma and consequently bear no influence on local
weak convergence of the associated graphs. This is because vague convergence
pushes any affect they have to the point 0 which is not in R\{0}. This essentially
tells us that b has no effect on the LSD, which is one reason why we were allowed
to set it to 0 (this statement is made rigorous by Theorem 1.2). The same is not
true for σ2 since we must have σ = 0 in order to satisfy (4.3) (uniform square
integrability) and therefore to use Theorem 4.2. However, after one applies the
replacement procedure, (4.3) will once again be satisfied.

The following proposition utilizes Lemma 4.5 to show local weak convergence to a
PWIST. It is a variant of results in [Ald92, Sec. 3] (see also [Ald01,Ste02,BCC11a]).

Proposition 4.7 (Local weak convergence to a PWIST). Let Gn[1] have conduc-
tances {Cσ

n(j, k)}j,k which are modified Lévy-Khintchine matrices with characteris-
tics (σ2, 0,Π) (modified as in Section 2). Then the local weak limit of (Gn[1])n∈N

is a PWIST(σ, λΠ).

Proof. We follow [Ald92, Sec. 3] and [BCC11a, Sec. 2.5]. For each fixed realization
of the {Cσ

n(j, k), 1 ≤ j, k ≤ n} we consider their reciprocals, i.e., the resistances

{Rσ
n(j, k), 1 ≤ j, k ≤ n}.

For any B,H ∈ N, such that
H∑
	=0

B	 ≤ n,

we define a rooted geometric subgraph Gn[1]
B,H of Gn[1], whose vertex set is in

bijection with a B-ary tree of depth H rooted at 1. Let Vn := {1, . . . , n}. The
bijection provides a partial index of vertices of Gn[1] as elements in

(4.10) JB,H =

H⋃
	=0

{1, . . . , B}	 ⊂ N
F
0

where the indexing is given by an injective map

πn : JB,H → Vn.

The map πn easily extends to a bijection from some subset of NF
0 to Vn and thus

can be thought of as restrictions of the maps of (4.7).
We set I∅ = {1} and set the preimage/index of the root 1 to be π−1

n (1) = ∅. We
next index the B vertices in Vn\I∅ which have the B smallest absolute values among
{Rσ

n(1, k)}2≤k≤n. The kth smallest absolute value is given the index ∅k = π−1
n (v),

1 ≤ k ≤ B. As in the discussion preceding (1.11), we have written the vector ∅k
using concatenation. Breaking ties using the lexicographic order, this defines the
first generation.

Now let I1 be the union of I∅ and the B vertices that have been selected.
If H ≥ 2, we repeat the indexing procedure for the vertex indexed by ∅1 (the
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first child of ∅) on the set Vn \ I1. We obtain a new set {11, . . . , 1B} of vertices
sorted by their absolute resistances. We define I2 as the union of I1 and this new
collection. Repeat the procedure for∅2 on Vn\I2 and obtain a new set {21, . . . , 2B}.
Continuing on through {B1, . . . , BB}, we have constructed the second generation,
at depth 2, and we have indexed a total of (B3− 1)/(B− 1) vertices. The indexing
procedure is repeated through depth H so that (BH+1 − 1)/(B − 1) vertices are
sorted. Call this set of vertices V B,H

n = πn(JB,H). The subgraph of Gn[1] generated
by the vertices V B,H

n is denoted Gn[1]
B,H (by “generated” we mean that we include

only edges with endpoints in the specified vertex set). It is the modification of Gn[1]
such that any edge with at least one endpoint in the complement of V B,H

n is given
an infinite resistance. In Gn[1]

B,H , the elements of {u1, . . . , uB} are the children
of u.

Note that while the vertex set V B,H
n has a natural tree structure, Gn[1]

B,H is
actually a subgraph of a complete graph which may not be a tree.

LetG∞[∅] be a PWIST(σ, λΠ), or a PWIT(λΠ) if σ = 0, and writeG∞[∅]B,H for
the finite rooted geometric graph obtained by the sorting procedure just described.
Namely, G∞[∅]B,H consists of the sub-tree with vertices of the form u ∈ JB,H ,
with resistances between these vertices inherited from the infinite tree. If an edge
is not present in G∞[∅]B,H , we may think of it as being present but having infinite
resistance.

