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DIMENSION MAXIMIZING MEASURES

FOR SELF-AFFINE SYSTEMS

BALÁZS BÁRÁNY AND MICHA�L RAMS

Abstract. In this paper we study the dimension theory of planar self-affine
sets satisfying dominated splitting in the linear parts and the strong separa-
tion condition. The main result of this paper is the existence of dimension
maximizing Gibbs measures (Käenmäki measures). To prove this phenomena,
we show that the Ledrappier-Young formula holds for Gibbs measures and we
introduce a transversality type condition for the strong-stable directions on
the projective space.

1. Introduction and statements

Let A := (A1, A2, . . . , AN ) be a finite set of contracting, non-singular 2 × 2

matrices, and let Φ := {fi : x �→ Aix+ ti}
N
i=1 be an iterated function system (IFS)

on the plane with affine mappings, where ‖Ai‖ < 1 and ti ∈ R
2 for i = 1, . . . , N .

It is a well-known fact that there exists a unique non-empty compact subset Λ of
R

2 such that

Λ =

N⋃
i=1

fi(Λ).

We call the set Λ the attractor of Φ or self-affine set.
Let us denote the Hausdorff dimension of a set X by dimH X. Moreover, denote

by dimBX and by dimBX the lower and upper box dimension. If the upper and
lower box dimensions coincide, then we call the common value the box dimension
and denote it by dimB X. For the definitions and basic properties, we refer to
Falconer [7].

The image of the unit ball under the affine mapping f(x) = Ax+ t is an ellipse.
The length of the longer and shorter axes of the ellipse depends only on the matrix
A, and we call these values the singular values of A. We denote the ith singular
value of A by αi(A). More precisely, αi(A) is the positive square root of the ith
eigenvalue of AA∗, where A∗ is the transpose of A. We note that in this case,
α1(A) = ‖A‖ and α2(A) = ‖A−1‖−1, where ‖.‖ is the usual matrix norm induced
by the Euclidean norm on R

2. Moreover, α1(A)α2(A) = | detA|.
The natural cover of these ellipses plays an important role in the calculation of

the dimension of self-affine sets. The image of the unit ball under an affine mapping
can be covered by 1 ball with radius α1(A) or can be covered by approximately
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α1(A)/α2(A) balls with radius α2(A). This leads us to the definition of singular
value function. For s ≥ 0 define the singular value function φs as follows:

(1.1) φs(A) :=

⎧⎨⎩
α1(A)s, 0 ≤ s ≤ 1,

α1(A)α2(A)s−1, 1 < s ≤ 2,

(α1(A)α2(A))
s/2

, s > 2.

Falconer [6] introduced the subadditive pressure

(1.2) PA(s) := lim
n→∞

1

n
log

N∑
i1,...,in=1

φs(Ai1 · · ·Ain).

The function PA : [0,∞) �→ R is continuous, strictly monotone decreasing on [0,∞);
moreover PA(0) = logN and lims→∞ PA(s) = −∞. Falconer [6] showed that for the
unique root s0 := s0(A) of the subadditive pressure function dimBΛ ≤ min {2, s0}
and if ‖Ai‖ < 1/3 for every i = 1, . . . , N , then

dimH Λ = dimB Λ = min {2, s0} for Lebesgue-almost every t = (t1, . . . , tN )∈R
2N .

The condition was later weakened to ‖Ai‖ < 1/2 by Solomyak; see [17]. We call
the value s0 the affinity dimension of Φ. Käenmäki [11] showed that for Lebesgue-
almost every t = (t1, . . . , tN ) ∈ R

2N there exists an invariant measure νK supported
on Λ such that dimH νK = dimH Λ = min {2, s0}. Under our assumptions, SSC
(see below) and dominated splitting (see below, Definition 2.1), this measure is
the image of a Gibbs measure (Definition 2.6), but in general not the image of a
Bernoulli measure.

Other types of “almost surely” results were unknown previously. The main
advantage of this paper is to give an almost everywhere condition on the set of
matrices instead of on the set of translation vectors.

In this paper we consider IFSs of affinities which satisfy the strong separation
condition (SSC), i.e.

fi(Λ) ∩ fj(Λ) = ∅ for every i �= j.

We note that the strong separation condition implies s0 < 2.
Falconer [8] proved that if Φ satisfies a separation condition (milder than SSC)

and the projection of Λ in every direction contains an interval, then the box dimen-
sion of a self-affine set is equal to the affinity dimension. Hueter and Lalley [10]
gave conditions which ensure that the Hausdorff and box dimension of a self-affine
set equal the affinity dimension.

In the recent paper of Bárány [2], the result of Hueter and Lalley [10] was gen-
eralized for self-affine measures. That is, under the same conditions of Hueter and
Lalley [10] the Hausdorff dimension of any self-affine measure is equal to its Lya-
punov dimension. In particular, in [2] the author proved that under slightly more
general conditions any self-affine measure is exact dimensional and gave a formula
which connects entropy, Lyapunov exponents and the projection of the measure
(Ledrappier-Young formula).

Recently, Falconer and Kempton [9] used methods from ergodic theory along with
properties of the Furstenberg measure to obtain conditions under which certain
classes of plane self-affine sets have Hausdorff and box dimension equal to the
affinity dimension. By adapting the conditions of Falconer and Kempton [9] and
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Bárány [2] we prove that for “typical” linear parts ({Ai}Ni=1) if the SSC holds, then
the dimension of self-affine sets is equal to the affinity dimension. Precisely, let

(1.3) M :=

{
A ∈ R

2×2
+ ∪ R

2×2
− : 0 <

| detA|
|||A|||2 <

1

2
and ‖A‖ < 1

}
,

where

|||A||| = min {|a|+ |b|, |c|+ |d|} for A =

[
a b
c d

]
.

Let us define the sets

(1.4) N :=
{
A ∈ M : ‖A−1‖‖A‖2 ≤ 1

}
and ON :=

{
A ∈ MN : s0(A) > 5/3

}
,

for every N ≥ 2.

Theorem 1.1. Let N≥2. For L4N -almost every A∈NN ∪ON , if t = (t1, . . . , tN )

∈ R
2N is chosen such that if Φ := {fi : x �→ Aix+ ti}

N
i=1 satisfies the SSC, then

there exists a measure νK supported on the attractor Λ of Φ such that

dimH νK = dimH Λ = dimB Λ = s0(A).

We call the measure νK the Käenmäki measure.
The authors were recently informed of the result of Rapaport [14] and Morris

and Shmerkin [13]. By applying the main theorem of Rapaport [14], one can extend
the bound 5/3 to 3/2 in (1.4). Morris and Shmerkin [13] proved a statement similar
to Theorem 1.1 under significantly different conditions on the matrices.

To prove Theorem 1.1, we will need a more detailed study of the dimension of
invariant measures. More precisely, we extend the results of [2] for the natural
projections of Gibbs measures. Theorem 1.1 is studied in higher generality.

Structure of the paper. After the preliminaries (section 2) we introduce the
main technical result of the paper, the Ledrappier-Young formula generalized for
Gibbs measures (section 3). In section 4 we introduce the strong-stable transver-
sality condition (Definition 4.1) and show that under this condition there exists a
dimension maximizing Gibbs measure (Käenmäki measure) almost surely. In the
last section we show Theorem 1.1 as a consequence of the previous studies.

2. Preliminaries

Let Σ = {1, . . . , N}Z be the symbolic space of a two-sided infinite sequence: let

Σ+ = {1, . . . , N}N be the right-side set and Σ− = {1, . . . , N}Z
−
the left-side set of

infinite words. Denote the left shift operator on Σ and Σ+ by σ and denote the
right shift operator on Σ and Σ− by σ−. Thus, σ and σ− are invertible on Σ and
σ−1 = σ−. For any i ∈ Σ (or j ∈ Σ±),

[i|nm] :=
{
j ∈ Σ (or j ∈ Σ±) : ik = jk for m ≤ k ≤ n

}
.

For an i = (. . . i−2i−1i0i1 . . . ) ∈ Σ, denote by i+ = (i0i1 . . . ) the right-hand side
and by i− = (. . . i−2i−1) the left-hand side of i. To avoid confusion, we also write
i+ if i+ ∈ Σ+ and i− if i− ∈ Σ−.

For any i+, j+ ∈ Σ+ let i+ ∧ j+ = min {n ≥ 0 : in �= jn}. We define i− ∧ j− =
min {n− 1 ≥ 0 : i−n �= j−n} similarly.

Let us denote the set of finite length words by Σ∗ =
⋃∞

n=0 {1, . . . , N}n, and for
every ı = (i1, . . . in) ∈ Σ∗ denote the reversed word by −→ı = (in, . . . , i1). Sometimes,
we may also write (Σ−)∗ for finite length words to emphasize the negative indexes.
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If Φ := {fi(x) = Aix+ ti}
N
i=1 is an iterated function system on R

2 with affine
mappings such that ‖Ai‖ < 1 for i = 1, . . . , N , we define the natural projection π−
from Σ− to Λ in a natural way:

(2.1) π−(. . . i−2i−1) = lim
n→∞

fi−1
◦ · · · ◦ fi−n

(0).

