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DRY TEN MARTINI PROBLEM FOR THE NON-SELF-DUAL

EXTENDED HARPER’S MODEL

RUI HAN

Abstract. In this paper we prove the dry version of the Ten Martini problem:
Cantor spectrum with all gaps open, for the extended Harper’s model in the
non-self-dual region for Diophantine frequencies.

1. Introduction

The study of independent electrons on a two-dimensional lattice exposed to a
perpendicular magnetic field and periodic potentials can be reduced via an appro-
priate choice of gauge field to the study of discrete one-dimensional quasiperiodic
Jacobi matrices. The most extensively studied case is the almost Mathieu operator
(AMO) acting on l2(Z) defined by

(Hλ,α,θu)n = un+1 + un−1 + 2λ cos 2π(θ + nα)un.

This is a one-dimensional tight-binding model with anisotropic nearest neighbor
couplings in general. A more general model, called the extended Harper’s model
(EHM), is the operator acting on l2(Z) defined by:

(Hλ,α,θu)n = c(θ + nα)un+1 + c̃(θ + (n− 1)α)un−1 + 2 cos 2π(θ + nα)un.

where c(θ) = λ1e
−2πi(θ+α

2 ) + λ2 + λ3e
2πi(θ+α

2 ) and c̃(θ) = λ1e
2πi(θ+α

2 ) + λ2 +
λ3e

−2πi(θ+α
2 ). It is obtained when both the nearest neighbor coupling (expressed

through λ2) and the next-nearest couplings (expressed through λ1 and λ3) are
included. This model includes AMO as a special case (when λ1 = λ3 = 0).

For the AMO, it was proved in [5] that the spectrum is a Cantor set for any
α ∈ R \ Q and λ �= 0. This is the Ten Martini problem dubbed by Barry Simon,
after an offer of Mark Kac. A much more difficult problem, known as the dry
version of the Ten Martini problem, is to prove that the spectrum is not only a
Cantor set, but that all gaps predicted by the Gap-Labelling theorem [10], [15] are
open. The first result was obtained for Liouvillean α [12], and later it was proved
for a set (λ, α) of positive Lebesgue measure [16]. The most recent result is [6],
in which they were able to deal with all Diophantine frequencies and λ �= 1. A
solution for all irrational frequencies and λ �= 1 was also recently announced in [9].

Recently, there have been several important advances on the spectral theory
of the EHM: purely point spectrum for Diophantine α and a.e. θ in the positive
Lyapunov exponent region [13]; the exact formula for Lyapunov exponent for all
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coupling constants [14]; the spectral decomposition for a.e. α [7]. However the
results that study the spectrum as a set have not been obtained for the EHM.

For EHM, depending on the values of the parameters λ1, λ2, λ3, we could divide
the parameter space into three regions as shown in the picture below:

λ2

λ1 + λ3

λ1 + λ3 = λ2

1

1

region I

region II

region III

LII

LI

LIII

region I : 0 < max (λ1 + λ3, λ2) < 1,

region II : 0 < max (λ1 + λ3, 1) < λ2,

region III : 0 < max (1, λ2) < λ1 + λ3.

According to the action of the duality transformation σ : λ = (λ1, λ2, λ3) → λ̂ =
(λ3

λ2
, 1
λ2
, λ1

λ2
), region I and region II are dual to each other and region III is a self-

dual region. Region I is the positive Lyapunov exponent region, which is a natural
extension of the segment {λ1 + λ3 = 0, 0 < λ2 < 1} corresponding to the case
λ > 1 in the AMO. Region II is the subcritical region, which is an extension of the
segment {λ1 + λ3 = 0, 1 < λ2} corresponding to the case λ < 1 in the AMO.

In this paper we prove the dry version of the Ten Martini problem in region I
and region II under the Diophantine condition.

Let pn/qn be the continued fraction appoximants of α ∈ R \Q. Let

β(α) = lim sup
n→∞

ln qn+1

qn
.

If β(α) = 0, we say α satisfies the Diophantine condition, denoted by α ∈ DC. It
is easily seen that such α form a full measure subset of T.

It is known that when E is in the closure of a spectral gap, the integrated density
of states (IDS) N(E) ∈ αZ + Z (refer to (2.5) for the definition of IDS) [10], [15].
Here we prove the inverse is true.

Theorem 1.1. If α ∈ DC and λ belongs to region I or region II, all possible spectral
gaps are open.
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Remark 1.1. We note the Dry Ten Martini problem has not yet been solved for
the self-dual AMO. In the self-dual region III, Cantor spectrum is known in the
isotropic case (when λ1 = λ3); see Fact 2.1 in [7]. In fact one could prove the
operator has zero Lebesgue measure spectrum for all frequencies.

Remark 1.2. In regions I and II, for Liouvillean α (where β(α) is large), it is not
clear whether even the Cantor spectrum holds. The proof may require a non-trivial
adjustment of the proof for AMO in [12].

We first establish almost localization (see section 3.1) in region I. Then a quan-
titative version of Aubry duality to obtain almost reducibility (see section 3.2) in
region II which enables us to deal with all energies whose rotation numbers are
α-rational.

Thus the strategy follows that of [6], but we need to extend the almost localiza-
tion and quantitative duality, as well as the final argument to our Jacobi setting,
which is non-trivial on a technical level. At the same time unlike [6], we only
deal with a short-range dual operator, leading to a significant streamlining of some
arguments of [6].

We organize the paper as follows: in section 2 we present some preliminaries, in
section 3 we state our main results about almost localization and almost reducibility,
relying on which we provide a proof of Theorem 1.1. In sections 4 and 5 we prove
the main results that we present in section 3.

2. Preliminaries

2.1. Cocycles. Let α ∈ R\Q and A ∈ C0(T,M2(C)) measurable with log ‖A(x)‖ ∈
L1(T). The quasiperiodic cocycle (α,A) is the dynamical system on T×C2 defined
by (α,A)(x, v) = (x+ α,A(x)v). The Lyapunov exponent is defined by

L(α,A) = lim
n→∞

1

n

∫
T

log ‖An(x)‖dx = inf
n

1

n

∫
T

log ‖An(x)‖dx.

where {
An(x) = A(x+ (n− 1)α) · · ·A(x) for n ≥ 0,

An(x) = A−1(x+ nα) · · ·A−1(x− α) for n < 0.

Lemma 2.1 (e.g. [6]). Let (α,A) be a continuous cocycle; then for any δ > 0 there
exists Cδ > 0 such that for any n ∈ N and θ ∈ T we have

‖An(θ)‖ ≤ Cδe
(L(α,A)+δ)n.

We say that (α,A) is uniformly hyperbolic if there exists continuous splitting
C2 = Es(x) ⊕ Eu(x), x ∈ T such that for some constant C, η > 0 and all n ≥ 0,
‖An(x)v‖ ≤ Ce−ηn‖v‖ for v ∈ Es(x) and ‖A−n(x)v‖ ≤ Ce−ηn‖v‖ for v ∈ Eu(x).

Given two complex cocycles (α,A(1)) and (α,A(2)), we say they are complex
conjugate to each other if there is M ∈ C0(T, SL(2,C)) such that

M−1(x+ α)A(1)(x)M(x) = A(2)(x).

We assume now that A is a real cocycle, A ∈ C0(T, SL(2,R)). The notation of real
conjugacy (between real cocycles) is the same as before, except that we look for
M ∈ C0(T, PSL(2,R)). A reason why we look for M ∈ C0(T, PSL(2,R)) instead
of M ∈ C0(T, SL(2,R)) is given by the following well-known result.
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Theorem 2.2. Let (α,A) be uniformly hyperbolic, assume α ∈ DC and A ana-
lytic. Then there exists M ∈ Cω(T, PSL(2,R))1 such that M−1(x + α)A(x)M(x)
is constant.

