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KOSZUL DUALITY AND SOERGEL BIMODULES

FOR DIHEDRAL GROUPS

MARC SAUERWEIN

Abstract. Every Coxeter system (W,S) gives rise to a Hecke algebra H(W,S)

which can be categorified by the additive monoidal category of Soergel bimod-
ules SB. Under this isomorphism the Kazhdan-Lusztig basis {Hx}x∈W corre-
sponds to certain indecomposable Soergel bimodules {Bx}x∈W (up to shift).
In this thesis we study the structure of the endomorphism algebra (of maps
of all degrees) A := End•

SB
(⊕

x∈W Bx
)
⊗R R. Via category O it has been

proven for all Weyl groups that A is a self-dual Koszul algebra. We extend this
result to all dihedral groups by purely algebraic methods using representation
theory of quivers and Soergel calculus.

Contents

1. Introduction 1251
2. Preliminaries 1253
3. Soergel bimodules 1255
4. Soergel calculus (in the dihedral case) 1257
5. Koszul and quasi-hereditary algebras 1262
6. Realisation as a path algebra of a quiver with relations 1264
7. Proof of the Koszul self-duality 1272
Acknowledgments 1281
References 1281

1. Introduction

To any Coxeter system (W,S) one associates a Hecke algebra H(W,S). The
Hecke algebra may be categorified by Soergel bimodules SB, an additive monoidal
category of bimodules over a polynomial ring R. The indecomposable bimodules
{Bx} in SB are (up to grading shift) parametrised by the group W . The main
object of interest in this paper is the endomorphism algebra (consisting of maps of
all degrees) of B :=

⊕
x∈W Bx where the action of polynomials of positive degree

on the right is trivialised:

A := End•SB (B)⊗R R.

We prove the following result via purely algebraic methods.

Theorem 1. For a dihedral group (W,S) the R-algebra A is a self-dual Koszul
algebra.
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1.1. Motivation. Let g be a complex semisimple Lie algebra. It turns out that
the category g-Mod of all g-modules is far too large to be understood algebraically.
The introduction of category O by Bernstein, Gelfand and Gelfand (see [BGG76])
was seminal for the further study of the representation theory of g.

Fix a Borel b, a Cartan h in g and defineO := O(g, b, h) to be the full subcategory
of g-Mod whose objects M are finitely generated over g, h-semisimple and locally
b-finite. In particular, all finite dimensional modules and Verma (= standard)
modules Δ(λ) (λ ∈ h∗) lie in O.

This restriction made it easier to handle the category and led to beautiful new
results such as BGG reciprocity [BGG76, Prop. 1] and the Kazhdan-Lusztig conjec-
tures [KL79, Conj. 1.5]. Within the principal block O0 ⊂ O let L :=

⊕
w∈W L(w·0)

be the direct sum of the simple modules and P :=
⊕

w∈W P (w · 0) the direct sum
of their projective covers; i.e., P is a projective generator. We have the following
result due to Soergel in [Soe90]:

Theorem 2 (Koszul self-duality for the principal block O0). There exists an iso-
morphism of finite dimensional C-algebras

A := EndO0
(P ) ∼= Ext•O0

(L,L),

where the right-hand side is a ring via the cup product. Furthermore, Ext•O0
(L,L)

is a Koszul algebra.

Although EndO0
(P ) is not obviously graded, it inherits a grading from the natu-

rally graded Ext-algebra. The first glimpse of Koszul duality was discovered earlier
when mathematicians were investigating composition series of Verma modules in
category O0 and found formulas of the form

[Δ(x · 0) : L(y · 0)] =
∑
i

dimExti(Δ(w0x · 0), L(w0y · 0)).

These formulas can be explained by Koszul self-duality on the level of derived
categories (see [BGS96, Theorem 1.2.6]). The existing proofs of Koszul self-duality
are difficult and rely heavily on geometric techniques.

Using O0
∼= Mod -A one obtains a Z-graded version of O0 as OZ

0 := gMod -A.
Soergel’s combinatorial functor V induces an isomorphism of Z[v±1]-modules (see
[Soe90] and [Str03a, Theorem 7.1]):

K0

(
OZ

0

) ∼−→ Ks
0 (S) ,

P (x · 0)〈i〉 	−→ VP (x · 0)〈i〉 = Bx〈i〉,

where B := B ⊗R R is the Soergel module corresponding to the Soergel bimodule
B and S denotes the category of graded Soergel modules. Translating Theorem 2
into the setting of Soergel (bi)modules via the above identification frees the result
from geometry and yields

A
Thm. 2∼= Ext•O0

(L,L) ∼= E(A),

where E(A) denotes the Koszul dual of a Koszul algebra.

1.2. Structure of the paper. This paper contains two parts.

Part 1: In the first four sections we provide the necessary background on Hecke
algebras, Soergel bimodules, Soergel calculus and Koszul algebras.
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Part 2: In the last two sections we realise the endomorphism ring of Soergel mod-
ules as the path algebra of a quiver and show that it is Koszul self-dual.

2. Preliminaries

2.1. Basic definitions. Let (W,S) be a Coxeter system. Recall thatW is equipped
with the Bruhat order ≤ and the length function � : W → N0 which counts the
number of simple reflections in a reduced expression. For an arbitrary sequence
w = (s1, s2, . . . , sn) in S we denote the product s1s2 · · · sn by w, viewed as an ele-
ment in W . For such a sequence w its length is defined by �(w) = n. Observe that
we have �(w) ≥ �(w) and equality holds if and only if w is a reduced expression
for w. By abuse of notation we write w = s1s2 · · · sn. It is crucial to distinguish
between w and w, since the latter denotes a distinct sequence of simple reflections
whereas w is their product in W .