Let A := {A1, A2, . . . , AN} be a finite set of non-singular 2 × 2 real matrices.
Define a map from Σ to A in a natural way, i.e. A(i) := Ai0 . Let A(n)(i) :=
A(σn−1i) · · ·A(i) for i ∈ Σ and n ≥ 1.

Definition 2.1. We say that a set A = {Ai}Ni=1 of matrices satisfies the dominated
splitting if there are constants C, β > 0 such that for every n ≥ 1 and every
i0, . . . , in−1 ∈ {1, . . . , N},

α1(Ai0 · · ·Ain−1
)

α2(Ai0 · · ·Ain−1
)
≥ Cenβ.

Let C+ :=
{
(x, y) ∈ R

2\{(0, 0)} : xy ≥ 0
}
be the standard positive cone. A cone

is an image of C+ under a linear isomorphism, and a multicone is a disjoint union
of finitely many cones. We say that a multicone M is backward invariant w.r.t. A
if
⋃

A∈A A−1(M) ⊂ Mo, where Mo denotes the interior of M .

For a 2 × 2 matrix A and a subspace θ of R2 we introduce the notation ‖A|θ‖,
which is the norm of A restricted to the subspace θ, i.e. ‖A|θ‖ = supv∈θ ‖Av‖/‖v‖.
Since θ is one-dimensional, we get that for any v �= 0 ∈ θ, ‖A|θ‖ = ‖Av‖/‖v‖,
which is not true in higher dimensions.

Lemma 2.2 ([1], [3], [4], [19]). The set A of matrices satisfies the dominated
splitting. Then for every i ∈ Σ there are two one-dimensional subspaces ess(i), es(i)
of R2 such that

(1) Ai0e
j(i) = ej(σi) for every i ∈ Σ and j = s, ss,

(2) there is a constant C > 0 such that for every n ≥ 1 and i ∈ Σ,

C−1‖A(n)(i)|es(i)‖ ≤ α1(A
(n)(i)) ≤ C‖A(n)(i)|es(i)‖ and

C−1‖A(n)(i)|ess(i)‖ ≤ α2(A
(n)(i)) ≤ C‖A(n)(i)|ess(i)‖,

(3) there is a backward-invariant multicone M such that

es(i) =

∞⋂
n=1

Ai−1
· · ·Ai−n

(M c) and ess(i) =

∞⋂
n=1

A−1
i0

· · ·A−1
in−1

(M),

where M c denotes the closure of the complement of M ,
(4) the angle between es(i) and ess(i) is uniformly bounded below.

We call the family of subspaces es(i) stable directions and ess(i) strong-stable di-
rections.

Let us observe that es(i) depends only on i− and ess(i+) depends only on i+,
so ess can be considered as a natural projection from Σ+ to P1, where P1 denotes
the projective space. In particular, ‖A(n)(i)|es(i)‖ and ‖A(n)(i)|ess(i)‖ describe the
local growth in the stable/strong-stable directions and can be considered as finite
time approximations of the corresponding Lyapunov exponent.

For x, y ∈ P1 denote by �(x, y) the usual metric on P1, that is, the angle
between the subspaces corresponding to x and y. Thus, Lemma 2.2(4) can be
formalized as follows: there exists a constant C > 0 such that for every i− ∈ Σ−
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and j+ ∈ Σ+, �(ess(j+), e
s(i−)) > C. In the later analysis, the dimension of

strong-stable directions in P1 plays an important role.
For any v, w ∈ R

2 denote by Area(v, w) the area of a parallelogram formed by
v, w.

Lemma 2.3. For every x, y ∈ P1,

Area(v, w)

‖v‖‖w‖ ≤ �(x, y) ≤ 2Area(v, w)

‖v‖‖w‖ ,

where v, w ∈ R
2 are arbitrary non-zero vectors from the subspaces corresponding to

x and y.

The proof of the lemma is straightforward.

Lemma 2.4. There exists a constant C > 0 such that for every i, j ∈ Σ,

�(ess(i), ess(j)) ≤ Ce−β(i+∧j+) and �(es(i), es(j)) ≤ Ce−β(i−∧j−)

where β is the domination exponent in Definition 2.1. Thus, the maps i+ ∈ Σ+ �→
ess(i+) and i− ∈ Σ− �→ log ‖Ai−1

|es(σ−i−)‖ are Hölder continuous.

Proof. We prove only the inequality for ess; for es the argument is similar. Fix
i, j ∈ Σ with i+ ∧ j+ = n. Let v ∈ ess(σni+) and w ∈ ess(σnj+) be arbitrary such
that ‖v‖ = ‖w‖ = 1. Then by Lemma 2.3,

�(ess(i), ess(j)) ≤ 2
Area(A−1

i0
· · ·A−1

in−1
v,A−1

i0
· · ·A−1

in−1
w)

‖A−1
i0

· · ·A−1
in−1

|ess(σni+)‖‖A−1
i0

· · ·A−1
in−1

|ess(σnj+)‖

≤ 2C2
| det(A−1

i0
· · ·A−1

in−1
)|

‖A−1
i0

· · ·A−1
in−1

‖2
Area(v, w) ≤ 2C2e−βn.

�
Let ϕ : Σ− �→ R be a Hölder continuous potential function. Then there exist

constants C > 0 and P ∈ R and σ−-invariant Borel probability measures μ− and
μ on Σ− and Σ such that

(2.2) C−1 ≤
μ−([i−|−1

−n])

e−nP+
∑n−1

k=0 ϕ(σk
−i−)

≤ C, for every i− ∈ Σ−,

(2.3) C−1 ≤
μ([i|−1

−n])

e−nP+
∑n−1

k=0 ϕ(σk
−i)

≤ C, for every i ∈ Σ.

We call the measures μ− and μ the Gibbs measures of the potential ϕ on Σ− and
Σ. Moreover, μ− and μ are ergodic; see [5, Chapter 1]. Let ν = (π−)∗μ−, where
π− is defined in (2.1). Let us denote the projection from Σ to Σ+ by p+ : Σ �→ Σ+

and, similarly, the projection from Σ to Σ− by p− : Σ �→ Σ−. It is easy to see that
(p−)∗μ = μ−.

Lemma 2.5. The measure μ+ := (p+)∗μ is a σ-invariant, ergodic quasi-Bernoulli
measure on Σ+ with entropy hμ+

= hμ = hμ− = P −
∫
ϕ(i)dμ(i).

We call a measure m on Σ+ quasi-Bernoulli if there exists a uniform constant
C > 0 such that for every ı, j ∈ Σ∗,

C−1ν([ı])ν([j]) ≤ ν([ıj]) ≤ Cν([ı])ν([j]),

where ıj is the concatenation of ı and j.
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Proof. First, we prove invariance. Let A ⊆ Σ+ be a measurable set. Then by using
that μ is σ-invariant we get

μ+(σ
−1A) = μ+

(
N⋃
i=1

iA

)
= μ

(
Σ− ×

N⋃
i=1

iA

)
= μ(Σ− ×A) = μ+(A).

Let A ⊆ Σ+ be an arbitrary σ-invariant subset of Σ+. Then σ−1Σ− × A = Σ− ×(⋃N
i=1 iA

)
= Σ− ×σ−1A = Σ− ×A. Therefore, μ(Σ− ×A) = 0 or 1, which implies

the ergodicity of μ+.
Finally, let (i0, . . . , in+m+1) ∈ (Σ+)∗ be arbitrary and let j ∈ Σ− be such that

j−1 = in+m+1, . . . , j−(n+m+2) = i0. Then by (2.3)

μ+([i0, . . . , in+m+1]) = μ(Σ− × [i0, . . . , in+m+1])

= μ([j|−1
−(n+m+2)]) ≤ Ce−(n+m+ 2)P +

∑n+m+1
k=0 ϕ(σk

−j)

= Ce−(n+ 1)P +
∑n

k=0 ϕ(σ
k
−j)e−(m+ 1)P +

∑m
k=0 ϕ(σ

k
−(σ

n+1
− j))

≤ C3μ([j|−1
−(n+1)])μ([σ

n+1
− j|−1

−(m+1)])

= C3μ(Σ− × [i0, . . . , in])μ(Σ
− × [in+1, . . . , in+m+1])

= C3μ+([i0, . . . , in])μ+([in+1, . . . , in+m+1]).

The inequality μ+([i0, . . . , in+m+1])≥C−3μ+([i0, . . . , in])μ+([in+1, . . . , in+m+1])
can be proven similarly. By using the definition of entropy (see [18, Theorem 4.10,
Theorem 4.18]),

hμ+
= lim

n→∞
− 1

n

∑
ı∈Sn

μ+([ı]) logμ+([ı]) ≤ P − lim
n→∞

1

n

∑
ı∈Sn

μ+([ı])ϕ(
−→ı j)

= P − lim
n→∞

1

n

∑
ı∈Sn

μ−([ı])ϕ(ıj) = P −
∫

ϕ(i)dμ(i).

�

By Oseledec’s multiplicative ergodic theorem, there are constants 0 < χs
μ ≤ χss

μ

such that

lim
n→∞

− 1

n
logα1(Ai0 · · ·Ain−1

) = χs
μ and

lim
n→∞

− 1

n
logα2(Ai0 · · ·Ain−1

) = χss
μ for μ-a.e. i ∈ Σ ( or μ+-a.e i+ ∈ Σ+).