Since the conductances {Cσ
n(j, k)} by definition are real with a symmetric

distribution, we may without loss of generality replace
∑n

j=1 ±|Cn(1, j)| with∑n
j=1 Cn(1, j) in (1.4). We use Lemma 4.5 on the unmodified matrices (with real

and symmetrically distributed entries) to conclude that
∑n

k=1 δCn(1,k) converges
vaguely to a Poisson random measure with intensity Π. For hn → 0, the truncation
C(n, k)1|C(n,k)|≤hn

does not affect this vague convergence. Note that besides the
random resistances on edges given by the Poisson random measure, there is also
one more non-random resistance given by the replacement procedure (for n large
enough), and the value is always 1/σ. It is easily verified that the property in (4.1)
is satisfied by each edge (u, v) of the tree G∞[∅].

It remains to check that for each B and H, our maps πn are graph isomorphisms
for n large enough. In other words, we must check that for each edge in G∞[∅]B,H

with an infinite resistance, the corresponding edges of
(
Gn[1]

B,H
)
n∈N

(for n large

enough) must have resistances which diverge to infinity. The divergence of these
resistances to infinity follows from a standard coupling argument which shows that
these resistances stochastically dominate i.i.d. variables with distribution Rn(1, 2)
which clearly diverges as n → ∞ (see, for example, Lemma 2.7 in [BCC11a]). �

5. Proofs of the main results

In the case that a Lévy-Khintchine ensemble (Cn)n∈N
is real and has character-

istics of the form (0, 0,Π), then results of Section 4 (Theorem 4.2, Proposition 4.7)
imply the existence of the LSD in expectation. On the other hand, if |Cn(1, 2)| is
a.s. uniformly bounded in n, Proposition 3.4 proves the existence of the LSD in
expectation.

We turn now to the general assumptions of Theorems 1.1 and 1.2. Before proving
the main results, we have three preliminary lemmas. Our first preliminary lemma
allows us to extend from convergence in expectation to almost sure convergence. It
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is a concentration of measure result first noticed in [GL09, Theorem 1] and later in
[BCC11b, Lemma C.2]. We state it here without proof.

Lemma 5.1 (Concentration for ESDs). Let Hn be an n×n Hermitian matrix such
that {Hn(j, k), j < k} are independent. For every real-valued continuous f(x) going
to 0 as x → ±∞ such that ‖f‖TV ≤ 1, and for every t ≥ 0,

P

(∣∣∣∣
∫
R

f dμHn
−E

∫
R

f dμHn

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−nt2/2

)
.

The next lemma verifies the self-adjointness of PWISTs required to use Theorem
4.2.

Lemma 5.2 (Self-adjointness of PWIST operators). Suppose that G∞[∅] =
(V∞, E∞,R∞) is a PWIST(σ, λΠ). Then the associated random conductance oper-
ator CG∞ on L2(V∞), as defined in (1.13), is essentially self-adjoint.

Proof. Denote the children of the root ∅ of a PWIST(σ, λΠ) by N = N[∅] where
they are ordered according to the absolute value of the conductances on the edges
where the edge to 1 has the largest absolute conductance. For κ > 0 as chosen
below, define the random variable

τ∅ := inf{J :
∞∑
j=J

|CG∞(∅, j)|2 ≤ κ}

and define the i.i.d. random variables {τv} similarly by considering the conductances
on N[v] (in place of N[∅]). By the integrability conditions on Lévy measure Π, we
may choose κ large enough so that Eτ∅ < 1. We may therefore employ the proof of
Proposition A.2 in [BCC11a] to show that for any PWIST, G∞ = (V∞, E∞,R∞),
there is a constant κ > 0 and a sequence of connected finite increasing subsets
(Vn)n∈N

whose union is V∞, and such that for all n and u ∈ Vn∑
v/∈Vn:v∼u

|CG∞(u, v)|2 < κ.

Finally, the existence of such a κ allows us to use Lemma A.3 in [BCC11a] to
conclude that any PWIST is essentially self-adjoint. Thus its closure is self-adjoint.