Following Soergel’s normalisation as in [Soe97] we define the Hecke algebra H =
H(W,S) as the unital, associative Z[v±1]-algebra generated by {Hs}s∈S subject to
the relations

H2
s = 1 + (v−1 − v)Hs,(1)

HsHtHs . . .︸ ︷︷ ︸
mst factors

= HtHsHt . . .︸ ︷︷ ︸
mst factors

,(2)

for all s �= t ∈ S. Here v is just an indeterminant.
Given a reduced expression w = s1s2 · · · sn we set Hw := Hs1 · · ·Hsn , which is

well-defined by the Lemma of Matsumoto (see [Mat64]). The elements {Hw}w∈W

form the standard basis of H as a Z[v±1]-module. An easy calculation shows the
following.

Lemma 2.1. Let w ∈ W and s ∈ S. For a basis element Hw and a generator Hs

we have the following multiplication rule:

HwHs =

{
Hws if ws > w,

Hws + (v−1 − v)Hw if ws < w.
(3)

Each Hs for s ∈ S is invertible with inverse Hs+(v−v−1), and thus all standard
basis elements are units. There is a unique Z-linear involution · : H → H such that
v 	→ v−1 and Hs 	→ H−1

s . This involution is called duality and it is easily checked
that Hw 	→ H−1

w−1 holds for w ∈ W .

Theorem 2.2 ([KL79]). There exists a unique Z[v±1]-basis {Hw}w∈W of H con-
sisting of self-dual elements such that

Hw = Hw +
∑
x<w

hx,wHx,

where hx,w ∈ vZ[v].

This basis is called the Kazhdan-Lusztig basis and the hx,w are the Kazhdan-
Lusztig polynomials. Note that the hx,w are not the originally defined Kazhdan-
Lusztig polynomials px,w (see [KL79]), but there is the following relation (see
[Soe97, Rem. 2.6.]):

hx,w(v) = v�(w)−�(x)px,w(v
−2).
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Mimicking the notion of a trace form from linear algebra we define a trace on
H to be a Z[v±1]-linear map ε : H → Z[v±1] satisfying ε(h1h2) = ε(h2h1) for all
h1, h2 ∈ H. The standard trace on H is defined via ε(Hw) := δw,e.

Lemma 2.3. For w and w′ ∈ W we have ε(HwHw′) = δw,(w′)−1 .

Proof. Induction over the length of w′ combined with the multiplication rule from
Lemma 2.1. �

For a sequence w = s1s2 · · · sn we call e = e1e2 · · · en with ei ∈ {0, 1} a 01-
(sub)sequence of w which picks out the subsequence we := se1

1 se2
2 · · · sen

n . Given
such a 01-sequence its Bruhat stroll is the sequence e, x1, . . . , xn = we where

xi := se1
1 se2

2 · · · sei

i .(4)

This stroll allows us to decorate each step of the 01-sequence e with either U(p)
or D(own) encoding the path in the Bruhat graph. We assign U to the index i if
xi−1si > xi−1 and D if xi−1si < xi.

There is a Z[v±1]-linear anti-involution ι satisfying ι(Hs) = Hs for s ∈ S. It
is easily checked that ι(Hw) = Hw−1 for w ∈ W . Note that ι and · commute; we
denote their composition as ω. It follows that ω is a Z-linear anti-involution on H
satisfying ω(v) = v−1 and ω(Hw) = H−1

w for w ∈ W . Using the aforementioned
standard trace we can define the standard pairing H × H → Z[v±1] by (h, h′) :=
ε(ω(h)h′).

2.2. Notation (following [Eli16]). Let (W,S) be a dihedral group of type I2(m)
(m ≥ 3), that is, a Coxeter system (W, {s, t}) where (st)m = e. The elements in
S = {s, t} are called simple reflections or colours. As before, we denote a sequence
of simple reflections by w and shorten expressions of length ≥ 1 by

sk := sts . . .︸ ︷︷ ︸
k factors

, ks := . . . sts︸ ︷︷ ︸
k factors

,

similarly for t. Omitting the underline means the corresponding product in W . We
write e = s0 = t0 for the identity and w0 = sm = tm for the longest element in W .
The restriction to dihedral groups makes it possible to obtain a closed formula for
all Kazhdan-Lusztig basis elements simultaneously.

Proposition 2.4. Let (W, {s, t}) be a dihedral group and w ∈ W ; then

Hw =
∑
x≤w

v�(w)−�(x)Hx.

Proof. Induction over the length of w (see [Her99, Bsp. 2.3]). �

For arbitrary Coxeter groups there is no such formula, and the computation is
carried out inductively following for example the proof of Theorem 2.2 in [Soe97,
Thm. 2.1]. However, the Kazhdan-Lusztig basis element Hw0

of a finite Coxeter
group with longest element w0 can always be computed using the formula in Propo-
sition 2.4 (see [KL79]). From Proposition 2.4 we can easily deduce the following
lemma.

Lemma 2.5. For w ∈ W we have ω(Hw) = Hw−1 .
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3. Soergel bimodules

For a Coxeter system (W,S) of type I2(m),m ≥ 3, we define the geometric
representation h = Rα∨

s ⊕ Rα∨
t with its Cartan matrix (see [Hum90]):(

2 −2 cos
(
π
m

)
−2 cos

(
π
m

)
2

)
.(5)

We fix this realisation once and for all. Consider R := S(h∗) =
⊕

i≥0 S
i(h∗), the

symmetric algebra on h∗, a graded R-algebra with deg(h∗) = 2. By construction, W
acts on h and hence it acts on h∗ via the contragredient representation. Extending
this action by a grading preserving automorphism yields an action of W on R. The
ring of invariants of a single simple reflection s ∈ S is denoted by Rs ⊆ R.