We call the values χs
μ the stable and χss

μ the strong-stable Lyapunov exponent of μ.
We define the Lyapunov exponents for μ− similarly.

Now we define the Hölder continuous potential function and the corresponding
Gibbs measure motivated by the singular value function. This measure is our
candidate to be the dimension maximizing measure.

Definition 2.6. Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-
singular 2 × 2 matrices such that A satisfies the dominated splitting. Moreover,
let s0 = s0(A) be the unique root of the subadditive pressure (1.2). We define
ϕ : Σ− �→ R to be the Hölder continuous potential function as follows:

(2.4) ϕ(i−) =

{
log ‖Ai−1

|es(σ−i−)‖s0 if 0 ≤ s0 ≤ 1,
log

(
| detAi−1

|s0−1‖Ai−1
|es(σ−i−)‖2−s0

)
if 1 < s0 < 2.
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Then we call the Gibbs measure μK with potential ϕ the Käenmäki measure on
Σ−. In particular, there exists a constant C > 0 such that

C−1 ≤
μK([i−|−1

−n])

φs0(Ai−1
· · ·Ai−n

)
≤ C, for every i− ∈ Σ−,

where φs is the singular value function (1.1).

Observe that exp(
∑n−1

k=0 ϕ(σ
n
−i−)) is essentially φs0(Ai−1

· · ·Ai−n
) (defined in

(1.1)), where s0 is the unique root of the subadditive pressure function (1.2).
That is, by Lemma 2.2 if s0 ≤ 1, then for every n ≥ 1, φs0(Ai−1

· · ·Ai−n
) ≈

‖Ai−1
· · ·Ai−n

|es(σn
−i−)‖s0 = exp(

∑n−1
k=0 ϕ(σ

n
−i−)). On the other hand, if 1 < s0 <

2, then

φs0(Ai−1
· · ·Ai−n

) = α1(Ai−1
· · ·Ai−n

)α2((Ai−1
· · ·Ai−n

))s0−1

=
(
α1(Ai−1

· · ·Ai−n
)α2((Ai−1

· · ·Ai−n
))
)s0−1

α1(Ai−1
· · ·Ai−n

)2−s0

≈ det(Ai−1
· · ·Ai−n

)s0−1‖Ai−1
· · ·Ai−n

|es(σn
−i−)‖2−s0 = exp(

n−1∑
k=0

ϕ(σn
−i−)).

The Hölder continuity of potential ϕ in (2.4) follows by Lemma 2.4. Basically, the
dominated splitting condition (Definition 2.1) allows us to show that the potential
ϕ is Hölder; hence the measure μK is Gibbs. Without dominated splitting the map
i �→ log ‖Ai−1

|es(σ−i)‖ is in general only measurable (by Oseledec’s Theorem).

3. Ledrappier-Young formula for Gibbs measures

In this section, we extend the result [2, Theorem 2.7] for Gibbs measures. For
every θ ∈ P1 we denote the orthogonal projection in the direction of θ by projθ. Let
us define the transversal measure for every i+ ∈ Σ+ by νTi+ = ν ◦ (projess(i+))

−1.

That is, νTi+ denotes the orthogonal projection of the measure ν along the line

ess(i+).

Theorem 3.1. Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-

singular 2 × 2 matrices, and let Φ = {fi(x) = Aix+ ti}
N
i=1 be an iterated function

system on the plane with affine mappings. Let μ− be a right-shift invariant and
ergodic Gibbs measure on Σ− defined in (2.2), and ν = (π−)∗μ− be the push-down
measure of μ−. If

(1) A satisfies the dominated splitting, and
(2) Φ satisfies the strong separation condition,

then ν is exact dimensional and

dimH ν =
hμ

χs
μ

+

(
1−

χs
μ

χss
μ

)
dimH νTi+ for μ+-almost every i+ ∈ Σ+.

During the proof of Theorem 3.1, we follow the proof of [2, Theorem 2.7]. The
proof of [2, Theorem 2.7] is decomposed into four propositions [2, Proposition 3.1,
Proposition 3.3, Proposition 3.8 and Proposition 3.9]. However, [2, Proposition 3.1]
and [2, Proposition 3.9] hold for general ergodic measures. On the other hand,
[2, Proposition 3.8] follows from [2, Proposition 3.3] exactly in the same way for
Gibbs measures as for Bernoulli measures. So, in the rest of the section we extend
[2, Proposition 3.3] for Gibbs measures.
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Let F be the dynamical system defined in [2, section 3] acting on O × Σ+.
Namely,

F (x, i) := (fi0(x), σi),

where O is an open and bounded set such that

N⋃
i=1

fi(O) ⊆ O and fi(O) ∩ fj(O) = ∅ for i �= j.

Since F is a hyperbolic map acting on O×Σ+, its unique non-empty and compact
F -invariant set is

⋂∞
n=0 F

n(O×Σ+) = Λ×Σ+. It is easy to see that F is conjugate
to σ by the projection π : Σ �→ Λ × Σ+, where π(i) := (π−(i−), i+). That is,
π ◦ σ = F ◦ π. Denote the measure π∗μ by ν̂. Then ν̂ is an F -invariant ergodic
measure.

Since ess depends only on i+, it defines a foliation onO for every i+ ∈ Σ+. Hence,
it defines a foliation ξss on Λ×Σ+. Namely, for a y = (x, i+) ∈ Λ×Σ+ let lss(y) be

the line through x parallel to ess(i+) on R
2×{i+}. Let the partition element ξss(y)

be the intersection of the line lss(y) with Λ × {i+}. Denote by Fξss the image of

the partition ξss under F , i.e. for every y, (Fξss)(y) = F (ξss(F−1(y))). It is easy
to see that Fξss is a refinement of ξss, that is, for every y, (Fξss)(y) ⊂ ξss(y).

We decompose the measure ν̂ on Λ × Σ+according to two different partitions.
First, we construct a family of measures supported on Λ, more precisely, supported
on Λ × {i+} for μ+-a.e. i+. So, applying Rokhlin’s Theorem [15], for μ+-a.e.
i+ ∈ Σ+ there exists a uniquely defined system of conditional measures μi+ up to
a set of zero measure, supported on Σ− × {i+} and

μ(A) =

∫
μi+(A)dμ+(i+).

By defining ν̂i+ := (π−)∗μi+ , we get

ν̂ =

∫
ν̂i+dμ+(i+).

In the focus of our study stand the geometric measure theoretical properties of
the family of measures ν̂i+ along the strong-stable directions. Therefore, first we

define the transversal measure; i.e. for μ+-a.e. i+ ∈ Σ+, let ν̂Ti+ be the orthogonal

projection of ν̂i+ along the subspace ess(i+). That is,

ν̂Ti+ := (projess(i+))∗ν̂i+ .

On the other hand, we need the conditional measures of ν̂i+ along the subspace
ess(i+). Applying Rokhlin’s Theorem [15] again, there exists a canonical system of
conditional measures; i.e. for ν̂-a.e. y ∈ Λ×Σ+ there exists a measure ν̂ssy supported

on ξss(y) such that the measures are uniquely defined up to a zero measure set of y
and for every measurable set A the function y �→ ν̂ssy (A) is measurable. Moreover,

(3.1) ν̂(A) =

∫
ν̂ssy (A)dν̂(y).

By the uniqueness of the conditional measures, we get that the measure ν̂ssy is a

conditional measure of ν̂i+ , namely,

ν̂i+ =

∫
ν̂ss(x,i+)dν̂

T
i+(x) for μ+-a.e. i+ ∈ Σ+.
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Let us define the conditional entropy of Fξss with respect to ξss in the usual
way:

H(Fξss|ξss) := −
∫

log ν̂ssy ((Fξss)(y))dν̂(y).

One of the main goals of this paper is to show that there is a dimension maxi-
mizing Gibbs measure for self-affine sets. However, our method allows us only to
handle the dimension of the conditional measures μi+ . The next lemma is devoted
to showing that μi+ is not necessarily equal to but equivalent with a Gibbs measure
on Σ−.

Lemma 3.2. There exists a constant C > 0 such that C−1μ− × μ+ ≤ μ ≤ Cμ− ×
μ+. In particular,

(3.2) C−1μ− ≤ μi+ ≤ Cμ− for μ+-a.e. i+ ∈ Σ+.

Proof. It is enough to show that there exists a C > 0 such that for every i ∈ Σ and
n,m ≥ 0,

C−1μ−([i|−1
−n])μ+([i|m0 ]) ≤ μ([i|m−n]) ≤ Cμ−([i|−1

−n])μ+([i|m0 ]).

Indeed, every set A in the σ-algebra can be approximated by cylinder sets. By the
definition of Gibbs measure μ,

μ([i|m−n]) = μ([σm+1i|−1
−(n+m+1)]) ≤ Ce−(n+m+1)P+

∑n+m
k=0 ϕ(σk

−σm+1i)

= Ce−nP+
∑n−1

k=0 ϕσk
−ie−(m+1)P+

∑m
k=0 ϕ(σk

−σm+1i)

≤ C2μ−([i|−1
−n])μ([σ

m+1i|−1
−(m+1)])

= C2μ−([i|−1
−n])μ([i|m0 ]) = C2μ−([i|−1

−n])μ+([i|m0 ]).