�

The final preliminary lemma, similar to arguments in [BAG08], is used to show
that the truncation in (3.1) does not effect the LSD too much. For any truncation
level τ > 0, let τCn be a matrix with entries given by

(5.1) τCn(j, k) := Cn(j, k)1{|Cn(j,k)|≤τ}.

Lemma 5.3 (Large deviation estimate for the rank of a truncation). For every
ε > 0 and τ � 0 (large enough depending on ε), there is a δε,τ > 0 such that

P(rank(Cn − τCn)/n ≥ ε) ≤ exp (−δε,τn) .

Proof. Fix ε > 0 and consider τ large enough (specified below). Define the events

Ujn := {there exists k such that k > j and |Cn(j, k)| > τ},
Ljn := {there exists k such that k < j and |Cn(j, k)| > τ}
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and note that

(5.2) rank(Cn − τCn) ≤
n∑

j=1

(
1Ujn

+ 1Ljn

)
.

We split rows of the matrix along the diagonal to handle the dependence (due to
the self-adjointness requirement) among the indicator random variables:

P(rank(Cn − τCn) ≥ 2nε) ≤ P

⎛
⎝ n∑

j=1

1Ujn
≥ nε

⎞
⎠+P

⎛
⎝ n∑

j=1

1Ljn
≥ nε

⎞
⎠

≤ 2P

⎛
⎝ n∑

j=1

1Ujn
≥ nε

⎞
⎠

≤ 2P

⎛
⎝ n∑

j=1

1
(j)
U1n

≥ nε

⎞
⎠(5.3)

where {1(j)U1n
}nj=1 are independent copies of 1U1n

. The last step follows since the
independent variables {1Ujn

}nj=1 are each stochastically dominated by 1U1n
.

Since the triangular array {Cn(1, k), 1 ≤ k ≤ n}n∈N satisfies (1.4),

lim
n→∞

P(U1n) = 1− exp{−Π([τ,∞))},

so we may choose τ large enough so that

sup
n

P(U1n) = p < ε.

The lemma follows by applying a standard large deviation estimate for i.i.d.
Bernoulli(p) random variables to the right side of (5.3). �

This last lemma is used in conjunction with a metric which is compatible with
weak convergence. Let

‖f‖L := sup
x�=y

|f(x)− f(y)|
|x− y| + sup

x
|f(x)|.

Lemma 2.1 in [BAG08] says the following variant of the Dudley distance gives a
topology which is compatible with weak convergence:

(5.4) d1(μ, ν) := sup
‖f‖L≤1,f↑

∣∣∣∣
∫

f dμ−
∫

f dν

∣∣∣∣ .
Moreover, Lidskii’s estimate (see equation (8) in [BAG08]) implies

(5.5) d1(μCn
, μτCn

) ≤ rank(Cn − τCn)
n

.

Proof of Theorems 1.1 and 1.2. Let us first state some simplifications for the task
of showing that the LSD exists as a weak limit, almost surely.

First of all, by the Borel-Cantelli lemma and Lemma 5.1, it is enough to show
weak convergence of (EμCn

)n∈N
to EμC∞ . Next, by exchangeability, it is enough to

show weak convergence of the expected spectral measures associated to the basis
vector e1. Finally, by Lemma A.2, it is equivalent to show convergence of the
Cauchy-Stieltjes transforms of these expected spectral measures for each z ∈ C+
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(the limit will be a probability measure since it is the spectral measure associated
to a unit vector).

Choose a Lévy-Khintchine ensemble (Cn)n∈N
and let (τm)m∈N

be a sequence of
positive truncation levels which go to infinity. For each truncation level τm, consider
a new sequence of matrices (τmCn)n∈N

given by (5.1). Recalling our choice of hn

from Section 2, we also consider their modifications (τmCσ
n)n∈N

(truncation occurs
before modification).

Fix m. Each modified matrix sequence (τmCσ
n)n∈N

satisfies the hypotheses of

Proposition 4.7. Thus the associated graphs have a PWIST(σ, λ
(m)
Π ) as their local

weak limit as n → ∞, where λ
(m)
Π is the intensity λΠ restricted to the set

(−∞,−1/τm] ∪ [1/τm,∞).