The two main module categories in this thesis are R- Bim and R- gBim, the
category of finitely generated R-bimodules and graded R-bimodules respectively
(the latter with grading preserving morphisms). The category R- gBim is considered
as a graded category with the grading shift down denoted by 〈n〉. For M =

⊕
Mi

we define M〈n〉i := Mi+n. Moreover, for two graded bimodules M and N we write
Hom•(M,N) :=

⊕
n∈Z

(M,N〈n〉) for the bimodule homomorphisms between M
and N of all degrees.

Remark 3.1. Realisations of Coxeter groups can be defined in more generality as
modules over a commutative domain and do not have to be symmetric either. For
the more general case see [EW13].

For s ∈ S define the graded R-bimodule Bs := R⊗RsR〈1〉 which is a fixed graded
lift of the R-bimodule R⊗Rs R. We often write ⊗s := ⊗Rs , and the tensor product
structure ⊗R is denoted as juxtaposition. For a given sequence w = s1s2 · · · sn
define the corresponding Bott-Samelson bimodule by

Bw := Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsn = Bs1Bs2 · · ·Bsn .

The full monoidal subcategory BS of R- Bim generated by Bs for s ∈ S is called
the category of Bott-Samelson bimodules. Since we chose a fixed graded lift for
R ⊗Rs R, we have a graded lift for every Bott-Samelson bimodule. Finally, the
category of Soergel bimodules SB is defined to be the Karoubian envelope of the
additive closure of this graded version of BS. It is crucial to distinguish that BS
is a subcategory of R- Bim, whilst SB is a subcategory of R- gBim, and therefore
morphisms between Soergel bimodules are grading preserving. Observe that SB is
additive but not abelian. Soergel classified the indecomposable objects in SB (see
[Soe97, Thm. 6.14]).

Theorem 3.2 (Classification of indecomposable Soergel bimodules). Given any re-
duced expression w of w ∈ W , the Bott-Samelson Bw contains up to isomorphism a
unique indecomposable summand Bw which does not occur in By for any expression

y of y ∈ W with �(y) < �(w). In addition, up to isomorphism Bw does not depend
on the reduced expression w. A complete set of representatives of the isomorphism
classes of all indecomposable Soergel bimodules is given by

{Bw〈m〉 | w ∈ W and m ∈ Z}.
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Note that the split Grothendieck group Ks
0 (C) of an additive, monoidal and

graded category C inherits a Z[v±1]-algebra structure. Soergel proved that the
category of Soergel bimodules SB categorifies the Hecke algebra H (see [Soe07,
Thm. 1.10]) for certain reflection faithful realisations over infinite fields of char-
acteristic �= 2. However, Libedinsky showed in [Lib08a] that this categorification
works for the geometric representation as well.

Theorem 3.3 (Soergel’s Categorification Theorem). For the geometric realisation
h there is a unique isomorphism of Z[v±1]-algebras given by

ε : H
∼−→ Ks

0 (SB) ,
Hs 	→ [Bs].

Using the standard pairing on H it is possible to describe the graded rank of the
homomorphism space between two Soergel bimodules (see [Soe07, Thm. 5.15]).

Theorem 3.4 (Soergel’s Hom-Formula). Given any two Soergel bimodules B and
B′, the homomorphism space Hom•

SB(B,B′) is free as a left (resp. right) R-module,
and its graded rank is given by (ε−1[B], ε−1[B′]) where (−,−) denotes the standard
pairing on the Hecke algebra.

Soergel constructed an inverse map to ε which he called the character map ch.
However, the construction is not explicit, and he conjectured what the pre-images
of the indecomposable Soergel bimodules are for an arbitrary Coxeter group.

Conjecture 3.5 (Soergel’s Conjecture). If k is a field of characteristic 0, then
ch(Bw) = Hw.

Soergel himself proved this for Weyl groups and dihedral groups (see [Soe98,
Thm. 2]). The case of universal Coxeter groups was shown by Fiebig in [Fie08].
This conjecture is a very deep result and implies the Kazhdan-Lusztig positivity
conjectures ([KL79]). Elias and Williamson recently gave the first algebraic proof
for an arbitrary Coxeter group with a fixed reflection-faithful representation over R
(see [EW14]). By a result of Libedinsky in [Lib08a] this includes every finite Coxeter
group with its geometric realisation. In this paper we consider only dihedral groups
and their geometric realisations over R, and thus we can use Soergel’s Conjecture
for our calculations to determine the dimensions of homomorphism spaces between
Soergel bimodules.

Recall that we denote the maximal ideal in R =
⊕

i≥0 S
i(h∗) by S+ :=

⊕
Si(h∗).

Therefore we can view R ∼= R/S+ as an R-bimodule. To each Soergel bimodule
M we can associate the Soergel module M := M ⊗R where the action of R on the
right is trivialised. Let S denote the category of Soergel modules. For a Weyl group
Soergel proved that there is an isomorphism

Hom•
S(B,B

′
) ∼= Hom•

SB(B,B′)⊗R R(6)

for B,B′ ∈ SB (see [Soe98, Thm. 2, Part 4]). Moreover, he conjectured this
isomorphism for every finite Coxeter group (see [Soe98, Thm. 2, Part 5]), which he
proved recently ([Soe14]). For simplicity we write by abuse of notation HomS(B,B′)

instead of HomS(B,B
′
) for Soergel bimodules B,B′. The important results for this