The other inequality can be proven similarly. The relation (3.2) follows by the fact
that the conditional measures are uniquely defined up to a set of zero measure. �

By Lemma 3.2, the measures ν̂i+ and ν are equivalent for μ+-a.e. i+ ∈ Σ+.

Similarly, the measures ν̂Ti+ and νTi+ are equivalent for μ+-a.e. i+ ∈ Σ+.

For the examination of the local dimension of the projected measure, instead of
looking at balls on lines we introduce the transversal stable balls associated to the
projection. Let Bt

r(x, i) be a transversal stable ball with radius r, i.e.

Bt
r(x, i) =

{
(y, j) : i = j & dist(lss(x, i), lss(y, j)) ≤ 2r

}
,

where lss(x, i) denotes the line through x parallel to ess(i). Here, dist(., .) is the
usual Euclidean distance between parallel lines.

For technical reasons, we also have to introduce the modified transversal stable
ball. Since the IFS Φ satisfies the SSC, for an y = (x, i) ∈ Λ×Σ+ we can define the
stable direction es(y) of y by es(y) := es(x) := es(i−), where π−(i−) = x. Denote
by distes(y) the natural Euclidean distance on the subspace es(y).

Then for an (x, i) ∈ Λ× Σ+, we define the modified transversal stable ball with
radius δ by

BT
δ (x, i) =

{
(y, j) ∈ Λ× Σ+ : i = j & distes(x,i)(lss(x, i), lss(y, j)) ≤ δ

}
,

where distes(x,i)(lss(x, i), lss(y, j)) means the distance of the intersections of the lines
lss(x, i), lss(y, j) with the subspace es(x, i) with respect to the distance distes(x,i).
Since there exists a constant α > 0 such that

�(es(i−), ess(i+)) ≥ α > 0, for every i− ∈ Σ− and i+ ∈ Σ+,
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there exists a constant c > 0 that for every y ∈ Λ× Σ+ and r > 0,

(3.3) BT
c−1r(x, i) ⊆ Bt

r(x, i) ⊆ BT
cr(x, i).

We are going to prove the following proposition.

Proposition 3.3. For μ+-a.e. i+ ∈ Σ+ the measure νTi+ is exact dimensional and

dimH νTi+ =
hμ −H(Fξss|ξss)

χs
μ

.

In particular,

lim
r→0+

ν(BT
r (x, i+))

log r
=

hμ −H(Fξss|ξss)
χs
μ

for ν̂-a.e. (x, i+).

Let P be the natural partition, i.e. P = {fi(Λ)× Σ+}Ni=1. Denote the kth

refinement of P by Pk
1 , i.e. for every y ∈ Λ × Σ+, Pk

1 (y) =
(∨k

i=1 F
i(P)

)
(y) =

P(y) ∩ F (P(F−1(y))) ∩ · · · ∩ F k(P(F−k(y))). In other words, Pk
1 is the standard

partition into k-level cylinders.
Let us define almost everywhere the measurable functions gk(y) := ν̂ssy (Pk

1 (y))

and

gδ,k(y) :=
ν̂i+(B

T
δ (y) ∩ Pk

1 (y))

ν̂i+(B
T
δ (y))

.

By definition, gδ,k(y) is the δ approximation of the measure of Pk
1 (y) according to

the conditional measure. By Rokhlin’s Theorem, gδ,k → gk as δ → 0+ for ν̂ almost
everywhere and, since 0 ≤ gδ,k ≤ 1, (3.1) implies gδ,k → gk in L1(ν̂) as δ → 0+.

Lemma 3.4. The function supδ>0 {− log gδ,k} is in L1(ν̂) for every k ≥ 1.

The proof of Lemma 3.4 coincides with [2, Lemma 3.6].

Lemma 3.5. For every x = π−(i−1, i−2, . . . ) ∈ Λ, i+ ∈ Σ+, δ > 0 and k ≥ 1,

F k
(
BT

δ (F
−k(y))× [i−k, . . . , i−1]

)
=
(
BT

‖Ai−1
···Ai−k

|es(F−k(y))‖δ(y) ∩ Pk
1 (y)

)
×Σ+,

where y = (x, i+).

By using the fact that ν = (π−)∗μ− = (π−)∗(p−)∗μ, we have

ν(BT
δ (y) ∩ Pk

1 ) = ν̂
(
BT

δ (y) ∩ Pk
1 × Σ+

)
= ν̂

(
F−k

(
BT

δ (y) ∩ Pk
1 × Σ+

))
= ν̂

(
BT

‖Ai−1
···Ai−k

|es(F−k(y))‖−1δ(F
−k(y))× [i−k, . . . , i−1]

)
,

where in the last equation we used Lemma 3.5. By Lemma 3.2,

(3.4)

ν(BT
δ (y) ∩ Pk

1 (y)) = ν̂
(
BT

‖Ai−1
···Ai−k

|es(F−k(y))‖−1δ(F
−k(y))× [i−k, . . . , i−1]

)
≤ Cν

(
BT

‖Ai−1
···Ai−k

|es(F−k(y))‖−1δ(F
−k(y))

)
μ+([i−k, . . . , i−1])
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and

ν(BT
δ (y) ∩ Pk

1 (y))

≥ C−1ν
(
BT

‖Ai−1
···Ai−k

|es(F−k(y))‖−1δ(F
−k(y))

)
μ+([i−k, . . . , i−1])

(3.5)

for every δ > 0, k ≥ 1, and y ∈ Λ× Σ+.

Proof of Proposition 3.3. By the definition of the transversal measure, the state-
ment of the proposition is equivalent to

lim
δ→0+

log ν(Bt
δ(x, i+))

log δ
=

hν −H(Fξss|ξss)
χs
μ

for ν × μ+-a.e (x, i+).

Hence, by (3.3) and by Lemma 2.2, it is enough to show that if y = (x, i+) ∈
Λ× Σ+ with x = π−(i−1, i−2, . . . ), then

lim
p→∞

log ν
(
BT

‖Ai−1
···Ai−pk

|es(F−pk(y))‖(y)
)

logα1(Ai−1
· · ·Ai−pk

)
=

hν −H(Fξss|ξss)
χs
μ

for ν × μ+-a.e y.

By Oseledec’s Theorem, we have

(3.6) lim
p→∞

1

p
logα1(Ai−1

· · ·Ai−pk
) = −kχs

μ for μ−-a.e i−.

By applying (3.4), (3.5) and Lemma 3.2, we get

ν
(
BT

‖Ai−1
···Ai−pk

|es(F−pk(y))‖(y)
)

= ν
(
BT

1 (F
−pk)

) p∏
l=1

ν

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖(F
−(l−1)k(y))

)
ν
(
BT

‖Ai−lk−1
···Ai−pk

|es(F−pk(y))‖(F
−lk(y))

)
≤ Cpν

(
BT

1 (F
−pk)

)
·

p∏
l=1

ν

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖(F
−(l−1)k(y))

)
μ+([i−(l−1)k−1,...,i−lk])

ν

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖
(F−(l−1)k(y))∩Pk

1 (F
−(l−1)k(y)

)

≤ C3pν
(
BT

1 (F
−pk)

)
·

p∏
l=1

ν̂
F−(l−1)k(y)

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖(F
−(l−1)k(y))

)
μ+([i−(l−1)k−1,...,i−lk])

ν̂
F−(l−1)k(y)

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖
(F−(l−1)k(y))∩Pk

1 (F
−(l−1)k(y))

) .

Similarly,

ν
(
BT

‖Ai−1
···Ai−pk

|es(F−pk(y))‖(y)
)

≥ C−3pν
(
BT

1 (F
−pk)

)
·

p∏
l=1

ν̂
F−(l−1)k(y)

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖(F
−(l−1)k(y))

)
μ+([i−(l−1)k−1,...,i−lk])

ν̂
F−(l−1)k(y)

(
BT

‖Ai−(l−1)k−1
···Ai−pk

|es(F−pk(y))‖
(F−(l−1)k(y))∩Pk

1 (F
−(l−1)k(y))

) .
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By taking the logarithm and dividing by p we get

1

p
log ν

(
BT

1 (F
−pk)

)
− 3 logC − 1

p

p∑
l=1

log g‖Ai−lk−1
···Ai−pk

|es(F−pk(y))‖,k(F
−lk(y))

+
1

p

p∑
l=1

log μ+([i−(l−1)k−1, . . . , i−lk]) ≤
1

p
log ν

(
BT

‖Ai−1
···Ai−pk

|es(F−pk(y))‖(y)
)

and

1

p
log ν

(
BT

‖Ai−1
···Ai−pk

|es(F−pk(y))‖(y)
)
≤ 1

p
log ν

(
BT

1 (F
−pk)

)
+ 3 logC

− 1

p

p∑
l=1

log g‖Ai−lk−1
···Ai−pk

|es(F−pk(y))‖,k(F
−lk(y))

+
1

p

p∑
l=1

log μ+([i−(l−1)k−1, . . . , i−lk]).