The closure of the associated limiting operator is self-adjoint by Lemma 5.2. More-
over, by Proposition A.1 and the properties of the replacement procedure, we have
for each j ∈ N that

(5.6) lim
ε↘0

lim
n→∞

n∑
k=1

Var
(
Cσ
n(j, k)1{|Cσ

n(j,k)|≤ε}
)
= 0,

which is equivalent to (4.3) since the entries Cσ
n(j, k)1{|Cσ

n(j,k)|≤ε} have a real dis-
tribution which is symmetric for ε < σ (the truncation τm is unnecessary due to
1{|Cσ

n(j,k)|≤ε}).
By the above considerations, we may use Theorem 4.2 and the argument be-

low (4.6) to conclude Theorem 1.2 for each sequence (τmCσ
n)n∈N

. Thus, the ex-
pected LSD of (τmCσ

n)n∈N
, denoted by EμτmCσ

∞ , is the expected spectral mea-
sure at e∅ for the self-adjoint random conductance operator τmCσ

∞ associated to a

PWIST(σ, λ
(m)
Π ).

Now take the local weak limit of the PWIST(σ, λ
(m)
Π ) graphs as m → ∞. Since

these graphs are truncations of a PWIST(σ, λΠ), it is clear that their local weak
limit is just a PWIST(σ, λΠ). We may therefore apply Theorem 4.2 once more to

conclude that the expected spectral measures at e∅ of the PWIST(σ, λ
(m)
Π ) oper-

ators converge weakly to the expected spectral measure at e∅ of a PWIST(σ, λΠ)
operator, which we denote by EμCσ

∞ . Thus, for every ε > 0 we can choose m large
enough so that

d1(EμτmCσ
∞ ,EμCσ

∞) < ε/3

and so that δε,τm > 0 in Lemma 5.3.
Equation (3.5) and Propositions 3.3 and 3.4 show that the expected LSD for

(τmCn)n∈N
exists. Moreover, by Proposition 3.1, it is equal to EμτmCσ

∞ . So we may
choose n0 large enough so that n > n0 implies

d1(EμτmCn
,EμτmCσ

∞) < ε/3.

Lemma 5.3 and (5.5) show that we may finally choose n1 large enough so that
n > n1 implies

d1(EμCn
,EμτmCn

) < ε/3.

Combining the above, we have for all n > max(n0, n1),

d1(EμCn
,EμCσ

∞) < ε,

and so the ESDs of (Cn)n∈N
converge weakly in expectation (and thus a.s.) to EμCσ

∞ ,
which is the expected spectral measure at e∅ of Cσ

∞ associated to a PWIST(σ, λΠ).
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The claim that μC∞ has bounded support if and only if Π is trivial follows from
the remark at the very end of Section 3. The claim that μC∞ is symmetric follows
from the fact that replacing Cn with −Cn does not change the ESD. �

Proof of Proposition 1.3. The proof is an application of the resolvent identity. For
details, we refer the reader to Proposition 2.1 in [Kle98] or Theorem 4.1 in [BCC11a].
The latter proof works in our setting almost word for word. �

Appendix A. Some additional tools

Infinite divisibility. The following important set of criteria for convergence to
an infinitely divisible law with characteristics (σ2, b,Π) was found independently
by Doeblin and Gnedenko (see Corollary 15.16 in [Kal02]). For 0 < h < 1, define

σ2
h := σ2 +

∫
|x|≤h

x2 Π(dx) and bh := b−
∫
h<|x|

x

1 + x2
Π(dx).

Also, let R be the one-point compactification of R.

Proposition A.1 (Convergence criteria for triangular arrays). Suppose {C(n, k),
1 ≤ k ≤ n}n∈N is a triangular array of random variables such that each row consists
of i.i.d. random variables. The sum

n∑
j=1

C(n, j)

converges in distribution to an ID(σ2, b,Π) random variable if and only if for any
0 < h < 1 which is not an atom of Π,

• nP(C(n, 1) ∈ ·)vag→Π on R\{0},
• nE

(
|C(n, 1)|21{|C(n,1)|≤h}

)
→ σ2

h,

• nE
(
C(n, 1)1{|C(n,1)|≤h}

)
→ bh.