KOSZUL DUALITY AND SOERGEL BIMODULES 1257

Table 1. Generating morphisms and their degrees in D

deg 1 Bs −→ R a⊗ b 	→ ab

deg 1 R −→ Bs 1 	→ 1
2 (αs ⊗ 1 + 1⊗ αs)

deg −1 BsBs −→ Bs 1⊗ g ⊗ 1 	→ ∂s(g)⊗ 1

deg −1 Bs −→ BsBs 1⊗ 1 	→ 1⊗ 1⊗ 1

f degf R −→ R 1 	→ f

deg 0 BsBtBs · · ·︸ ︷︷ ︸
mst factors

−→ BtBsBt · · ·︸ ︷︷ ︸
mst factors

paper are summarised in the following theorem, which is an immediate consequence
of the above:

Theorem 3.6. Given a dihedral group W , we have for x, y ∈ W :

• grdim
R
Hom•

S(Bx, By) = (Hx, Hy) =
∑

a≤x,y v
�(x)+�(y)−2�(a),

• dimR Hom•
S(Bx, By) = |W≤x ∩W≤y|

where W≤x := {w ∈ W | w ≤ x}. In particular Hom•
S(Bx, By) is concen-

trated in non-negative degrees d such that 0 ≤ d ≤ �(y) − �(x) for x ≤ y with
dimR HomS(Bx, By) = δx,y.

4. Soergel calculus (in the dihedral case)

By construction the category of Soergel bimodules SB is the Karoubian envelope
of BS, and therefore it is enough to describe BS by planar graphs and identify the
idempotents. In this section we introduce a diagrammatic approach to the category
of Bott-Samelson bimodules BS following [EW13]. These techniques are what we
refer to as Soergel calculus.

4.1. Generators. Recall that we fixed the geometric realisation h for our given
dihedral group (W, {s, t}) of type I2(m) for m ≥ 3. The Bott-Samelson bimodule
Bw = Bs ⊗ Bt ⊗ · · · ⊗ Bs for w = st · · · s is completely determined by an ordered
sequence of colours (or coloured dots on a horizontal line). A morphism between
two Bott-Samelson bimodules from Bw to Bw′ is given by a linear combination
of isotopy classes of decorated graphs with coloured edges in the planar stripe
R× [0, 1] such that in each summand the edges induce sequences of coloured dots
on the bottom boundary R×{0} (resp. the top boundary R×{1}) corresponding to
w (resp. w′). In particular, these diagrams represent morphisms from the bottom
sequence to the top sequence and therefore should be read from bottom to top.
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Definition 4.1. For a dihedral group (W,S) define D = D(W,S) to be the R-linear
monoidal category as follows: The objects are sequences w in S (which are denoted
sometimes by Bw). The empty sequence ∅ is often denoted by 1. The Hom-spaces
are Z-graded R-vector spaces generated by the diagrams in Table 1 modulo local
relations. The monoidal structure is the concatenation of sequences.

For s ∈ S the Demazure operator ∂s : R → Rs in Table 1 is defined as ∂s(f) :=
f−sf
αs

. The first two morphisms in Table 1 are called dots, whereas the next two
morphisms are called trivalent vertices and the last morphism is called the 2ms,t-
valent vertex. The explicit formula for the 2ms,t-valent vertex is very difficult.
Therefore we only explain what the morphism does. In the case of a dihedral group
of type I2(m) the longest element w0 can be expressed as st · · · = ts · · · with m
factors on each side, and by Theorem 3.2 both BsBt · · · and BtBs, · · · contain Bw0

as summand with multiplicity 1. The 2ms,t-vertex is the projection and inclusion
of this summand and therefore uniquely determined up to a scalar.

Libedinsky showed in [Lib08b] that the morphisms from Table 1 generate all
morphisms in BS. For the compositions of a trivalent vertex with a dot we define
caps and cups as follows:

:= and := .(7)

4.2. Relations. Since we work with dihedral groups, only one- and two-colour
relations can occur. For Coxeter groups of rank ≥ 3, there exist the three-colour
or Zamolodzhikov relations which are more difficult (see [EW13]).

4.2.1. The one-colour relations. The object Bs is a Frobenius object in R- Bim (see
[EK10]) where the dots correspond to unit and counit while the trivalent vertices
correspond to the multiplication and comultiplication. Altogether we obtain that
any one-coloured diagram is isotopy invariant and we have the following three non-
polynomial relations:

= , = , = 0.(8)

We refer to these relations as general associativity, general unit and the needle.
Furthermore, there are two relations involving polynomials:

= αs , f = sf + ∂s(f) .(9)

As a direct consequence we have

=
1

2

(
αs + αs

)
.(10)
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4.2.2. The two-colour relations. There are three two-colour relations. The first is
the cyclicity of the 2ms,t-vertex. The other two relations specify how the 2ms,t-
vertex interacts with trivalent vertices and dots. For m = ms,t we have the two-
colour associativity depending on the parity of m:

m even: = m odd: =(11)

The other relation allows us to express a diagram involving a 2ms,t-vertex and a
dot as a linear combination of diagrams without the 2ms,t-vertex. This procedure
depends on the parity of the integer m as well:

m even: = JWm−1 m odd: = JWm−1(12)

Note that the Jones-Wenzl morphism JWm−1 is an R-linear combination of
graphs consisting only of dots and trivalent vertices. This morphism will be dis-
cussed briefly in the next paragraph.

4.3. Jones-Wenzl morphisms.

4.3.1. Gauss’s q-numbers. Before we can define the Jones-Wenzl projector it is
helpful to recall Gauss’s q-numbers. We use them to give formulas for the Jones-
Wenzl projector for all dihedral groups simultaneously. Gauss’s q-numbers are
defined (see e.g. [Jan96]) by

[n]q :=
qn − q−n

q − q−1
= q−n+1 +−n+3 + · · ·+ qn−3 + qn−1 ∈ Z[q±1].