By Lemma 3.4, we may apply the result of Maker’s Ergodic Theorem [12, Theo-
rem 1], so we get

lim
p→∞

−1

p

p∑
l=1

log g‖Ai−lk−1
···Ai−pk

|es(F−pk(y))‖,k(F
−lk(y))

= −
∫

log gk(y)dν̂(y) = kH(Fξss|ξss)

for ν̂-a.e. y. Applying Birkhoff’s Ergodic Theorem and (3.6) we get

−3 logC − kH(Fξss|ξss)−
∑

ı∈Sk μ+([ı]) logμ+([ı])

kχs
μ

≤ dνT
i+

(x) ≤ dνT
i+

(x)

≤
3 logC − kH(Fξss|ξss)−

∑
ı∈Sk μ+([ı]) logμ+([ı])

kχs
μ

for ν̂-a.e. y and every k ≥ 1. By taking the limit k → ∞, we get that

dνT
i+

(x) = dνT
i+

(x) =
hμ −H(Fξss|ξss)

χs
μ

for ν̂-a.e. y.

Since ν̂ is equivalent to ν × μ+, the statement follows. �

Proof of Theorem 3.1. Since the proofs of [2, Proposition 3.1, Proposition 3.8 and
Proposition 3.9] do not use that the examined measure is Bernoulli, one can modify
them to show that for ν̂-a.e. y ∈ Λ×Σ+ the measure ν̂ssy is exact dimensional and

dimH ν̂ssy =
H(Fξss|ξss)

χss
μ

.

Moreover,

lim inf
r→∞

ν̂i+(Br(x))

log r
≥ H(Fξss|ξss)

χss
μ

+
hμ −H(Fξss|ξss)

χs
μ

for ν̂-a.e. (x, i+),
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and by using that ν = (p−)∗ν̂, we get

lim sup
r→∞

ν(Br(x))

log r
≤ H(Fξss|ξss)

χss
μ

+
hμ −H(Fξss|ξss)

χs
μ

for ν-a.e. x.

Since the measure ν is equivalent to ν̂i+ for μ+-a.e. i+, the statement follows by
Proposition 3.3. �

As a corollary of Theorem 3.1, we are able to give two conditions which ensure
that the dimension of a Gibbs measure is equal to its Lyapunov dimension. The
second part of condition (iii) in the next theorem appears in [9] as well for the
Gibbs measure generated by the subadditive pressure.

Theorem 3.6. Let A = {Ak}Nk=1 be a family of 2 × 2 real non-singular matrices

and Φ = {Akx+ tk}
N
k=1 be an IFS of affinities on the plane. Moreover, let μ− be a

σ−-invariant ergodic Gibbs measures on Σ−, let μ be its unique extension to Σ and
let μ+ be the quasi-Bernoulli measure defined in Lemma 2.5. Assume that

(i) the IFS Φ satisfies the strong separation condition,
(ii) A satisfies the dominated splitting condition, and
(iii) either dimH(ess)∗μ+ ≥ min {1, dimLyap μ−} or dimH(ess)∗μ++dimH(π−)∗μ−

> 2.

Then

dimH(π−)∗μ = min

{
hμ

χs
μ

, 1 +
hμ − χs

μ

χss
μ

}
.

By Theorem 3.1, the proof is similar to the proofs of [2, Theorem 2.8 and The-
orem 2.9].

4. Dimension of Gibbs measures and transversality condition

of strong-stable directions

In this section and the rest of the paper, we are going to study the dimension
of Gibbs measures. To be able to calculate the dimension of Gibbs measures, we
have to handle the dimension of strong-stable directions; see (iii) of Theorem 3.6.
In the case when the matrices satisfy the backward non-overlapping condition, i.e.
there exists a backward invariant multicone M such that A−1

i (Mo) ⊆ Mo and

A−1
i (Mo) ∩ A−1

j (Mo) = ∅ for every i �= j, it is possible to calculate the dimension

of strong-stable directions. Namely, by [2, Lemma 4.2], for every σ-invariant ergodic
measure μ on Σ+,

dimH(ess)∗μ =
hμ

χss
μ − χs

μ

,

where hμ denotes the entropy of μ.
In general a set of matrices does not satisfy this phenomena. In this section

we introduce a condition, which makes us able to handle the problem of overlaps.
Namely, we consider a parametrized family of matricesA(λ) with the corresponding
map of stable and strong-stable directions esλ and essλ .

Definition 4.1. Let U ⊂ R
d be open and bounded. We say that a parametrized

family of matrices A(λ) = {Ai(λ)}Ni=1 satisfies the strong-stable transversality on
U if

• the parametrization λ �→ Ai(λ) is continuous for every i = 1, . . . , N on an
open neighborhood of U ,
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• for every λ ∈ U the set A(λ) satisfies the dominated splitting,
• there exists a constant C > 0 that for every i, j ∈ Σ+ with i0 �= j0,

Ld {λ ∈ U : �(essλ (i), essλ (j)) < r} ≤ Cr for every r > 0.

The definition of strong-stable transversality is a natural generalization of the
transversality condition for iterated function systems; see [16, (2.9)].

Theorem 4.2. Let U ⊂ R
d be an open and bounded set and let A(λ) = {Ak(λ)}Nk=1

be a parametrized family of 2 × 2 real matrices and Φ(λ) = {Ak(λ)x+ tk(λ)}
N
k=1

be a parametrized family of affine IFSs on the real plane such that

(i) for every λ ∈ U the IFS Φ(λ) satisfies the strong separation condition,
(ii) A(λ) satisfies the strong-stable transversality on U .

Let {μλ}λ∈U be a parametrized family of σ−-invariant ergodic Gibbs measures on
Σ− such that the family of the corresponding Hölder continuous potential functions
{φλ}λ∈U is uniformly continuously parametrized; moreover,

(iii) either
hμλ

χss
μλ

(λ)− χs
μλ

(λ)
≥ min

{
1,

hμλ

χs
μλ

(λ)

}
or

hμλ

χss
μλ

(λ)− χs
μλ

(λ)
+ 2

hμλ

χss
μλ

(λ)
> 2.

Then

dimH(π−
λ )∗μλ = min

{
hμλ

χs
μλ

(λ)
, 1 +

hμλ
− χs

μλ
(λ)

χss
μλ

(λ)

}
for Ld-a.e. λ ∈ U .

The proof of Theorem 4.2 is based on the combination of Theorem 3.6 and the
following theorem.

Theorem 4.3. Let U ⊂ R
d be an open and bounded set and let A(λ) = {Ak(λ)}Nk=1

be a parametrized family of 2× 2 real matrices such that A(λ) satisfies the strong-
stable transversality on U . Moreover, let {μλ}λ∈U be a family of σ-invariant quasi-

Bernoulli ergodic measures on Σ+ such that λ �→ hμλ
is continuous and for every

λ0 ∈ U and ε > 0 there exists a δ = δ(ε,λ0) > 0 such that for every i ∈ Σ, every
n ≥ 1 and every ‖λ− λ0‖ < δ,

(4.1) e−εn ≤ μλ([i|n−1
0 ])

μλ0([i|n−1
0 ])

≤ eεn.

Then

dimH(essλ )∗μλ = min

{
hμλ

χss
μλ

(λ)− χs
μλ

(λ)
, 1

}
for Ld-a.e λ ∈ U .

The proof uses the standard transversality method, but for completeness we
present it here. First, we give an upper bound for the dimension.

Lemma 4.4. Let A = {Ai}Ni=1 be a set of matrices satisfying the dominated split-
ting and let ess : Σ+ �→ P

1 be the map to strong-stable directions. Then for every
σ-invariant ergodic measure μ on Σ+,

dimH(ess)∗μ ≤ min

{
1,

hμ

χss
μ − χs

μ

}
.
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Proof of Lemma 4.4. For any x ∈ P1 let B�
r (x) :=

{
y ∈ P1 : �(x, y) < r

}
. It is

enough to show that

lim inf
r→0+

log(ess)∗μ(B
�
r (e

ss(i)))

log r
≤ hμ

χss
μ − χs

μ

for μ-a.e. i ∈ Σ+.

By Lemma 2.3 and Lemma 2.2(2), if i, j ∈ Σ+ such that ik = jk for k = 0, . . . , n,
then

�(ess(i), ess(j)) ≤
Area(A−1

i0
· · ·A−1

in
v,A−1

i0
· · ·A−1

in
w)

‖A−1
i0

· · ·A−1
in

|ess(σn+1j)‖‖A−1
i0

· · ·A−1
in

|ess(σn+1i)‖

≤ C
| det(A−1

i0
· · ·A−1

in
)|

‖A−1
i0

· · ·A−1
in

‖2
,

where v ∈ ess(σn+1i) and w ∈ ess(σn+1j) such that ‖v‖ = ‖w‖ = 1. Let n(r, i) ∈ N

be the smallest number such that

| det(A−1
i0

· · ·A−1
in

)|
‖A−1

i0
· · ·A−1

in
‖2

< C−1r.

Hence, (ess)∗μ(B
�
r (e

ss(i))) ≥ μ([i|n(r,i)0 ]). Therefore,

log(ess)∗μ(B
�
r (e

ss(i)))

log r

≤ log μ([i|n(r,i)0 ])

logC + log | det(A−1
i0

· · ·A−1
in(r,i)−1

)| − 2 log ‖A−1
i0

· · ·A−1
in(r,i)−1

‖
.