We say (α,A) is (analytically) reducible if it is real conjugate to a constant
cocycle by an analytic conjugacy.

Let

Rθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
.

Any A ∈ C0(T, PSL(2,R)) is homotopic to x → R k
2 x

for some k ∈ Z called the

degree of A, denoted by degA = k.
Assume now that A ∈ C0(T, SL(2,R)) is homotopic to identity. Then there

exists φ : R/Z× R/Z → R and v : R/Z× R/Z → R+ such that

A(x)

(
cos 2πy
sin 2πy

)
= v(x, y)

(
cos 2π(y + φ(x, y))
sin 2π(y + φ(x, y))

)
.

The function φ is called a lift of A. Let μ be any probability on R/Z×R/Z which
is invariant under the continuous map T : (x, y) 	→ (x+ α, y + φ(x, y)), projecting
over Lebesgue measure on the first coordinate. Then the number

ρ(α,A) =

∫
φ dμmodZ

is independent of the choices of φ and μ, and is called the fibered rotation number
of (α,A).

It can be proved directly by the definition that

|ρ(α,A)− θ| < C‖A−Rθ‖0.(2.1)

If (α,A(1)) and (α,A(2)) are real conjugate, M−1(x+α)A(2)(x)M(x) = A(1)(x),
and M : R/Z → PSL(2,R) has degree k, then

ρ(α,A(1)) = ρ(α,A(2))− kα/2.(2.2)

For uniformly hyperbolic cocycles there is the following well-known result.

Theorem 2.3. Let (α,A) be a uniformly hyperbolic cocycle, with α ∈ R \Q. Then
2ρ(α,A) ∈ αZ+ Z.

2.2. Extended Harper’s model. We consider the extended Harper’s model
{Hλ,θ}θ∈T. The formal solution to Hλ,θu = Eu can be reconstructed via the fol-
lowing equation: (

un+1

un

)
= Aλ,E(θ + nα)

(
un

un−1

)
,

where Aλ,E(θ) =
1

c(θ)

(
E − 2 cos 2πθ −c̃(θ − α)

c(θ) 0

)
. Notice that since Aλ,E(θ) /∈

SL(2,R), we introduce the following matrix (see Lemma A.2):

Ãλ,E(θ) =
1√

|c|(θ)|c|(θ − α)

(
E − 2 cos 2πθ −|c|(θ − α)

|c|(θ) 0

)

= Qλ(θ + α)Aλ,E(θ)Q
−1
λ (θ),

1In general one cannot take M ∈ Cω(T, SL(2,R)).
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where |c|(θ) =
√
c(θ)c̃(θ) (which is not the same as |c(θ)| =

√
c(θ)c(θ) when θ /∈ T)

and Qλ(θ) is analytic on |Imθ| ≤ ε1
2π .

The spectrum of Hλ,θ denoted by Σλ, does not depend on θ [8], and it is the set

of E such that (α, Ãλ,E) is not uniformly hyperbolic.

The Lyapunov exponent is defined by Lλ(E) = L(α,Aλ,E) = L(α, Ãλ,E).
For a matrix-valued function M(θ), let Mε(θ) = M(θ + iε) be the phase-

complexified matrix.
In [4], Avila divides all the energies in the spectrum into three catagories:

supercritical, namely the energy with positive Lyapunov exponent; subcritical,
namely the energy whose Lyapunov exponent of the phase-complexified cocycle
is identically equal to zero in a neighborhood of ε = 0; critical, otherwise.

The following theorem is shown in [14] (see also the appendix):

Theorem 2.4. Extended Harper’s model is supercritical in region I and subcritical
in region II. Indeed

• when λ belongs to region II, Lλ(E) = L(α,Aλ,E,ε) = L(α, Ãλ,E,ε) = 0 on
|ε| ≤ 1

2π ε1(λ),

• when λ belongs to region II, we have λ̂ = (λ3

λ2
, 1
λ2
, λ1

λ2
) belongs to region I

and

(2.3) Lλ̂(E) = ε1(λ),

where

(2.4) ε1(λ) = ln
λ2 +

√
λ2
2 − 4λ1λ3

max (λ1 + λ3, 1) +

√
max (λ1 + λ3, 1)

2 − 4λ1λ3

> 0.

Fix a θ and f ∈ l2(Z). Let μf
λ,θ be the spectral measure of Hλ,θ corresponding

to f ,

〈(Hλ,θ − z)−1f, f〉 =
∫
R

1

E − z
dμf

λ,θ(E)

for z in the resolvent set C \ Σλ.
The integrated density of states (IDS) is the function Nλ : R → [0, 1] defined by

Nλ(E) =

∫
T

μf
λ,θ(−∞, E]dθ,(2.5)

where f ∈ l2(Z) is such that ‖f‖l2(Z) = 1. It is a continuous non-decreasing
surjective funtion.

Notice that Ãλ,E(θ) ∈ SL(2,R) is homotopic to identity in C0(T, SL(2,R)), in
fact just consider

Ht(λ,E, θ) =
1√

|c|(θ)|c|(θ − tα)

(
t(E − v(θ)) −|c|(θ − tα)

|c|(θ) 0

)

which establishes a homotopy of Ãλ,E(θ) to R 1
4
and hence to the identity. Therefore

we can define the rotation number ρ(α, Ãλ,E). Let ρλ(E) = ρ(α, Ãλ,E). Notice that
ρλ(E) is associated to the operator

(H̃λ,θu)n = |c|(θ + nα)un+1 + |c|(θ + (n− 1)α)un−1 + 2 cos 2π(θ + nα)un.
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It is easily seen that for each θ, H̃λ,θ and Hλ,θ differ by a unitary operator, thus

they share the same spectrum and integrated density of states, Ñλ(E) = Nλ(E).

The relation between the integrated density of states and rotation number of H̃λ,θ

yields

(2.6) Nλ(E) = Ñλ(E) = 1− 2ρλ(E).

2.3. The dual model. It turns out the spectrum Σλ of Hλ,θ is related to the
spectrum Σλ̂ of Hλ̂,θ in the following way:

Σλ = λ2Σλ̂

by Aubry duality. This map σ : λ → λ̂ establishes the duality between region I and
region II. The IDS Nλ(E) of Hλ,θ coincide with the IDS Nλ̂(E/λ2) of Hλ̂,θ. Since

Σλ = λ2Σλ̂, we have the following

Theorem 2.5 ([11], [17]). For any λ, θ, there exists a dense set of E ∈ Σλ such
that there exists a non-zero solution of Hλ̂,θu = E

λ2
u with |uk| ≤ 1 + |k|.

2.4. Bounded eigenfunction for every energy. The next result from [6] allows
us to pass from a statement of every θ to every E.

Theorem 2.6 ([6]). If E ∈ Σλ, then there exists θ(E) ∈ T and a bounded solution
of Hλ̂,α,θu = E

λ2
u with u0 = 1 and |uk| ≤ 1.

2.5. Localization and reducibility.

Theorem 2.7. Given α irrational, θ ∈ R and λ in region II, fix E ∈ Σλ, and
suppose Hλ̂,θu = E

λ2
u has a non-zero exponentially decaying eigenfunction u =

{uk}k∈Z
, |uk| ≤ e−c|k| for k large enough. Then the following hold:

• (A) If 2θ /∈ αZ+ Z, then there exists M : R/Z → SL(2,R) analytic, such
that

M−1(x+ α)Ãλ,E(x)M(x) = R±θ.

In this case ρ(α, Ãλ,E) = ±θ + m
2 α modZ, where m = degM (here since

M ∈ SL(2,R), we have that m is an even number) and 2ρ(α, Ãλ,E) /∈
αZ+ Z.