It is convenient to define [0] := 0. In most cases we omit the index and write [n]
instead of [n]q. Observe that [n] is the character of L(n − 1), the simple sl2(C)-
module of dimension n. Via the Clebsch-Gordon formula we obtain two out of
many useful identities for q-numbers:

[2][n] = [n+ 1] + [n− 1],(13)

[n]2 = [n− 1][n+ 1] + [1].(14)

We can specialise q to a value ζ and denote the specialisation of [n]q by [n]ζ . If

ζ = e2πi/2m ∈ C, i.e., a primitive 2m-th root of unity, we obtain algebraic integers
[n]ζ ∈ R. By choice ζ is primitive and therefore we have ζm = −1. Thus, we get
the following identities:

[m]ζ = 0, [m− i]ζ = [i]ζ , [m+ i]ζ = −[i]ζ .(15)

Recall the geometric representation of a dihedral group as in (5) and note that
[2]ζ = ζ + ζ−1 = 2 cos

(
π
m

)
= −as,t. Hence, the geometric representation can be

encoded in the Cartan matrix (
2 −[2]

−[2] 2

)
(16)

simultaneously for all dihedral groups. For a certain dihedral group of type I2(m)
we only have to specialise q to a primitive 2m-th root of unity.
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Lemma 4.2. For i ≥ 1 we have is = · · · ts ∈ W of length i, and thus

is(αt) =

{
[i]ζαt + [i+ 1]ζαs if i is odd,

[i+ 1]ζαt + [i]ζαs if i is even.

Proof. We prove this by induction on i. For i = 1 we have

s(αt) = αt − 〈αt, α
∨
s 〉 αs = αt + [2]ζαs.

Now let i > 1. There are two cases to distinguish depending on the parity of i. If
i is odd, then

(i+ 1)s(αt) = t(is(αt)) = t([i]ζαt + [i+ 1]ζαs)

= (−[i]ζ + [2]ζ [i+ 1]ζ)αt + [i+ 1]ζαs

= (−[i]ζ + [i]ζ + [i+ 2]ζ)αt + [i+ 1]ζαs

= [i+ 2]ζαt + [i+ 1]ζαs.

The other case is similar, which finishes the proof. �

4.3.2. Jones-Wenzl projectors. We give a short introduction to Jones-Wenzl pro-
jectors with a recursive computation formula in the Temperley-Lieb algebra setting
where its origins lie (see [Jon86,Wen87]). For a detailed discussion we refer the
reader to [CK12] or [Eli16].

The Temperley-Lieb algebra TLn on n strands is a diagram algebra over Z[δ].
It has a basis consisting of crossingless matchings with n points on bottom and
top. The multiplication is given by vertical concatenation of diagrams such that
circles evaluate to the scalar −δ. The crossingless matching on n strands is the
unit in TLn and is denoted by 1n. This algebra is contained in the Temperley-Lieb
category, which is closely related to the quantum group U := Uq(sl2) of sl2 via the
base change δ 	→ [2]q = q + q−1 (see [Eli16] for technical details).

Let Vk be the irreducible representation of highest weight qk and let V = V1. The
highest non-zero projection from V ⊗n to Vn is known as the Jones-Wenzl projector
JWn ∈ TLn.

Remark 4.3. This definition of the Jones-Wenzl projector only works over the com-
plex numbers. The categorification over the integers is harder and more subtle and
was carefully treated in [CK12,FSS12,Roz14].

The following proposition states some important properties of JWn (see [KL94,
Prop. 3.2.2], [Lic97, Lem. 13.2] and [CK12, Sec. 2.2]).

Proposition 4.4. The Jones-Wenzl projector JWn satisfies the following proper-
ties:

• JWn is the unique map which is killed when any cap is attached on top or
any cup on bottom, and for which the coefficient of 1n is 1.

• JWn is invariant under horizontal/vertical reflection.
• The ideal 〈JWn〉 � TLn has rank 1.
• Any element x ∈ TLn acts on JWn by its coefficient of 1n.
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Note that the first property gives an alternative way of defining JWn. For
our computations we need the following recursive formula for JWn (see [FK97,
Thm. 3.5]):

JWn+1 = JWn +

n∑
i=1

[i]q
[n+ 1]q

i

JWn(17)

In the following we state the Jones-Wenzl projectors for n = 1, 2, 3:

JW1 = JW2 = + 1
[2]

JW3 = + [2]
[3] + [2]

[3] + 1
[3] + 1

[3]

Any crossingless matching in TLm−1 divides the planar stripe in m regions,
which we can colour alternatingly with red and blue (for s and t). This results
in the definition of the two-coloured Temperley-Lieb algebra, which we omit here;
details can be found in [Eli16,EW13]. Since our chosen realisation is symmetric we
can treat a blue circle surrounded by red just as a red circle surrounded by blue
and thus evaluate both to the same value. For each diagram there are two possible
colourings. Each of those coloured crossingless matchings yields a coloured graph.
Deformation retract each region into a tree consisting of trivalent and univalent
vertices; colour those resulting trees according to the region. In this way we can
associate to each coloured Jones-Wenzl projector a Jones-Wenzl morphism JWn

living on the disc in the place. We state the Jones-Wenzl morphisms (with red
appearing in the far left region) for n = 1, 2, 3:

JW1 = JW2 = +
1

[2]

JW3 = +
[2]

[3]
+

[2]

[3]
+

1

[3]
+

1

[3]

The Jones-Wenzl morphism above is not yet a morphism in D but can be plugged
into another diagram to obtain a graph in the planar stripe (see (12); for technical
details see [Eli16]). We often write JW instead of JWm−1 when specialised to
ζ. Using the two-colour relations (see (11) (12)) we obtain the following relation
between the ms,t-valent vertex and the Jones-Wenzl projector JWm−1. Since the
latter is an idempotent in the Temperley-Lieb algebra (see [Eli16]), the right-hand
sides in (18) are also idempotents. Thus, the ms,t-valent vertex can be used to
construct idempotents:

m even: = JWm−1 m odd: = JWm−1 .(18)
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The two defining properties of JWn (see Proposition 4.4 or [Eli16, Claim 4.4])
are crucial, and we use them repeatedly in our category D. The first one is that the
coefficient of one single graph is 1, namely the graph which becomes the identity
morphism if trivalent vertices are attached to both sides (precisely the first sum-
mand in the examples above). The second and more important property is that
JW is killed by “cups” and “caps”:

JW = 0.(19)

We refer to this property as death by pitchfork.