From the Cauchy-Stieltjes transform to LSDs. The use of the Cauchy-
Stieltjes transform in the context of random matrices dates back to Marčenko
and Pastur [MP67]. Mainly, one obtains convergence of the ESDs of the ran-
dom matrices (Cn)n∈N

by showing convergence of the Cauchy-Stieltjes transforms(
SμCn

(z)
)
n∈N

as defined in (4.5). The lemma given here is taken from Section 2.4

in [AGZ10].
The Cauchy-Stieltjes transform is invertible: For any open interval I such that

neither endpoint is an atom of μ

(A.1) μ(I) = lim
y→0

1

π

∫
I

�Sμ(x+ iy) dx.

This uniquely determines the measure μ so that one then obtains the following
result.

Lemma A.2 (Weak convergence via Cauchy-Stieltjes transforms). Suppose μn is
a sequence of probability measures on R and for each z ∈ C+, Sμn

(z) converges to
S(z) which is the Cauchy-Stieltjes transform of some probability measure μ. Then
μn converges weakly to μ.

For the proof of this lemma, see [AGZ10, Theorem 2.4.4].
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no. 3, 1810.

[DS07] R. Brent Dozier and Jack W. Silverstein, On the empirical distribution of eigenvalues
of large dimensional information-plus-noise-type matrices, J. Multivariate Anal. 98
(2007), no. 4, 678–694, DOI 10.1016/j.jmva.2006.09.006. MR2322123

http://www.ams.org/mathscinet-getitem?mr=2760897
http://www.ams.org/mathscinet-getitem?mr=1183889
http://www.ams.org/mathscinet-getitem?mr=1839499
http://www.ams.org/mathscinet-getitem?mr=2354364
http://www.ams.org/mathscinet-getitem?mr=2023650
http://www.ams.org/mathscinet-getitem?mr=2373441
http://www.ams.org/mathscinet-getitem?mr=2908617
http://www.ams.org/mathscinet-getitem?mr=2857250
http://www.ams.org/mathscinet-getitem?mr=2837123
http://www.ams.org/mathscinet-getitem?mr=1828732
http://www.ams.org/mathscinet-getitem?mr=2135315
http://www.ams.org/mathscinet-getitem?mr=3210147
http://www.ams.org/mathscinet-getitem?mr=830424
http://www.ams.org/mathscinet-getitem?mr=2361817
http://www.ams.org/mathscinet-getitem?mr=2724665
http://www.ams.org/mathscinet-getitem?mr=1873300
http://www.ams.org/mathscinet-getitem?mr=2567175
http://www.ams.org/mathscinet-getitem?mr=2322123


668 PAUL JUNG

[EK10] Noureddine El Karoui, On information plus noise kernel random matrices, Ann.
Statist. 38 (2010), no. 5, 3191–3216, DOI 10.1214/10-AOS801. MR2722468

[FZ97] Joshua Feinberg and A. Zee, Non-Hermitian random matrix theory: method of Her-
mitian reduction, Nuclear Phys. B 504 (1997), no. 3, 579–608, DOI 10.1016/S0550-
3213(97)00502-6. MR1488584

[GL09] Adityanand Guntuboyina and Hannes Leeb, Concentration of the spectral measure
of large Wishart matrices with dependent entries, Electron. Commun. Probab. 14

(2009), 334–342, DOI 10.1214/ECP.v14-1483. MR2535081
[HO07] Akihito Hora and Nobuaki Obata, Quantum probability and spectral analysis of

graphs, Theoretical and Mathematical Physics, Springer, Berlin, 2007. MR2316893
[Kal02] Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its

Applications (New York), Springer-Verlag, New York, 2002. MR1876169
[Kle98] Abel Klein, Extended states in the Anderson model on the Bethe lattice, Adv. Math.

133 (1998), no. 1, 163–184, DOI 10.1006/aima.1997.1688. MR1492789
[KSV04] O. Khorunzhy, M. Shcherbina, and V. Vengerovsky, Eigenvalue distribution of

large weighted random graphs, J. Math. Phys. 45 (2004), no. 4, 1648–1672, DOI
10.1063/1.1667610. MR2043849
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