(4.2)

By ergodicity and Lemma 2.2(2),

lim
n→∞

− 1

n
log μ([i|n0 ]) = hμ,

lim
n→∞

− 1

n
log | det(A−1

i0
· · ·A−1

in−1
)| = −χss

μ − χs
μ,

lim
n→∞

1

n
log ‖A−1

i0
· · ·A−1

in−1
‖ = χss

μ for μ-a.e. i ∈ Σ+.

Putting these limits into (4.2) completes the proof. �

Lemma 4.5. Let U ⊂ R
d be open and bounded and let A(λ) = {Ai(λ)}Ni=1 be a

parametrized family of matrices such that the map λ �→ Ai(λ) is continuous for
any i = 1, . . . , N in an open neighborhood of U and A(λ) satisfies the dominated
splitting on U . Then the map λ �→ essλ (i) is uniformly continuous for every i ∈ Σ+.
That is, for every λ0 ∈ U and every ε > 0 there exists a δ = δ(λ0, ε) > 0 such that

‖λ− λ0‖ < δ =⇒ �(essλ (i), essλ0
(i)) < ε for every i ∈ Σ+.

Proof. Let λ0 ∈ U and ε > 0 be arbitrary but fixed. Let M be the backward
invariant multicone of A(λ0). By definition of backward invariant multicone, there
exists a δ′ = δ′(λ0) > 0 such that for every λ with ‖λ−λ0‖ < δ′, M is a backward
invariant multicone for A(λ). Hence, the angles between the directions of the
dominated splitting are uniformly bounded from below. Thus, by Lemma 2.2(2)
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and Lemma 2.3, there exists a constant C = C(λ0) > 0 such that for every m ≥ 0
integer we have

�(essλ (i), essλ0
(i))

≤ �(A−1
i0

(λ0) · · ·A−1
im

(λ0)e
ss
λ0
(σm+1i), A−1

i0
(λ0) · · ·A−1

im
(λ0)e

ss
λ (σm+1i))

+ �(A−1
i0

(λ0) · · ·A−1
im

(λ0)e
ss
λ (σm+1i), A−1

i0
(λ) · · ·A−1

im
(λ)essλ (σm+1i))

≤ C(λ0)
22

| det(A−1
i0

(λ0) · · ·A−1
im

(λ0))|
‖A−1

i0
(λ0) · · ·A−1

im
(λ0)‖2

�(essλ (σm+1i), essλ0
(σm+1i))

+

2∑
i=1

|A−1
i0

(λ)···A−1
im

(λ)ui×A−1
i0

(λ0)···A−1
im

(λ0)ui|+|
2∑

i=1

A−1
i0

(λ)···A−1
im

(λ)ui×A−1
i0

(λ0)···A−1
im

(λ0)u3−i|

‖Ai0
(λ)···Aim (λ)‖−1‖Ai0

(λ0)···Aim (λ0)‖−1 ,

where u1, u2 is the standard basis of R2. SinceA(λ) satisfies the dominated splitting
on U , there exists an integer m = m(λ0) > 0 such that

C(λ0)
22

| det(A−1
i0

(λ0) · · ·A−1
im

(λ0))|
‖A−1

i0
(λ0) · · ·A−1

im
(λ0)‖2

<
1

2
,

for every i0, . . . , im ∈ {1, . . . , N}. Let f(λ,λ0) := supi∈Σ+ �(essλ (i), essλ0
(i)). Then

f(λ,λ0) ≤ 2 max
i0,...,im

{∑2
i=1 |A

−1
i0

(λ) · · ·A−1
im

(λ)ui ×A−1
i0

(λ0) · · ·A−1
im

(λ0)ui|
‖Ai0(λ) · · ·Aim(λ)‖−1‖Ai0(λ0) · · ·Aim(λ0)‖−1

+
|
∑2

i=1 A
−1
i0

(λ) · · ·A−1
im

(λ)ui ×A−1
i0

(λ0) · · ·A−1
im

(λ0)u3−i|
‖Ai0(λ) · · ·Aim(λ)‖−1‖Ai0(λ0) · · ·Aim(λ0)‖−1

}
.

Since the maps λ �→ Ai(λ) are continuous, there exists a δ = δ(λ0, ε) > 0 such that
the right-hand side is less that ε > 0 for every λ with ‖λ− λ0‖ < δ. �

Lemma 4.6. Let U ⊂ R
d be open and bounded and let {μλ}λ∈U be a family of

σ-invariant quasi-Bernoulli ergodic measures on Σ+ such that (4.1) holds. Then

the map λ �→ μλ is continuous in weak*-topology. Moreover, if A(λ) = {Ai(λ)}Ni=1

is a parametrized family of matrices such that the map λ �→ Ai(λ) is continuous for
any i = 1, . . . , N in an open neighborhood of U , and for every λ ∈ U the set A(λ)
satisfies the dominated splitting, then the maps λ �→ χss

μλ
(λ) and λ �→ χs

μλ
(λ) are

continuous.

Proof. To prove the first assertion of the lemma it is enough to show that for every
O ⊆ Σ+ open set and every λ0 ∈ U ,

(4.3) lim inf
λ
→λ0

μλ(O) ≥ μλ0(O).

Since the cylinder sets form a base of open sets we get O =
⋃∞

k=1[ik|mk
nk

]. Since for
every cylinder [ik|mk

nk
] =

⋃
|j|=nk

[jσnk ik|mk
0 ] without loss of generality we may write

O =
⋃∞

k=1[ik|
mk
0 ]. On the other hand, for every pair of cylinder sets of the form

[ik|mk
0 ] either they are disjoint or one contains the other; thus, we may assume that

[ik|mk
0 ] ∩ [il|ml

0 ] = ∅ if k �= l. Hence,

μλ0(O) = lim
n→∞

∑
|i|=n
[i]⊆O

μλ0([i]).
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Therefore, by (4.1) for every n ≥ 1,

lim inf
λ→λ0

μλ(O) ≥ lim inf
λ→λ0

∑
|i|=n
[i]⊆O

μλ([i]) =
∑
|i|=n
[i]⊆O

μλ0
([i]).

Since n ≥ 1 was arbitrary we get (4.3).
To prove the second assertion, by Lemma 2.2(2) and the multiplicative ergodic

theorem,

χss
μλ

(λ) =

∫
log ‖A−1

i0
(λ)|essλ (σi)‖dμλ(i)

and

χss
μλ

(λ) + χs
μλ

(λ) =

∫
log | det(A−1

i0
(λ))|dμλ(i).

By Lemma 4.5, the map λ �→ log ‖A−1
i0

(λ)|essλ (σi)‖ is continuous. Thus by the
weak*-continuity of λ �→ μλ, the map λ �→ χss

μ (λ) is continuous. The continuity
of λ �→ χs

μλ
(λ) follows by the continuity of λ �→ μλ, λ �→ χss

μλ
(λ) and λ �→

log | det(A−1
i0

(λ))|. �

Proposition 4.7. Assume that the assumptions of Theorem 4.3 hold. Then for
every λ0 ∈ U and ε > 0 there exists a δ > 0 such that

dimH(essλ )∗μλ ≥ min

{
1,

hμλ0

χss
μλ0

(λ0)− χs
μλ0

(λ0)

}
− ε for Ld-a.e. λ ∈ Bδ(λ0).

Before we prove Proposition 4.7, we prove that for every λ ∈ U the map i �→
essλ (i) is Hölder continuous.

Lemma 4.8. For every λ0 ∈ U there exists a δ = δ(λ0) > 0 and for every
r > 0 there exists a positive integer N = N(λ0, r) such that for every λ ∈ U with
‖λ− λ0‖ < δ and for every i, j ∈ Σ+ with i0 �= j0,

I {�(essλ (i), essλ (j)) < r} ≤ I
{
�(essλ (i|N0 1), essλ (j|N0 1)) < 2r

}
,

where 1=(1, 1, . . . )∈Σ+ and I denotes the indicator function. Precisely, N(λ0, r)=

� 2 log r
−β(λ0)

+ c(λ0)�, where β(λ0) is the domination exponent in Definition 2.1 and

c(λ0) is some constant depending only on λ0.

Proof. Fix λ0 ∈ U . Then by Lemma 2.3 for every N and every i, j ∈ Σ+ with
i0 �= j0,

|�(essλ (i), essλ (j))− �(essλ (i|N0 1), essλ (j|N0 1))|
≤ �(essλ (i), essλ (i|N0 1)) + �(essλ (j), essλ (j|N0 1))

≤ 2
| det(A−1

i0
(λ)···A−1

iN
(λ))|

‖A−1
j0

(λ)···A−1
jN

(λ)|essλ (σN+1i)‖‖A−1
j0

(λ)···A−1
jN

(λ)|essλ (1)‖�(essλ (σN+1i), essλ (1))

+ 2
| det(A−1

j0
(λ)···A−1

jN
(λ))|

‖A−1
j0

(λ)···A−1
jN

(λ)|essλ (σN+1j)‖‖A−1
j0

(λ)···A−1
jN

(λ)|essλ (1)‖�(essλ (σN+1j), essλ (1)).