4.4. Light leaf and double leaf morphism. The concept of light leaves and dou-
ble leaves was introduced by Libedinsky for Soergel bimodules in [Lib08b]. Elias and
Williamson transferred those morphisms into the combinatorial and diagrammatic
setting of D (see [EW13]), where they used the double leaves to prove the equiv-
alence in Theorem 4.5. For all (technical) details and results we refer to [EW13].
The set of light leaf morphisms LLx,e forms a (left) R-basis of HomD(x,1). This
basis can be constructed inductively and is parametrised by the subexpressions e of
x which expresses the neutral element in W . Composing these light leaf morphisms
we obtain the set of double leaf morphisms LLx,y, which forms a (left) R-basis of

HomD(x, y) (see [EW13, Thm. 6.11]). Consequently, LLx,y is constructed induc-

tively, too, and its elements are indexed by certain subexpressions of both x and y.
Hence all Hom-spaces in D are free graded (left) R-modules.

4.5. Equivalence of categories. Following [Eli16] we define an R-linear monoidal
functor F : D(W,S) → BS which maps a sequence w to the Bott-Samelson bimodule
Bw. The images of the morphisms under F are shown in Table 1. The next result
is due to Elias (see [Eli16]):

Theorem 4.5. The R-linear monoidal functor F is well-defined and yields an
equivalence of monoidal categories:

F : D(W,S) → BS.
Moreover, F induces an equivalence of monoidal additive categories:

F : Kar(D(W,S)) → SB.

Remark 4.6. The results in Theorem 4.5 were preceded by results by Elias and Kho-
vanov in type A (see [EK10]) and by Libedinsky (see [Lib10]) for the right-angled
case. Furthermore, the above results were generalised by Elias and Williamson (see
[EW13, Thm. 6.28]) to all Coxeter groups with a fixed reflection-faithful realisation.

5. Koszul and quasi-hereditary algebras

Definition 5.1 ([BGS96]). A graded ring A =
⊕

i≥0 Ai is called Koszul if A0 is
semisimple and A0 admits a linear resolution as a graded left A-module, i.e.,

· · · → P 2 → P 1 → P 0 � A0,

where the maps are grading preserving and P i is generated by (P i)i as a left A-
module.
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Remark 5.2. Equivalently one could ask that every simple A-module admit a linear
resolution.

Definition 5.3 ([BGS96]). A graded ring A =
⊕

i≥0Ai is called quadratic if A0 is
semisimple and A is generated over A0 by A1 with relations in degree 2.

For a given k-vector space V the tensor algebra TkV , the symmetric algebra SV
and the exterior algebra ΛV are quadratic rings (with the usual grading, that is,
degX = 1). In particular k[X] and k[X]/(X2) are quadratic. If A satisfies some
finiteness conditions we can define a quadratic dual of A:

Definition 5.4 ([BGS96]). A graded ring A =
⊕

i≥0 Ai is called left finite if
all Ai are finitely generated as left A0-modules. For a left finite quadratic ring
A = TA0

A1/(R) its quadratic dual is defined as A! = TA0
A∗

1/(R
⊥) where R⊥ ⊂

A∗
1 ⊗A0

A∗
1
∼= (A1 ⊗A0

A1)
∗ with respect to the standard pairing. Here, TA0

A1

denotes the free tensor algebra of the A0-bimodule A1. The ring A is self-dual if
A ∼= A!.

For any positively graded algebra A =
⊕

i≥0 Ai the degree 0 part A0 is an A-

module. Consider the graded ring E(A) := Ext•A(A0, A0) of self-extensions of A0.
We call E(A) the Koszul dual of A. Beilinson, Ginzburg and Soergel showed that
there exist isomorphisms relating a Koszul algebra A to its Koszul dual E(A) and
quadratic dual A! (see [BGS96, Cor. 2.3.3, Thm. 2.10.1, Thm. 2.10.2]).

Theorem 5.5 ([BGS96]). Let A =
⊕

i≥0 Ai be a Koszul ring. Then A is quadratic.

If additionally A is left finite, then there are canonical isomorphisms E(A) ∼= (A!)op

and E(E(A)) ∼= A.

Remark 5.6. If A is a positively graded algebra there exists a quadratic duality
functor on the bounded derived categories

K : Db(A- gMod) → Db(A!- gMod)

which is an equivalence of categories if and only if A is Koszul. This is treated
completely and more generally in [BGS96, Thm. 1.2.6] and [MOS09, Thm. 30].
In conclusion Koszul algebras are certain quadratic algebras with additional nice
homological properties. For example, under the above equivalence the standard
t-structure maps to the non-standard t-structure on the dual side given by linear
complexes of graded projective modules ([MOS09, Thm. 12]). If A is even Koszul
self-dual, then this yields a second interesting t-structure in Db(A- gMod).

The algebras we are interested in admit a quasi-hereditary structure which sim-
plifies the later proofs in a crucial way.