• (B) If 2θ ∈ αZ+ Z and α ∈ DC, then there exists M : R/Z → PSL(2,R)
analytic, such that

M−1(x+ α)Ãλ,E(x)M(x) =

(
±1 a
0 ±1

)

with a �= 0. In this case ρ(α, Ãλ,E) =
m
2 α modZ, where m = degM , i.e.

2ρ(α, Ãλ,E) ∈ αZ+ Z.

Proof. Let u(x) =
∑

k∈Z
ûke

2πikx, U(x) =

(
e2πiθu(x)
u(x− α)

)
. Then

Aλ,E(x)U(x) = e2πiθU(x+ α),

Ãλ,E(x)Ũ(x) = e2πiθŨ(x+ α).

Notice Ũ(x) = Qλ(x)U(x) is analytic in |Imx| < c̃
2π , where c̃ = min (ε1, c), ε1 as

in (2.4) and Qλ as in Lemma A.2. Define Ũ(x) to be the complex conjugate of
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Ũ(x) on T and its analytic extension to |Imx| < c̃
2π . Let M(x) be the matrix with

columns Ũ(x) and Ũ(x). Then,

Ãλ,E(x)M(x) = M(x+ α)

(
e2πiθ 0
0 e−2πiθ

)
on T.

Then since detM(x+ α) = detM(x), we know detM(x) is a constant on T.

Case 1. If detM(x) �= 0, then let M(x) = M̃(x)

(
1 1
i −i

)
. Then

M̃−1(x+ α)Ãλ,E(x)M̃(x) = Rθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
.

Case 2. If detM(x) = 0, then if we denote Ũ(x) =

(
u1(x)
u2(x)

)
, then detM(x) = 0

means there exists η(x) such that u1(x) = η(x)u1(x) and u2(x) = η(x)u2(x). This
implies that η(x) ∈ Cω(T,C), and |η(x)| = 1 on T. Therefore there exists φ(x) ∈
Cω(R/2Z,C) such that φ2(x) = η(x) and |φ(x)| = 1. It is easy to see φ(x)u1(x) =

φ(x)u1(x) and φ(x)u2(x) = φ(x)u2(x). Then we define W (x) =

(
φ(x)u1(x)

φ(x)u2(x)

)
, it is

a real vector on R/2Z with W (x + 1) = ±W (x), and Ũ(x) = φ(x)W (x). Now let

us define M̃(x) to be the matrix with columns W (x) and 1
‖W (x)‖−2R 1

4
W (x); then

det M̃(x) = 1 and M̃(x) ∈ PSL(2,R). Since

Ãλ,E(x)W (x) =
e2πiθφ(x+ α)

φ(x)
W (x+ α)

we have

Ãλ,E(x)M̃(x) = M̃(x+ α)

(
d(x) τ (x)

0 d(x)
−1

)

where d(x) = e2πiθφ(x+α)
φ(x) , |d(x)| = 1 and d(x) being a real number, therefore

d(x) = ±1. Also τ (x) ∈ Cω(R/2Z,C). But in fact M̃−1(x+ α)Ãλ,E(x)M̃(x) is
well defined on T. Therefore τ (x) ∈ Cω(T,C). Now since we assumed α ∈ DC,
we can further reduce τ (x) to the constant τ =

∫
T
τ (x)dx. In fact there exists

ψ(x) ∈ Cω(T,C) such that −ψ(x+ α) + ψ(x) + τ (x) =
∫
T
τ (x)dx. This implies(

1 −ψ(x+ α)
0 1

)
M̃−1(x+ α)Ãλ,E(x)M̃(x)

(
1 ψ(x)
0 1

)
=

(
±1 τ
0 ±1

)
.

In fact if detM(x) = 0, then e2πiθφ(x+α)
φ(x) = ±1, which implies that 2θ ∈ αZ+Z.

Therefore if 2θ /∈ αZ+Z, we must be in case (A). If on the other hand, 2θ ∈ αZ+Z,
2θ = kα+ n, suppose M̃−1(x+ α)Ãλ,E(x)M̃(x) = Rθ; then

R− k
2 (x+α)M̃

−1(x+ α)Ãλ,E(x)M̃(x)R k
2 x

= Rn
2
= ±I

leading to a contradiction. Therefore if 2θ ∈ αZ+ Z, we must be in case (B). �
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2.6. Continued fractions. Let {qn} be the denominators of the continued fraction
approximants of α. We recall the following properties:

‖qnα‖R/Z = inf
1≤|k|≤qn+1−1

‖kα‖R/Z,

1

2qn+1
≤ ‖qnα‖R/Z ≤ 1

qn+1
.

Recall that the Diophantine condition of α is β(α) = lim supn→∞
ln qn+1

qn
= 0.

Thus for any ξ > 0, there exists Cξ > 0 such that

(2.7) ‖kα‖R/Z ≥ Cξe
−ξ|k| for any k �= 0.

Lemma 2.8 ([5]). Let α ∈ R\Q, x ∈ R and 0 ≤ l0 ≤ qn − 1 be such that

| sinπ(x+ l0α)| = inf
0≤l≤qn−1

| sinπ(x+ lα)|;

then for some absolute constant C1 > 0,

−C1 ln qn ≤
∑

0≤l≤qn−1,l �=l0

ln | sin π(x+ lα)|+ (qn − 1) ln 2 ≤ C1 ln qn.

Lemma 2.9 ([6]). Let 1 ≤ r ≤ [qn+1/qn]. If p(x) has essential degree at most
k = rqn − 1 and x0 ∈ R/Z, then for some absolute constant C2,

‖p(x)‖0 ≤ C2q
C2r
n+1 sup

0≤j≤k
|p(x0 + jα)|.

3. Main estimates and proof of Theorem 1.1

3.1. Almost localization for every θ.

Definition 3.1. Let α ∈ R \Q, θ ∈ R, ε0 > 0. We say that k is an ε0-resonance of
θ if ‖2θ − kα‖ ≤ e−ε0|k| and ‖2θ − kα‖ = min|l|≤|k| ‖2θ − lα‖.

Definition 3.2. Let 0 = |n0| < |n1| < ... be the ε0-resonances of θ. If this sequence
is infinite, we say θ is ε0-resonant, otherwise we say it is ε0-non-resonant.

Definition 3.3. We say the extended Harper’s model {Hλ,α,θ}θ exhibits almost
localization if there exists C0, C3, ε0, ε̃0 > 0, such that for every solution φ to
Hλ,α,θφ = Eφ satisfying φ(0) = 1 and |φ(m)| ≤ 1+|m|, and for every C0(1+|nj |) <
|k| < C−1

0 |nj+1|, we have |φ(k)| ≤ C3e
−ε̃0|k| (where nj are the ε0-resonances of θ).

Theorem 3.1. If λ belongs to region II, {Hλ̂,α,θ}θ is almost localized for every
α ∈ DC.

Remark 3.1. It is clear from Theorem 3.1 that almost localization implies localiza-
tion for non-resonant θ.

We will actually prove the following explicit lemma:

Lemma 3.2. Let λ be in region II. Let C4 be the absolute constant in Lemma 4.3,
ε1 = ε1(λ) be as in (2.4); then for any 0 < ε0 < ε1

100C4
, there exists constant C3 > 0,

which depends on λ, α and ε0, so that for every solution u of Hλ̂,α,θu = Eu satisfying

u(0) = 1 and |uk| ≤ 1 + |k|, if 3(|nj | + 1) < |k| < 1
3 |nj+1|, then |uk| ≤ C3e

− ε1
5 |k|,

where {nj} are the ε0-resonances of θ.

The proof of Lemma 3.2 (and thus of Theorem 3.1) is given in section 4.
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3.2. Almost reducibility. Let λ be in region II. For every E ∈ Σλ, let θ(E) ∈ T
be given in Theorem 2.6. Let 0 < ε0 < ε1

100C4
and {nj} be the set of ε0-resonances

of θ(E). Then for some positive constants N0, C and c, independent of E and θ,
we have the following theorem.