570 BALÁZS BÁRÁNY AND MICHA�L RAMS

Since λ �→ Ai(λ) is continuous, by Lemma 4.5, there exists a δ = δ(λ0) > 0 such
that

| det(A−1
j0

(λ) · · ·A−1
jN

(λ))|
‖A−1

j0
(λ) · · ·A−1

jN
(λ)|essλ (σN+1j)‖‖A−1

j0
(λ) · · ·A−1

jN
(λ)|essλ (1)‖

≤ e
δ(λ0)

2 N
| det(A−1

j0
(λ0) · · ·A−1

jN
(λ0))|

‖A−1
j0

(λ0) · · ·A−1
jN

(λ0)|essλ0
(σN+1j)‖‖A−1

j0
(λ0) · · ·A−1

jN
(λ0)|essλ0

(1)‖
for every j ∈ Σ+. Thus, by Lemma 2.2(2),

|�(essλ (i), essλ (j))− �(essλ (i|N0 1), essλ (j|N0 1))|

≤ 2πe
δ(λ0)

2 NC(λ0)
2 max
j0,...,jN

{
| det(A−1

j0
(λ0) · · ·A−1

jN
(λ0))|

‖A−1
j0

(λ0) · · ·A−1
jN

(λ0)‖2

}
.

By Definition 2.1, there exists an N = N(λ0, r) such that the right-hand side of
the inequality is less than r; thus the statement follows. �
Proof of Proposition 4.7. Let λ0 ∈ U and ε > 0 be arbitrary but fixed. Let δ =
δ(λ0, ε) > 0 be chosen according to Lemma 4.5, Lemma 4.8 and (4.1). By the
Shannon-McMillan-Breiman Theorem and (4.1), for every λ ∈ Bδ(λ0),

hμλ0
− ε ≤ lim inf

n→∞
− 1

n
log μλ([i|n−1

0 ]) ≤ lim sup
n→∞

− 1

n
log μλ([i|n−1

0 ])

≤ hμλ0
+ ε for μλ-a.e. i ∈ Σ+.

Moreover, by the ergodic theorem and weak*-continuity of λ �→ μλ,

χss
μλ0

(λ0) + χs
μλ0

(λ0)− ε ≤ lim
n→∞

1

n
log | det(A−1

i0
(λ) · · ·A−1

in−1
(λ))|

≤ χss
μλ0

(λ0) + χs
μλ0

(λ0) + ε,

χss
μλ0

(λ0)− ε ≤ lim
n→∞

1

n
log ‖A−1

i0
(λ) · · ·A−1

in−1
(λ)|essλ (σni)‖ ≤ χss

μλ0
(λ0) + ε

for μλ-a.e. i ∈ Σ+. By Egorov’s theorem for every λ ∈ Bδ(λ0) there exists a set
Ωλ ⊆ Σ+ such that μ(Ωλ) > 1− ε and there exists a constant C(λ) > 1 such that
for every i ∈ Σ+ and every n,m ≥ 1,

C(λ)−1μλ([i|n−1
0 ])μλ([σ

ni|m−1
0 ]) ≤ μλ([i|n+m−1

0 ])

≤ C(λ)μλ([i|n−1
0 ])μλ([σ

ni|m−1
0 ]),

and for every i ∈ Ωλ and every n ≥ 1,

C(λ)−1e
−n(hμλ0

+2ε) ≤ μλ([i|n−1
0 ]) ≤ C(λ)e

−n(hμλ0
−2ε)

,(4.4)

C(λ)−1e
−n(χss

μλ0
(λ0)−χs

μλ0
(λ0)+6ε) ≤

| det(A−1
i0

(λ) · · ·A−1
in−1

(λ))|
‖A−1

i0
(λ) · · ·A−1

in−1
(λ)‖2

≤ C(λ)e
−n(χss

μλ0
(λ0)−χs

μλ0
(λ0)−6ε)

.

(4.5)

By Lusin’s theorem for every ε′ > 0 there exists a set Jδ(λ0) ⊆ Bδ(λ0) such
that Ld(Bδ(λ0)/Jδ(λ0)) < ε′ and there exists a C > 1 such that C(λ) ≤ C for
every λ ∈ Jδ(λ0). Denote the measure μ̃λ := μ|Ωλ

and for a finite length word

k = (k0, . . . , kn−1) denote the set

Σk :=
{
(i, j) ∈ Σ+ : im = jm = km for m = 0, . . . , n− 1 and in �= jn

}
.
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Then for every s > 0 by Lemma 4.5, the continuity of λ �→ Ai(λ) and (4.5),

I :=

∫
Jδ(λ0)

∫∫
�(essλ (i), essλ (j))−sdμ̃λ(i)dμ̃λ(j)dλ

=

∞∑
n=0

∑
k=n

∫
Jδ(λ0)

∫∫
Σk

�(essλ (i), essλ (j))−sdμ̃λ(i)dμ̃λ(j)dλ

≤
∞∑

n=0

∑
k=n

∫
Jδ(λ0)

∫∫
Σk

C(λ)2

(
| det(A−1

k0
(λ) · · ·A−1

kn−1
(λ))|

2‖A−1
k0

(λ) · · ·A−1
kn−1

(λ)‖2

)−s

· �(essλ (σni), essλ (σnj))−sdμ̃λ(i)dμ̃λ(j)dλ

≤
∞∑

n=0

C ′esn(χ
ss
μ (λ0)−χs

μ(λ0)+6ε)

·
∑
k=n

∫
Jδ(λ0)

∫∫
Σk

�(essλ (σni), essλ (σnj))−sdμ̃λ(i)dμ̃λ(j)dλ.

By Lemma 4.8, for any k with |k| = n,

Ik :=

∫
Jδ(λ0)

∫∫
Σk

�(essλ (σni), essλ (σnj))−sdμ̃λ(i)dμ̃λ(j)dλ

≤
∞∑

m=0

2(m+1)s

∫
Jδ(λ0)

∫∫
Σk

I

{
�(essλ (σni), essλ (σnj)) <

1

2m

}
dμ̃λ(i)dμ̃λ(j)dλ

≤
∞∑

m=0

2(m+1)s

∫
Jδ(λ0)

·
∫∫

Σk

I

{
�(essλ (σni|N(λ0,m)

0 1), essλ (σnj|N(λ0,m)
0 1)) <

2

2m

}
dμ̃λ(i)dμ̃λ(j)dλ

=

∞∑
m=0

2(m+1)s

·
∑

|l|=N(λ0,m)
|h|=N(λ0,m)

∫
Jδ(λ0)

∫∫
[kl]×[kh]

I

{
�(essλ (h1), essλ (l1)) <

2

2m

}
dμ̃λ(i)dμ̃λ(j)dλ.

(4.6)

By applying (4.4), the quasi-Bernoulli property of μλ0 , (4.1) and the continuity of
λ �→ hμλ

, we get∫
Jδ(λ0)

I

{
�(essλ (h1), essλ (l1)) <

2

2m

}
μ̃λ([kl])μ̃λ([kh])dλ

≤ C2

∫
Jδ(λ0)

I

{
�(essλ (h1), essλ (l1)) <

2

2m

}
μ̃λ([k])

2μ̃λ([l])μ̃λ([h])dλ

≤ c′μλ0
([k])μλ0

([l])μλ0
([h])e2ε(n+N(λ0,m))e

−n(hμλ0
−2ε)

· Ld

(
λ ∈ Jδ(λ0) : �(essλ (h1), essλ (l1)) <

2

2m

)
.
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Hence, by (4.6) and the strong-stable transversality

Ik ≤ c′μλ0([k])

∞∑
m=0

2(m+1)s
∑

|l|=N(λ0,m)
|h|=N(λ0,m)

μλ0([l])μλ0([l])e
2ε(n+N(λ0,m))e

−n(hμλ0
−2ε) C

2m

= c′′μλ0
([k])e

−n(hμλ0
−4ε)

∞∑
m=0

2m(s−1)+2εN(λ0,m)/ log 2.

Since N(λ0,m)/ log 2 ≤ m 2
β(λ0)

+ c(λ0),

I ≤ c′′′
∞∑
n=0

e
n(s(χss

μ (λ0)−χs
μ(λ0))−hμλ0

+10ε)
∞∑

m=0

2
m(s−1+ε 4

β(λ0) ).

Hence, by choosing s < min
{
1− ε 5

β(λ0)
,

hμλ0
−11ε

χss
μ (λ0)−χs

μ(λ0)

}
the right-hand side of the

inequality is finite. By Frostman’s Lemma [7, Theorem 4.13],

dimH(essλ )∗μ̃λ ≥ min

{
1− ε

5

β(λ0)
,

hμλ0
− 11ε

χss
μ (λ0)− χs

μ(λ0)

}
for Ld-a.e. λ ∈ Jδ(λ0).

But for every λ ∈ Bδ(λ0), dimH(essλ )∗μλ ≥ dimH(essλ )∗μ̃λ and, moreover,
Ld(Bδ(λ0)/Jδ(λ0)) can be chosen arbitrarily small; thus, the statement follows. �

Proof of Theorem 4.3. By Lemma 4.4 we have

dimH(essλ )∗μλ ≤ min

{
1,

hμλ

χss
μλ

(λ)− χs
μλ

(λ)

}
for every λ ∈ U.