Definition 5.7 ([Don98]). Let A be a finite dimensional algebra over a field k with
a finite partially ordered set (Λ,≤) indexing the simple left A-modules {L(λ)}λ∈Λ

and let P (λ) be the indecomposable projective cover of L(λ). A collection of left
A-modules {Δ(λ)}λ∈Λ defines a quasi-hereditary structure on (A, (Λ,≤)) if:

• for λ ∈ Λ there exists a surjective A-module homomorphism π : P (λ) �
Δ(λ) such that ker π has a Δ-filtration with subquotients isomorphic to
some Δ(μi) where μi > λ,

• for λ ∈ Λ there exists a surjective A-module homomorphism π′ : Δ(λ) �
L(λ) such that ker π′ has a composition series with composition factors
only isomorphic to some L(μi) where μi < λ.
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The Δ(λ) are called (left) standard modules. (Right) standard modules can be
defined similarly.

The following theorem is due to Ágoston, Dlab and Lukaács (see [ÁDL03, Thm.
1]).

Theorem 5.8. Let (A, (Λ,≤)) be a graded quasi-hereditary algebra. If both left and
right standard modules admit linear resolutions (i.e., A is standard Koszul), then
A is Koszul (i.e., all simple modules admit linear resolutions).

6. Realisation as a path algebra of a quiver with relations

Recall that (W, {s, t}) is a Coxeter system of type I2(m),m ≥ 3, with its geo-
metric representation h = Rαv

s ⊕ Rαv
t . In this section we analyse the structure

of the graded endomorphism algebra A := End•S (B) ∼= End•SB (B) ⊗R R where
B :=

⊕
x∈W Bx. Define ζ := e2πi/2m ∈ C.

Definition 6.1. Let Qm := (Q0, Q1) be the directed quiver with the following
vertex and arrow sets:

Q0 := W = {e, sk, tk, w0 | 1 ≤ k ≤ m− 1},
Q1 := {w → w′ | |l(w)− l(w′)| = 1}.

We write (w,w′) for an arrow w → w′. For the fixed representation h of I2(m)
define the set Rh

m ⊂ RQm consisting of the following relations for all 2 ≤ i ≤ m− 1
and 0 ≤ j ≤ m− 2 (plus the ones with the roles of s and t switched):

(e, s, e) = 0,(20)

(s, st, s) = 0,(21)

(si, s(i+ 1), si) =
[i−1]ζ
[i]ζ

(si, s(i− 1), si),(22)

(s, ts, s) = −[2]ζ(s, e, s),(23)

(si, t(i+ 1), si) = ([i− 1]ζ − [i+ 1]ζ)(si, s(i− 1), si)− [i+1]ζ
[i]ζ

(si, t(i− 1), si),(24)

(s, st, t) = (s, e, t),(25)

(s, ts, t) = (s, e, t),(26)

(si, s(i+ 1), ti) =
1

[i]ζ
(si, s(i− 1), ti) + (si, t(i− 1), ti),(27)

(si, t(i+ 1), ti) = (si, s(i− 1), ti) +
1

[i]ζ
(si, t(i− 1), ti),(28)

(sj, s(j + 1), s(j + 2)) = (sj, t(j + 1), s(j + 2)),(29)

(sj, s(j + 1), t(j + 2)) = (sj, t(j + 1), t(j + 2)),(30)

(s(j + 2), s(j + 1), sj) = (s(j + 2), t(j + 1), sj),(31)

(s(j + 2), s(j + 1), tj) = (s(j + 2), t(j + 1), tj).(32)

We refer to Qm as the Hasse graph of type I2(m) (cf. Figure 1), and the set Rh
m

is called the set of dihedral relations. Define Pm to be the R-algebra RQm/(Rh
m).

The algebra Pm inherits the natural grading of RQm by path length since all
relations are homogenous (of degree 2).

Remark 6.2. While relation (21) is a special case of relation (22) for i = 1, this is
not the case for relations (23) and (24). Moreover, for i = m− 1 relations (22) and
(24) agree as well as relations (27) and (28).
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Figure 1. The Hasse graph of type I2(m)
.

Remark 6.3. The above formulas are exactly the relations which hold for the mor-
phisms between the Soergel modules (see Theorem 6.8). The coefficients are inte-
gral in type A2, but in general they are real numbers. Stroppel showed in [Str03b]
that for types B2 and G2 one may obtain rational (or even integral coefficients) by
choosing different bases for the morphism spaces. However, those relations are not
symmetric any more.

By definition the vertices of Qm are indexed by the dihedral group of type I2(m).
Hence we have the Bruhat order on the vertex set. For a vertex x ∈ Q0 define
V≤x := {y ∈ Q0 | y ≤ x}. Analysing the relations carefully we obtain the following
lemma and propositions:

Lemma 6.4. The path algebra Pm has (finite) dimension
∑

x,y |V≤x ∩ V≤y|.

Remark 6.5. Using the relations we can rewrite any path as a composition of a
descending path followed by an ascending path. Lemma 6.4 shows that two paths
(once simplified in this way) cannot coincide in Pm if the lowest vertices they pass
through are different.

Proposition 6.6. The isomorphism classes of simple graded Pm-modules up to
grading shift are in bijection with the vertices of Qm via w 	→ L(w) where L(w)w′ :={
R if w = w′,

0 if w �= w′ and the obvious maps.

Proposition 6.7. There exists an isomorphism Pm
∼= Pop

m .

We can now state the main result of this section.

Theorem 6.8. There is an isomorphism of graded algebras Pm
∼= A.