Theorem 3.3. For any fixed j, with N0 < n = |nj |+1 < ∞, let N = |nj+1|, L−1 =
‖2θ−njα‖. Then there exists W : T → SL(2,R) analytic such that | degW | ≤ Cn,

‖W‖0 ≤ CLC and ‖W−1(x+ α)Ãλ,E(x)W (x)−R∓θ‖ ≤ Ce−cN .

Remark 3.2. Notice that this theorem requires n > N0, which is not always ensured
when θ(E) is non-resonant, however in that case we have localization for Hλ̂,α,θ

instead of almost localization. We will prove Theorem 3.3 in section 5.

3.3. Spectral consequences of almost reducibility. Let ε1 = ε1(λ) and C4 be
as in Lemma 3.2.

Theorem 3.4. Assume α ∈ DC. For λ in region II, fix E ∈ Σλ. Assume θ(E) ∈ T
is such that Hλ̂,α,θu = E

λ2
u has solution satisfying u0 = 1 and |uk| ≤ 1. Let C be the

constant in Theorem 3.3. Then θ(E) and ρ(α, Ãλ,E) have the following relation:

• (A) If θ is ε0-non-resonant for some ε1
100C4

> ε0 > 0, then 2θ ∈ Zα + Z if

and only if 2ρ(α, Ãλ,E) ∈ Zα+ Z.

• (B) If θ is ε0-resonant for some ε1
100C4

> ε0 > 0, then ρ(α, Ãλ,E) is ε0
C+2 -

resonant.

Proof. (A) When θ is ε0-non-resonant for some ε1
100C4

> ε0 > 0, Theorem 3.1 implies
Hλ̂,α,θ has exponentially decaying eigenfunction. Then applying Theorem 2.7 we

get 2θ ∈ Zα+ Z if and only if 2ρ(α, Ãλ,E) ∈ Zα+ Z.
(B) Assume θ is ε0-resonant for some ε1

100C4
> ε0 > 0. Fix any ξ < ε0

2C+2 ; then

there exists Cξ > 0 such that for any k �= 0 we have ‖kα‖ ≥ Cξe
−ξ|k|. Now take an

ε0-resonance nj of θ such that n = |nj | > max (
− lnCξ/2

ε0−(2C+2)ξ , N0). Then there exists

|m| ≤ Cn such that 2ρ(α, Ãλ,E)−mα = −2θ. Then

‖2ρ(α, Ãλ,E)− (m− nj)α‖ = ‖2θ − njα‖ < e−ε0n ≤ e−
ε0

C+2 |m−nj |.

Take any |l| ≤ |m− nj |, l �= m− nj . Then

‖(l − (m− nj))α‖ ≥ Cξe
−2ξ|m−nj | > 2e−ε0n > 2‖2ρ(α, ÃE)− (m− l0)α‖.

Thus ‖2ρ(α, ÃE)−lα‖ > ‖2ρ(α, ÃE)−(m−nj)α‖ for any |l| ≤ |m−nj |, l �= m−nj .

This by definition means ρ(α, Ãλ,E) is
ε0

C+2 -resonant. �

Now based on Theorem 3.4, we can complete the proof of the dry version of the
Ten Martini problem for extended Harper’s model in regions I and II.

Proof of Theorem 1.1. It is enough to consider λ in region II. Let E ∈ Σλ be
such that Nλ(E) ∈ Zα + Z. We are going to show E belongs to the boundary

of a component of R \ Σλ. Now by (2.6) we have 2ρ(α, Ãλ,E) ∈ αZ + Z, thus by
Theorem 3.4, 2θ(E) ∈ αZ + Z. By Theorem 2.7, this means there exist M(x) ∈
Cω

h (T, PSL(2,R)) such that M−1(x + α)Ãλ,E(x)M(x) =

(
±1 a
0 ±1

)
. Without
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loss of generality, we assume M−1(x + α)Ãλ,E(x)M(x) =

(
1 a
0 1

)
. Let M̃(x) =

M(x)√
|c|(x−α)

; then

M̃−1(x+ α)

(
E−v(x)
|c|(x) − |c|(x−α)

|c|(x)
1 0

)
M̃(x) =

(
1 a
0 1

)
.

Now let M̃(x) =

(
M11(x) M12(x)
M21(x) M22(x)

)
. Then M21(x) = M11(x−α) and M22(x) =

M12(x− α)− aM11(x− α) and

M̃−1(x+ α)

(
E+ε−v(x)

|c|(x) − |c|(x−α)
|c|(x)

1 0

)
M̃(x)

=

(
1 a
0 1

)
+ ε

(
M11(x)M12(x)− aM2

11(x) M2
12(x)− aM11(x)M12(x)

−M2
11(x) −M11(x)M12(x)

)
.

� M0 + εM1(x).

Now we look for Zε(x) of the form eεY (x) such that

Z−1
ε (x+ α)(M0 + εM1(x))Zε(x) = M0 + ε[M1] +O(ε2).

We then just need to solve the equation:

(I − εY (x+ α) +O(ε2))(M0 + εM1(x))(I + εY (x) +O(ε2))

= M0 + ε[M1] +O(ε2).

It is sufficient to solve the coholomogical equation:

Y (x+ α)M0 −M0Y (x) = M1(x)− [M1],

which is guaranteed by the Diophantine condition on α. Thus

(M(x+ α)Zε(x+ α))−1Ãλ,E(x)(M(x)Zε(x))

=

(
1 + ε[M11M12]− aε[M2

11] a+ ε[M2
12]− aε[M11M12]

−ε[M2
11] 1− ε[M11M12]

)
+O(ε2)

� Mε +O(ε2).

Notice that Ãλ,E is uniformly hyperbolic iff Trace(Mε) > 2 which is fulfilled when
−aε[M2

11] > 0. Thus for ε small, satisfying −aε[M2
11] > 0, E+ ε /∈ Σλ, which means

this spectral gap is open. �

4. Almost localization in region I

In this section we will prove Lemma 3.2. For fixed λ in region II and E, let
Dλ̂,E(θ) = cλ̂(θ)Aλ̂,E(θ), where cλ̂(θ) =

λ3

λ2
e−2πi(θ+α

2 ) + 1
λ2

+ λ1

λ2
e2πi(θ+

α
2 ). Regard-

ing the Lyapunov exponent, we recall the following result in [14]:

L(α,Aλ̂,E) = L(α,Dλ̂,E)−
∫
T

ln |cλ̂(θ)|dθ � L̃−
∫

ln |cλ̂| > 0,

where L̃ = ln
λ2+

√
λ2
2−4λ1λ3

2λ2
and

∫
ln |cλ̂| = ln

max (λ1+λ3,1)+
√

max (λ1+λ3,1)
2−4λ1λ3

2λ2
.
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Proof of of Lemma 3.2. Suppose u is a solution satisfying the condition of Lemma
3.2. For an interval I = [x1, x2], let ΓI be the coupling operator between I and
Z \ I:

ΓI(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c̃(θ + (x1 − 1)α), (i, j) = (x1, x1 − 1),
c(θ + (x1 − 1)α), (i, j) = (x1 − 1, x1),
c̃(θ + x2α), (i, j) = (x2 + 1, x2),
c(θ + x2α), (i, j) = (x2, x2 + 1),
0, otherwise.

Let HI = RIHλ̂,θR
∗
I be the restricted operator of Hλ̂,θ to I. Then for x ∈ I, we

have (HI +ΓI −E)u(x) = 0. Thus u(x) = GIΓIu(x), where GI = (E−HI)
−1. By

matrix multiplication,

u(x) =
∑

y∈I,(y,z)∈ΓI

GI(x, y)ΓI(y, z)u(z)

= c̃(θ + (x1 − 1)α)GI(x, x1)u(x1 − 1) + c(θ + x2α)GI(x, x2)u(x2 + 1).