So it is enough to establish the lower bound. Let us argue by contradiction. Assume
that there exists a set U ′ ⊂ U with Ld(U

′) > 0 such that

dimH(essλ )∗μλ ≤ min

{
1,

hμλ

χss
μλ

(λ)− χs
μλ

(λ)

}
−ε for Ld-a.e. λ ∈ U ′ for some ε > 0.

Let λ0 ∈ U ′ be a Lebesgue density point. Thus, there exists a δ0 > 0 such that for
every δ0 > δ > 0,

Ld

(
λ ∈ Bδ(λ0) : dimH(essλ )∗μλ ≤ min

{
1,

hμλ

χss
μλ

(λ)− χs
μλ

(λ)

}
− ε

)
> 0.

By using the continuity of entropy and Lyapunov exponents we have for sufficiently
small δ > 0,

Ld

(
λ ∈ Bδ(λ0) : dimH(essλ )∗μλ ≤ min

{
1,

hμλ0

χss
μλ0

(λ0)− χs
μλ0

(λ0)

}
− ε

2

)
> 0,

but this contradicts Proposition 4.7. �
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Proof of Theorem 4.2. By [5, section 1], a family of Gibbs measures for a uniformly
continuously parametrized family of Holder continuous potentials is weakly contin-
uous. Hence, {μλ}λ∈U satisfy equation (4.1). Then by Theorem 4.3, we have

dimH(essλ )∗μλ = min

{
hμλ

χss
μλ

(λ)− χs
μλ

(λ)
, 1

}
for Ld-a.e λ ∈ U .

On the other hand, by Theorem 3.6, if

hμλ

χss
μλ

(λ)− χs
μλ

(λ)
≥ min

{
hμλ

χs
μλ

(λ)
, 1

}
,

then the statement holds. Thus, we may assume that

hμλ

χss
μλ

(λ)− χs
μλ

(λ)
< 1, χss

μλ
(λ) > 2χs

μλ
(λ) and

hμλ

χss
μλ

(λ)− χs
μλ

(λ)
+ 2

hμλ

χss
μλ

(λ)
> 2.

By [2, Lemma 4.12], we get that dimH(π−
λ )∗μλ ≥ 2

hμλ

χss
μλ

(λ) , and the statement

follows by Theorem 3.6. �

5. Proof of Theorem 1.1

Finally, in this section we prove Theorem 1.1 as an application of Theorem 4.2.
For a matrix A ∈ R

2×2
+ ∪ R

2×2
− let

(5.1) S(x,A) :=
|a|x+ |c|(1− x)

(|a|+ |b|)x+ (|c|+ |d|)(1− x)
, where A =

[
a b
c d

]
.

Simple calculations show that the maps Si ∈ C2[0, 1]. Moreover,

(5.2) sup
x∈[0,1]

|S′(x,A)| = max {|S′(0, A)|, |S′(1, A)|} =
| detA|
|||A|||2 , and

inf
x∈[0,1]

|S′(x,A)| = min {|S′(0, A)|, |S′(1, A)|} =
| detA|
‖A‖2∞

,

where ‖A‖∞ = max {|a|+ |b|, |c|+ |d|} the usual ∞-norm of matrices.

Lemma 5.1. Let A = {A1, . . . , AN} be a set of non-singular matrices with ei-

ther strictly positive or strictly negative elements such that | detAi|
|||Ai|||2 < 1. Let φ =

{Si(.) := S(., Ai)}Ni=1 be IFS on [0, 1] and let Π : Σ+ �→ [0, 1] be the natural projec-

tion of φ. Then for every i+ ∈ Σ+ the vector (Π(i+)− 1,Π(i+))
T ∈ ess(i+).

Proof. Let A = {A1, . . . , AN} and the IFS φ = {S1, . . . , SN} be as required. It is
easy to see that the cone M =

{
(x, y) ∈ R

2/ {(0, 0)} : xy ≤ 0
}
is backward invari-

ant. So, by [3, Theorem B], A satisfies the dominated splitting.
For an i+ ∈ Σ+ let ess(i+) be the invariant strong-stable direction defined in

(5.1). By the definition of Π : Σ+ �→ [0, 1],

(
Π(i+)− 1
Π(i+)

)
=

(
−bi0Π(σi+)− di0(1−Π(σi+))
ai0Π(σi+) + ci0(1−Π(σi+))

)
(|ai0 |+ |bi0 |)Π(σi+) + (|ci0 |+ |di0 |)(1−Π(σi+))

=
detAi0

(|ai0 |+ |bi0 |)Π(σi+) + (|ci0 |+ |di0 |)(1−Π(σi+))
A−1

i0

(
Π(σi+)− 1
Π(σi+)

)
.

Thus, by Lemma 2.2 and uniqueness, the one-dimensional subspace ess(i+) contains

(Π(i+)− 1,Π(i+))
T . �
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Lemma 5.2. Let A = {A1, . . . , AN} be arbitrary such that Ai ∈ M, where M is
defined in (1.3). Moreover, let A(t) = {A1 + t1B1, . . . , AN + tNBN}, where t ∈ R

N

and

(5.3) Ai =

(
ai bi
ci di

)
and Bi =

(
ai + bi −(ai + bi)
ci + di −(ci + di)

)
.

Then there exists a δ = δ(A) > 0 such that the IFS φt={St
i (.) := S(., Ai+tiBi)}Ni=1

satisfies the transversality condition on (−δ, δ)N .
In particular, A(t) satisfies the strong-stable transversality condition on (−δ, δ)N .

Proof. Since MN is open, there exists an ε = ε(A) > 0 such that A(t) ∈ MN for

every t ∈ (−ε, ε)N . Let φ = {S1, . . . , SN} be the IFS for A and φt = {St
1, . . . , S

t
N}

be the IFS for A(t). Simple calculations show that S
t
i (x) = Si(x) + ti for every

i = 1, . . . , N . By the definition of M, by (5.2) and by [16, Corollary 7.3] there
exists δ = δ(A) > 0 such that δ < ε and φt satisfies the transversality condition.
By Lemma 5.2 and Definition 4.1, it follows that A(t) satisfies the strong-stable
transversality on (−δ, δ)N . �

Lemma 5.3. Let us define for every A ∈ MN ,

P (A) := MN ∩
⋃

t∈RN

A(t),

where A(t) is defined in Lemma 5.2. Then P defines a measurable partition of MN .

Proof. By the definition of P it is enough to show that if A �= A′, then either
P (A) = P (A′) or P (A) ∩ P (A′) = ∅.

Let us fix A �= A′ and suppose that P (A) ∩ P (A′) �= ∅. Then there exist
t1, . . . , tN ∈ R and t′1, . . . , t

′
N ∈ R such that Ai + tiBi = A′

i + t′iB
′
i for every

i = 1, . . . , N , where Bi and B′
i are defined in (5.3). Thus ai + bi = a′i + b′i and

ci + di = c′i + d′i. Hence, P (A) = P (A′). The measurability is straightforward. �

Proof of Theorem 1.1. First we show that if A ∈ NN ∪ ON , where NN and ON

are defined in (1.4), then condition (iii) of Theorem 4.2 holds for the Käenmäki
measure μK of A, defined in Definition 2.6.

Indeed, if A ∈ NN , then
hμK

χss
μK − χs

μK

≥
hμK

χs
μK

, and on the other hand, if A ∈ ON ,

then

hμK

χss
μK − χs

μK

+ 2
hμK

χss
μK

=
χs
μK + (s0 − 1)χss

μK

χss
μK − χs

μK

+ 2
χs
μK + (s0 − 1)χss

μK

χss
μK

= −3 +

⎛⎜⎝2 +
1

1−
χs

μK

χss

μK

⎞⎟⎠ s0 + 2
χs
μK

χss
μK

>
1

3
+

5

3

(
1−

χs

μK

χss

μK

) + 2
χs
μK

χss
μK

> 2.

Now, let V ⊂ NN ∪ ON ⊂ MN be a compact set such that V o = V . Let us
define for an A ∈ V ,

Q(A) := V ∩ P (A).
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Thus,
⋃

B∈P (A)

{⋃
t∈(−δ(B),δ(B))N B(t)

}
defines an open cover of Q(A). Since Q(A)

is compact there is a finite set {B1, . . . ,Bn} such that
⋃n

i=1

{⋃
t∈(−δ(Bi),δ(Bi))N

Bi(t)
}

is a cover for Q(A). But by Lemma 5.2, for every i = 1, . . . , n the parametrized
family of matrices Bi(t) satisfies the strong-stable transversality condition on
(−δ(Bi), δ(Bi))

N . Thus, by Theorem 4.2 for every i = 1, . . . , n,

dimH μK
t = dimH Λt = dimB Λt = s0(t) for LN -a.e t ∈ (−δ(Bi), δ(Bi))

N ,

where μK
t is the Käenmäki measure of the system Bi(t) and s0(t) is the affinity

dimension. In particular, for every A ∈ V ,

dimH μK = dimH Λ = dimB Λ = s0(B) for LN -a.e B ∈ Q(A).

By Lemma 5.3, Q is a measurable foliation of V ; thus, by Rokhlin’s Theorem

dimH μK = dimH Λ = dimB Λ = s0(A) for L4N -a.e. A ∈ V.

Since V was arbitrary, the statement follows. �
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