Let us denote Pk(θ) = det (E −H[0,k−1](θ)). Then the k-step matrix Dλ̂,E,k(θ)

satisfies

Dλ̂,E,k(θ) =

(
Pk(θ) −c̃(θ − α)Pk−1(θ + α)

c(θ + (k − 1)α)Pk−1(θ) −c̃(θ − α)c(θ + (k − 1)α)Pk−2(θ + α)

)
.

This relation between Pk(θ) and Dλ̂,E,k(θ) gives a general upper bound of Pk(θ) in

terms of L̃. Indeed by Lemma 2.1, for any ε > 0 there exists C(ε) > 0 so that

|Pn(θ)| ≤ C(ε)e(L̃+ε)n for any n ∈ N.

By Cramer’s rule,

|GI(x1, y)| =
y−1∏
j=x1

|c(θ + jα)||
det (E −H[y+1,x2](θ))

det (E −HI(θ))
|

=

y−1∏
j=x1

|c(θ + jα)||Px2−y(θ + (y + 1)α)

Pk(θ + x1α)
|,

|GI(y, x2)| =
x2∏

j=y+1

|c(θ + jα)||
det (E −H[x1,y−1](θ))

det (E −HI(θ))
|

=

x2∏
j=y+1

|c(θ + jα)||Py−x1
(θ + x1α)

Pk(θ + x1α)
|.

Notice that Pk(θ) is an even function about θ + k−1
2 α, it can be written as a

polynomial of degree k in cos 2π(θ + k−1
2 α). Let Pk(θ) = Qk(cos 2π(θ +

k−1
2 α)).

Let Mk,r = {θ ∈ T, |Qk(cos 2πθ)| ≤ e(k+1)r}.

Definition 4.1. Fix m > 0. A point y ∈ Z is called (k,m)-regular if there exists
an interval [x1, x2] containing y, where x2 = x1 + k − 1 such that

|GI(y, xi)| ≤ e−m|y−xi| and dist(y, xi) ≥
1

3
k for i = 1, 2,

otherwise y is called (k,m)-singular.
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Lemma 4.1. Suppose y ∈ Z is (k, L̃−
∫
ln |cλ̂| − ρ)-singular. Then for any ε > 0

and any x ∈ Z satisfying y− 2
3k ≤ x ≤ y− 1

3k, we have θ+(x+ 1
2 (k− 1))α belongs

to Mk,L̃− 1
3ρ+ε for k > k(λ, ε, ρ).

Proof. Suppose there exists ε > 0 and x1: y − (1 − δ)k ≤ x1 ≤ y − δk, such
that θ + (x1 +

1
2 (k − 1))α does not belong to Mk,L̃− 1

3ρ+ε, that is, |Pk(θ + x1α)| >
e(k+1)(L̃−ρδ+ε),

|GI(x1, y)| ≤
y−1∏
j=x1

|cλ̂(θ + jα)|e(k−|x1−y|)(L̃+ε)e−(k+1)(L̃− 1
3ρ+ε)

< e−(L̃−
∫
ln |cλ̂|−ρ)|y−x1| for k > k(λ, ε, ρ).

Similarly

|GI(x2, y)| ≤ e−(L̃−
∫
ln |cλ̂|−ρ)|y−x2|.

x
yy − ( 12 − δ)k y + ( 12 − δ)ky − (1− δ)k y − δk

x+ 1
2 (k − 1)αx

�

Definition 4.2. We say that the set {θ1, ..., θk+1} is γ-uniform if

max
x∈[−1,1]

max
i=1,...,k+1

k+1∏
j=1,j �=i

|x− cos 2πθj |
| cos 2πθi − cos 2πθj |

< ekγ .

Lemma 4.2. Let γ1 < γ. If θ1, ..., θk+1 ∈ Mk,L̃−γ , then {θ1, ..., θk+1} is not γ1-

uniform for k > k(γ, γ1).

Proof. Otherwise, using Lagrange interpolation form we can get |Qk(x)| < ekL̃ for

all x ∈ [−1, 1]. This implies |Pk(x)| < ekL̃ for all x. But by Herman’s subharmonic

function argument,
∫
R/Z

ln |Pk(x)|dx ≥ kL̃. This is impossible. �

Now take ξ and ε0 such that 0 < 1000ξ < ε0. Then for |nj+1| > N(ξ) we have

2e−4ξ|nj+1| ≤ Cξe
−2ξ|nj+1| ≤ ‖(nj+1 − nj)α‖

= ‖nj+1α− 2θ + 2θ − njα‖ ≤ 2‖2θ − njα‖ ≤ 2e−ε0|nj |,

which yields that

(4.1) |nj+1| >
ε0
4ξ

|nj | > 250|nj |.

Without loss of generality, assume 3(|nj |+1) < y <
|nj+1|

3 and y > N(ξ). Select
n such that qn ≤ y

8 < qn+1 and let s be the largest positive integer satisfying
sqn ≤ y

8 . Set I1, I2 ⊂ Z as follows:

I1 = [1− 2sqn, 0] and I2 = [y − 2sqn + 1, y + 2sqn], if nj < 0,

I1 = [0, 2sqn − 1] and I2 = [y − 2sqn + 1, y + 2sqn], if nj ≥ 0.

Lemma 4.3. Let θj = θ+ jα; then set {θj}j∈I1∪I2 is C4ε0+C4ξ-uniform for some
absolute constant C4 and y > y(α, ε0, ξ).
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Proof. Without loss of generality, we assume nj > 0. Take x = cos 2πa. Now it
suffices to estimate∑

j∈I1∪I2, j �=i

(ln | cos 2πa− cos 2πθj | − ln | cos 2πθi − cos 2πθj |) �
∑
1

−
∑
2

.

Lemma 2.8 reduces this problem to estimating the minimal terms.
First we estimate

∑
1:∑

1

=
∑

j∈I1∪I2,j �=i

ln | cos 2πa− cos 2πθj |

=
∑

j∈I1∪I2,j �=i

ln | sinπ(a+ θj)|+
∑

j∈I1∪I2,j �=i

ln | sinπ(a− θj)|+ (6sqn − 1) ln 2

�
∑
1,+

+
∑
1,−

+(6sqn − 1) ln 2.

We cut
∑

1,+ or
∑

1,− into 6s sums and then apply Lemma 2.8. We get that for
some absolute constant C1:∑

1

≤ −6sqn ln 2 + C1s ln qn.

Next, we estimate
∑

2:∑
2

=
∑

j∈I1∪I2,j �=i

ln | cos 2πθj − cos 2πθi|

=
∑

j∈I1∪I2,j �=i

ln | sinπ(2θ + (i+ j)α)|

+
∑

j∈I1∪I2,j �=i

ln | sinπ(i− j)α|+ (6sqn − 1) ln 2

�
∑
2,+

+
∑
2,−

+(6sqn − 1) ln 2.

We need to carefully estimate the minimal terms. For
∑

2,+, we use the property

of resonant set; and for
∑

2,−, we use the Diophantine condition on α.

For any 0 < |j| < qn+1 , we have ‖jα‖ ≥ ‖qnα‖ ≥ Cξe
−ξqn . Therefore

max(ln | sinx|, ln | sin(x+ πjα)|) ≥ −2ξqn for y > y(α, ξ).

This means in any interval of length sqn, there can be at most one term which is
less than −2ξqn. Then there can be at most 6 such terms in total.

For the part
∑

2,−, since ‖(i − j)α‖ ≥ Cξe
−ξ|i−j| ≥ e−20ξsqn , these 6 smallest

terms must be bounded by −20ξsqn from below. Hence
∑

2,− ≥ −6sqn ln 2 −
Cξsqn − Cs ln qn for y > y(ξ) and some absolute constant C.

For the part
∑

2,+, notice |i+ j| ≤ 2y+4sqn < 3y < |nj+1| and i+ j > 0 > −nj .

Suppose ‖2θ+ k0α‖ = minj∈I1∪I2 ‖2θ+ (i+ j)α‖ ≤ e−100ε0sqn < e−ε0|k0|. Then for
any |k| ≤ |k0| ≤ 40sqn (including |nj |),

‖2θ − kα‖ ≥ ‖(k + k0)α‖ − ‖2θ + k0α‖ > ‖2θ + k0α‖ for y > y(α, ε0, ξ).
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This means −k0 must be a ε0-resonance, therefore |k0| ≤ |nj−1|. Then
‖2θ − njα‖ ≥ ‖(nj + k0)α‖ − ‖2θ + k0α‖

≥ Cξe
−12ξsqn − e−100ε0sqn > e−100ε0sqn ≥ ‖2θ + k0α‖

leads to a contradiction. Thus the smallest terms must be greater than −100ε0sqn.
We can bound

∑
2,+ by −6sqn ln 2 − 600ε0sqn − 12ξsqn − Cs ln qn from below.

Therefore
∑

2 ≥ −6sqn ln 2−Cε0sqn −Cξsqn −Cs ln qn. Thus the set {θj}j∈I1∪I2

is C4ε0 + C4ξ-uniform for y > y(α, ε0, ξ) and some absolute constant C4. �

Now let C4 be the absolute constant in Lemma 4.3. Choose 0 < 1000ξ < ε0 <
ε1

100C4
. Combining Lemma 4.2 and Lemma 4.3, we know that when y > y(α, ε0, ξ),

{θj}j∈I1∪I2 cannot be inside the set M6sqn−1,L̃−2C4ε0
at the same time. Therefore

0 and y cannot be (6sqn − 1, L̃−
∫
ln |cλ̂| − 9C4ε0) at the same time. However 0 is

(6sqn − 1, L̃−
∫
ln |cλ̂| − 9C4ε0)-singular given n large enough. Therefore

{θj}j∈I1 ⊂ M6sqn−1,L̃−2C4ε0
.

Thus y must be (6sqn − 1, L̃−
∫
ln |cλ̂| − 9C4ε0)-regular. This implies

|u(y)| ≤ e−(L̃−
∫
ln |cλ̂|−9C4ε0)

1
4 |y| < e−

ε1
5 |y| for |y| ≥ y(λ, α, ε0, ξ).

Thus there exists C3 = Cλ,α,ε0,ξ such that |u(y)| ≤ C3e
− ε1

5 |y| for any 3|nj | ≤ |y| ≤
1
3 |nj+1| and j ∈ N.

5. Almost reducibility in region II

Proof of Theorem 3.3. For any E ∈ Σλ, take θ(E) and {uk} as in Theorem 2.6. Let
ε1 be as in (2.4), C4 be the absolute constant from Lemma 4.3, and C2 be the ab-
solute constant from Lemma 2.9. Fix max (32C2ξ, 1000ξ) < ε0 < min ( ε1

200 ,
ε1

100C4
).

By Lemma 3.2, there exists C depending on λ and α such that for any 3|nj | <
|k| < 1

3 |nj+1|, we have |uk| ≤ Ce−
ε1
5 |k|.

For any n, 9|nj | < n < 1
9 |nj+1|, of the form

(5.1) n = rqm − 1 < qm+1.
2

Let u(x) = uI(x) =
∑

k∈I uke
2πikx with I = [−[n2 ], [

n
2 ]] = [x1, x2]. Define

U(x) =

(
e2πiθu(x)
u(x− α)

)
.

Let A(θ) = Aλ,E(θ). By direct computation:

A(x)U(x) = e2πiθU(x+ α) +

(
g(x)
0

)
� e2πiθU(x+ α) +G(x).

The Fourier coefficients of g(x) are possibly non-zero only at four points x1, x2,

x1 − 1 and x2 + 1. Since |uk| ≤ C1e
− ε1

5 |k| when 3|nj | < |k| < 1
3 |nj+1|, we know

that ‖G(x)‖ ε1
20π

≤ C1e
− ε1

20n.

Combining Lemmas A.3 and 2.1, we have exponential control of the growth of
the transfer matrix, for any δ > 0 there exists Cδ > 0 such that

‖Ãk(x)‖ ε1
2π

≤ Cδe
δ|k|, for any k.

2The existence of such n comes from (4.1).
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With some effort we are able to get the following significantly improved upper
bound.

Theorem 5.1. For some C > 0 depending on λ and α,

‖Ãk(x)‖T ≤ C(1 + |k|)C .

Proof. Let Ũ(x) = Q(x)U(x), G̃(x) = Q(x + α)G(x), where Q = Qλ is given in
Lemma A.2. Since

max (‖Q(x)‖ ε1
20π

, ‖Q−1(x)‖ ε1
20π

) ≤ C,

we have

Ã(x)Ũ(x) = e2πiθŨ(x+ α) + G̃(x),

where ‖G̃(x)‖ ε1
20π

≤ Ce−
ε1
20n.

Lemma 5.2. Let C2 be the constant from Lemma 2.9. Then for any δ, 2C2ξ <
δ < ε0

16 , we have

inf
|Im(x)|≤ ε1

20π

‖Ũ(x)‖ ≥ e−2δn,

for n > n(α, δ).

Proof. We will prove the statement by contradiction. Suppose for some x0 ∈
{|Im(x)| ≤ ε1

20π} we have ‖Ũ(x0)‖ < e−2δn. Notice that for any l ∈ N,

e2πilθŨ(x0 + lα) = Ãl(x0)Ũ(x0)

−
l∑

m=1

e2πi(m−1)θÃl−m(x0 +mα)G̃(x0 + (m− 1)α).

This implies for n > n(δ) large enough and for any 0 ≤ l ≤ n, ‖Ũ(x0+ lα)‖ ≤ e−δn,
thus ‖u(x0+lα)‖ ≤ Cδe

−δn. By Lemma 2.9, ‖u(x+iIm(x0))‖T ≤ C2Cδe
C2ξne−δn ≤

e−
δ
2n. This contradicts with

∫
T
u(x+ iIm(x0))dx = u0 = 1. �

Lemma 5.3 ([3]). Let V : T → C2 be analytic in |Im(x)| < η. Assume that
δ1 < ‖V (x)‖ < δ−1

2 holds on |Im(x)| < η. Then there exists M : T → SL(2,C)
analytic on |Im(x)| < η with first column V and ‖M‖η ≤ Cδ−2

1 δ−1
2 (1− ln(δ1δ2)).

Applying Lemma 5.3, let M(x) be the matrix with first column Ũ(x). Then

e−2δn ≤ ‖Ũ(x)‖ δ
π
≤ eδn and hence ‖M(x)‖ δ

π
≤ Ce6δn. Therefore

M−1(x+ α)Ã(x)M(x) =

(
e2πiθ 0
0 e−2πiθ

)
+

(
β1(x) b(x)
β3(x) β4(x)

)

where ‖β1(x)‖ δ
π
, ‖β3(x)‖ δ

π
, ‖β4(x)‖ δ

π
≤ Ce−

ε1
40n, and ‖b(x)‖ δ

π
≤ Ce13δn. Let

Φ(x) = M(x)

(
e

ε1
160n 0

0 e−
ε1
160n

)
.

Then we would have

Φ(x+ α)
−1

Ã(x)Φ(x) =

(
e2πiθ 0
0 e−2πiθ

)
+H(x),
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where ‖H(x)‖ δ
π
≤ Ce−

ε1
160n, and ‖Φ(x)‖ δ

π
≤ Ce

ε1
80n. Thus

sup
0≤s≤e

ε1
320

n

‖Ãs(x)‖T ≤ e
ε1
20n

for n ≥ n(λ, α) satisfying (5.1). For s large, there always exists 9|nj | < n < 1
9 |nj+1|

satisfying (5.1) such that cn ≤ 320
ε1

ln s ≤ n with some absolute constant c. Thus

there exists C depending on λ and α such that ‖Ãk(x)‖T ≤ C(1 + |k|)C . �

Now we come back to the proof of Theorem 3.3. Fix some n = |nj |, and N =

|nj+1|. Let u(x) = uI2(x) with I2 = [−[N9 ], [
N
9 ]] and U(x) =

(
e2πiθu(x)
u(x− α)

)
. Then

A(x)U(x) = e2πiθU(x+ α) +G(x) with ‖G(x)‖ ε1
20π

≤ Ce−
ε1
90N .

Define U0(x) = eπinjxU(x). Notice that if nj is even, then U0(x) is well-defined on
T, otherwise U0(x+ 1) = −U0(x). Then

Ã(x)Ũ0(x) = e2πiθ̃Ũ0(x+ α) +H(x),

where θ̃ = θ − nj

2 α, Ũ0(x) = Q(x)U0(x) and ‖H(x)‖ ε1
20π

≤ Ce−
ε1
100N . Consider the

matrix W (x) with Ũ0(x) and Ũ0(x) being its two columns. Then

Ã(x)W (x) = W (x+ α)

(
e2πiθ̃ 0

0 e−2πiθ̃

)
+ H̃(x).

Theorem 5.4. Let L−1 = ‖2θ − njα‖. Then for n > N0(λ, α) we have

| detW (x)| ≥ L−4C for any x ∈ T,

where C is the constant appeared in Theorem 5.1.

Proof. First, we fix ξ1 < ε0
1600 so that ‖kα‖ ≥ Cξ1e

−ξ1|k| for any k �= 0. We have
the following estimate about L:

Lemma 5.5. eε0n ≤ L ≤ e4ξ1N . This can be seen by the following inequality:

e−2ξ1N ≤ ‖(nj+1 − nj)α‖ ≤ 2‖njα− 2θ‖ = 2L−1 ≤ 2e−ε0n for n ≥ N(ξ1).

Now we prove by contradiction. Suppose there exists κ and x0 ∈ T such that

‖Ũ0(x0)− κŨ0(x0)‖ < L−4C . Then

‖Ũ0(x0 + lα)e2πilθ̃ − κŨ0(x0 + lα)e−2πilθ̃‖

≤ ‖
l−1∑
m=0

Ãl−m(x0 +mα)H(x0 +mα)

− κ
l−1∑
m=0

Ãl−m(x0 +mα)H(x0 +mα)‖+ ‖Al(x0)‖L−4C

≤ CL2Ce−
ε1
100N + CL−2C < L−C

for 0 ≤ |l| ≤ L2. If we take j = L
4 , then

‖Ũ0(x0 +
L

4
α) + κŨ0(x0 +

L

4
α)‖ < L−1.(5.2)
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Next since ‖U0(x)‖T ≤ n, we have ‖Ũ0(x)‖T ≤ Cn. Thus

‖Ũ0(x0 + lα)− κŨ0(x0 + lα)‖ < L− 1
3 for 0 ≤ |l| ≤ L

1
2 .

For any analytic function f(x) =
∑

k∈Z
f̂ke

2πikx, define

f[−m,m](x) =
∑

|k|≤m

f̂ke
2πikx.

For any column vector V (x) =

(
v(1)(x)
v(2)(x)

)
, let V[−m,m](x) =

(
v
(1)
[−m,m](x)

v
(2)
[−m,m](x)

)
. Now

let us define Ũ
[9n]
0 (x) = Q(x)eπinjxU[−9n,9n](x). Then

‖Ũ [9n]
0 (x)− Ũ0(x)‖T ≤ Ce−

9
5 ε1n.

Consider [e−πinjxŨ
[9n]
0 (x)][−18n,18n](x)e

πinjx. This function differs from a polyno-

mial with essential degree 36n only by a multiple of eπinjx. Notice that Q(x) is

analytic in {x : |Im(x)| ≤ ε1
4π}, thus |Q̂(k)| ≤ Ce−

ε1
2 |k|. Then

| ̂
e−πinjxŨ

[9n]
0 (k)| ≤

∑
|m|≤9n

|Q̂(k −m)Û(m)| ≤ Cne−
ε1
2 (|k|−9n) for |k| ≥ 18n.

Thus

‖e−πinjxŨ
[9n]
0 (x)− [e−πinjxŨ

[9n]
0 ][−18n,18n](x)‖T ≤ e−4ε1n,

‖Ũ0(x)− [e−πinjxŨ
[9n]
0 ][−18n,18n](x)e

πinjx‖T ≤ e−4ε1n.

Hence

‖[e−πinjxŨ
[9n]
0 ][−18n,18n](x0 + lα)e2πinj(x0+lα)

− κ[e−πinjxŨ
[9n]
0 ][−18n,18n](x0 + lα)‖T < 2L− 1

3 + e−4ε1n,

for |l| ≤ L
1
2 . Notice that

[e−πinjxŨ
[9n]
0 ][−18n,18n](x)e

2πinjx − κ[e−πinjxŨ
[9n]
0 ][−18n,18n](x)

is a polynomial whose essential degree is at most 37n. Thus by Lemma 2.9, we
would have

‖[e−πinjxŨ
[9n]
0 ][−18n,18n](x)e

πinjx

− κ[e−πinjxŨ
[9n]
0 ][−18n,18n](x)eπinjx‖T < L− 1

4 + e−2ε1n.

Hence ‖Ũ0(x)−κŨ0(x)‖T < L− 1
4 +2e−2ε1n. But combining with (5.2) we would get

‖Ũ0(x0+
L
4 α)‖ < 2L− 1

4 +2e−2ε1n, but this contradicts with infx∈T ‖Ũ0(x)‖ > e−2δn

since δ < ε0
16 . �

Now for n > N0(λ, α), take S(x) = ReŨ0(x) and T (x) = ImŨ0(x). Let W1(x)
be the matrix with columns S(x) and T (x). Notice that detW1(x) is well-defined
on T and detW1(x) �= 0 on T, hence without loss of generality we could assume
detW1(x) > 0 on T; otherwise we simply take W1(x) to be the matrix with columns
S(x) and −T (x). Then

‖Ã(x)W1(x)−W1(x+ α)R−θ̃‖T ≤ Ce−
ε1
45N .
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By taking determinant, we get

detW1(x) = detW1(x+ α) +O(e−
ε1
50N ) on T.

Since detW1(x) is analytic on |Imx| ≤ ε1
20π , by considering the Fourier coefficients

we could get

detW1(x) = w0 +O(e−
ε1
100N ) on T,

where w0 ≥ L−5C . Thus detW1(x) is almost a positive constant.

Define W2(x) = detW1(x)
− 1

2W1(x). Then W2(x) ∈ Cω(T) and detW2(x) = 1.
We have

W−1
2 (x+ α)Ã(x)W2(x) =

detW1(x+ α)
1
2

detW1(x)
1
2

R−θ̃ +O(e−
ε1
100N ) on T,

W−1
2 (x+ α)Ã(x)W2(x) = R−θ̃ +O(e−

ε1
200N ) on T.

Now let’s prove degW2(x) ≤ 36n. degW2(x) is the same as the degree of its

columns. For M : R/2Z → R2, we say degM = k if M is homotopic to

(
cos kπx
sin kπx

)
.

For some constant c > 0, we obviously have∫
T

‖S(x)‖ dx+

∫
T

‖T (x)‖ dx ≥
∫
T

‖S(x) + iT (x)‖ dx =

∫
T

‖Ũ0(x)‖ dx ≥ c.

Without loss of generality we could assume
∫
T
‖S(x)‖ dx > c

2 . Also

Ã(x)S(x) = S(x+ α) cos 2πθ̃ − T (x+ α) sin 2πθ̃ +O(e−
ε1
45N ) on T.

Then since ‖2θ̃‖ = L−1,

Ã(x)S(x) = S(x+ α) +O(L− 1
2 ) on T.

First we prove infx∈T ‖S(x)‖ ≥ e−2ε1n. Suppose otherwise. Then there exists

x0 ∈ T, so that ‖S(x0)‖ < e−2ε1n. Then ‖ReŨ0(x0 + lα)‖ < e−
ε0
8 n for |l| < e

ε0
4C n,

where C is the constant that appeared in Theorem 5.1. We have already shown
that

‖Ũ0(x)− [e−πinjxŨ
[9n]
0 ][−18n,18n]e

πinjx‖T < e−4ε1n.

Thus

‖Re[e−πinjxŨ
[9n]
0 ][−18n,18n](x0 + lα)‖ < e−

ε0
16n

for |l| < e
ε0
4C n. However Re[e−πinjxŨ

[9n]
0 ][−18n,18n] is a polynomial with essential

degree at most 36n. Using Lemma 2.9 we are able to get

‖Re[e−πinxŨ
[9n]
0 ][−18n,18n]e

πinjx‖T < e−
ε0
32n,

and thus ‖ReŨ0(x)‖T < e−
ε0
64n which is a contradiction to

∫
T
‖ReŨ0(x)‖ dx > c

2 .
In the meantime, we also get

‖S(x)− Re[e−πinjxŨ
[9n]
0 ][−18n,18n](x)e

πinjx‖T � ‖S(x)− h(x)‖T ≤ e−4ε1n.
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The first column of W2(x) is detW1(x)
− 1

2S(x). We have

‖ S(x)

detW1(x)
1
2

− h(x)

w0
1
2

‖

≤ 1

|detW1(x)
1
2 |
‖S(x)− h(x) + (1− detW1(x)

1
2

w0
1
2

)h(x)‖

≤ L2C(e−4ε1n + L8Ce−
ε1
100N )

≤ e−3ε1n < ‖ S(x)

detW1(x)
1
2

‖ on T.

Thus by Rouché’s theorem | degW2(x)| = | deg h(x)| ≤ 19n. Notice that

|ρ(α,W−1
2 ÃW2) + θ̃| < Ce−

ε1
200N .

Then, by (2.2) for some |m| ≤ 19n:

|ρ(α, Ã)− m

2
α+ θ̃| < Ce−

ε1
200N .

Appendix A

When λ belongs to region II, let ε2 = ln
λ2+

√
λ2
2−4λ1λ3

λ1+λ3+
√

(λ1+λ3)2−4λ1λ3

> ε1. Then c(x)

is analytic and non-zero on |Im(x)| < ε2
2π . Furthermore, the winding number of

c(·+ iε) is equal to zero when |ε| < ε2
2π .

Lemma A.1. When λ belongs to region II, we can find an analytic function f(x)
on |Im(x)| ≤ ε1

2π such that c(x) = |c|(x)ef(x+α)−f(x) and c̃(x) = |c|(x)e−f(x+α)+f(x).

Proof. Since the winding numbers of c(x) and c̃(x) are 0 on |Im(x)| ≤ ε1
2π , there

exist analytic functions g1(x) and g2(x) on |Im(x)| ≤ ε1
2π , such that c(x) = eg1(x)

and c̃(x) = eg2(x). Notice that

∫
T

ln |c(x)| dx =

∫
T

ln |c̃(x)| dx,∫
T

arg c(x) dx =

∫
T

arg c̃(x) dx,

so there exists an analytic function f(x) such that 2f(x+α)−2f(x) = g1(x)−g2(x).
Then c(x) = |c|(x)ef(x+α)−f(x). �

Lemma A.2. When λ belongs to region II, there exists an analytic matrix Qλ(x)
defined on |Im(x)| ≤ ε1

2π such that

Q−1
λ (x+ α)Ãλ,E(x)Qλ(x) = Aλ,E(x).
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Proof.

Ãλ,E(x) =
1√

|c|(x)|c|(x− α)

(
1 0

0
√

c̃(x)
c(x)

)(
E − v(x) −c̃(x− α)

c(x) 0

)(
1 0

0
√

c(x−α)
c̃(x−α)

)

=
c(x)√

|c|(x)|c|(x− α)

(
1 0

0
√

c̃(x)
c(x)

)
A(x)

(
1 0

0
√

c(x−α)
c̃(x−α)

)

=ef(x+α)
√
|c|(x)

(
1 0

0
√

c̃(x)
c(x)

)
A(x)

{
ef(x)

√
|c|(x− α)

(
1 0

0
√

c̃(x−α)
c(x−α)

)}−1

=Qλ(x+ α)Aλ,E(x)Q
−1
λ (x).

�
Lemma A.3. If α is irrational, λ belongs to region II, E ∈ Σ(λ), then

L(α,Aλ,E(·+ iε)) = L(α, Ãλ,E(·+ iε)) = 0

for |ε| ≤ ε1
2π .

Proof. L(A(·+ iε)) = L(D(·+ iε))−
∫
ln |c(x+ iε)|dx.

D(x+ iε)

=
(

E−e2πi(x+iε)−e−2πi(x+iε) −λ1e
2πi(x−α

2
+iε)−λ2−λ3e

−2πi(x−α
2

+iε)

λ1e
−2πi(x+α

2
+iε)+λ2+λ3e

2πi(x+α
2

+iε) 0

)
= e2πε

(
−e2πix + o(1) −λ3e

−2πi(x−α
2 ) + o(1)

λ1e
−2πi(x+α

2 ) + o(1) 0

)
.

Thus the asymptotic behaviour of L(D(·+ iε)) is:

L(D(·+ iε)) = ln |1 +
√
1− 4λ1λ3

2
|+ 2πε when ε → ∞,

L(D(·+ iε)) = ln |1 +
√
1− 4λ1λ3

2
| − 2πε when ε → −∞.

Then it suffices to calculate
∫
ln |c(x+ iε)|dx in region II. We have∫

ln |c(x+ iε)|dx

= lnλ3 − 2πε+

∫
ln |e2πix − y1,ε|+

∫
ln |e2πix − y2,ε|,

where y1,ε =
−λ2+

√
λ2
2−4λ1λ3

2λ3
e2πε and y2,ε =

−λ2−
√

λ2
2−4λ1λ3

2λ3
e2πε.∫

ln |c(x+ iε)|dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2πε+ lnλ1, ε > 1
2π ln

λ2+
√

λ2
2−4λ1λ3

2λ1
,

ln
λ2+

√
λ2
2−4λ1λ3

2 , 1
2π ln

λ2−
√

λ2
2−4λ1λ3

2λ1
≤ ε ≤ 1

2π ln
λ2+

√
λ2
2−4λ1λ3

2λ1
,

−2πε+ lnλ3, ε < 1
2π ln

λ2−
√

λ2
2−4λ1λ3

2λ1
.

Thus L(A(·+ iε)) = 0 when |ε| ≤ 1
2π ln

λ2+
√

λ2
2−4λ1λ3

max (1,λ1+λ3)+
√

max (1,λ1+λ3)
2−4λ1λ3

= ε1
2π .



DRY TEN MARTINI PROBLEM 217

Since Ãλ,E(x+ iε) = Qλ(x+α+ iε)Aλ,E(x+ iε)Q−1
λ (x+ iε), the statement about

Ãλ,E is also true. �
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