1266 M. SAUERWEIN

6.1. Proof of Theorem 6.8. Consider the assignment w 	→ Bw for w ∈ Q0 \{w0}
and w0 	→ B

sm ⊕B
tm. We extend this assignment to the arrows for 0 ≤ j ≤ m− 1

as follows:

(sj → s(j + 1)) 	−→

j+1 lines︷ ︸︸ ︷
and (s(j + 1) → sj) 	−→ ︸ ︷︷ ︸

j+1 lines

(sj → t(j + 1)) 	−→

j+1 lines︷ ︸︸ ︷
and (t(j + 1) → sj) 	−→ ︸ ︷︷ ︸

j+1 lines

The colour of the black line depends on the parity of j and on the colour of
the line on the far left. Swapping colours yields the other half of the assignment.
Arrows adjacent to w0 are treated differently since Bw0

is embedded diagonally in
B

sm ⊕ B
tm:

(s(m− 1) → w0) 	−→

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ ,

(w0 → s(m− 1)) 	−→ 1

2

( )
.

The assignment is similar with the roles of s and t swapped. Note that the
images of the arrows are only morphisms between Bott-Samelson bimodules. In
order to get a morphism between the corresponding Soergel bimodules we have
to pre-/post-compose with the idempotents associated to the Soergel bimodules.
That is, for e, s, t the idempotents are the identity since the corresponding Bott-
Samelson bimodules are indecomposable. The idempotent corresponding to B

si for
2 ≤ i ≤ m − 1 is the Jones-Wenzl morphism JWi where the quantum numbers
must be specialised to the appropriate 2m-th root of unity; hence the coefficients
depend on the dihedral group. In other words,

2 ≤ i ≤ m− 1 : e
si 	→ JWi ew0

	→ 1

2

⎛
⎜⎜⎜⎜⎝

JW 2m

2m JW

⎞
⎟⎟⎟⎟⎠ =: JWΔ

where ex denotes the trivial path at vertex x. Similarly for t with all colours
swapped. The idempotent of Bw0

is a 2 × 2-matrix since we consider Bw0
as a

submodule of B
sm⊕B

tm. By the classification in Theorem 3.2 the indecomposable
bimodule Bw0

is a direct summand of B
sm and B

tm with the Jones-Wenzl projec-

tor as idempotent. A direct diagrammatic calculation shows that JWΔ is indeed
an idempotent and thus ew0

	→ JWΔ is well-defined. This assignment yields a
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homomorphism of graded R-algebras ϕ′ : RQm → A. The proof of Theorem 6.8 is
divided into three steps:

(I) The map ϕ′ is surjective.
(II) Rh

m ⊆ kerϕ′, so ϕ′ induces a surjection ϕ : Pm → A.
(III) By dimension arguments we can deduce that ϕ is an isomorphism of graded

algebras over R.

Step I. In order to show that ϕ′ is surjective, it suffices to show that for x, y ∈ W
every morphism in Hom•

S(Bx, By) ⊆ A is generated as an element in the algebra
A by elements of degree 1. By Theorem 3.6 we know that between Bx and By

there exists a morphism of degree 1 if and only if |l(x)− l(y)| = 1. Moreover, the
homogeneous part of degree 1 is at most one-dimensional; hence im ϕ′ contains all
maps of degree 1 by construction. The double leaves LLx,y form an R-basis for

HomD(x, y). Using the equivalence in Theorem 4.5, we see that every element in
HomBS(Bx, By) is a sum of maps factoring through various Bw where w is a reduced

subexpression of both x and y. We say modulo lower terms if we only consider maps
which do not factor through w such that w < x and w < y. Consequently the next
proposition implies the surjectivity of ϕ′.

Proposition 6.9. For x ≥ y ∈ W the morphism space Hom•
SB(Bx, By) modulo

lower terms is free of rank 1 as an R-left/right module. If x and y are not compa-
rable the morphism space Hom•

SB(Bx, By) = 0 modulo lower terms.

Proof. Before we prove the general case, consider the example x = sts (which covers
already all the important cases). Then there exist eight decorated 01-sequences of
x with their corresponding light leaves:

U0 U0 U0 � U0 U1 U0 �

U1 U0 D1 � U1 U1 U0 �(33)

U1 U0 D0 � U0 U1 U1 �(34)

U0 U0 U1 � U1 U1 U1 �

The light leaves in (33) and (34) yield the zero map when pre-composed with the
idempotent corresponding to sts due to death by pitchfork, and all other light
leaves are generated by degree 1 maps. Now assume l(x) ≥ 4 and set j := l(y) ≤
l(x) =: i. This means that we have to extend the sequences above with 0’s and
1’s on the right-hand side and decorate the new entries properly with either D’s
or U ’s. Using successively the fact that the decorated sequences in (33) and (34)
yield morphisms which get cancelled by the idempotents, we obtain that the only
two possible sequences are

U0 · · ·U0︸ ︷︷ ︸
i−j times

U1 · · ·U1︸ ︷︷ ︸
j times

� ,(35)

U0 · · ·U0︸ ︷︷ ︸
i−j−1 times

U1 · · ·U1︸ ︷︷ ︸
i times

U0 � .(36)
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Both of these remaining morphisms are generated by degree 1 elements, which
proves the first statement. The second statement is clear since every proper sub-
expression is strictly smaller than both (this holds for dihedral groups but not in
arbitrary Coxeter groups). �
Step II. We check that every relation from Rh

m holds for the morphisms between
Soergel bimodules (with trivialised right action). For this we use the following
properties:

(i) death by pitchfork,
(ii) the polynomial sliding relations in (9),
(iii) non-constant polynomials acting as 0 on the right,
(iv) isotopy invariance,
(v) two-colour associativity,
(vi) JW := JWm−1 being rotation invariant.

It is important to note that all calculations and equations in this section are
meant as morphisms between indecomposable Soergel bimodules (with trivialised
right action). Therefore every morphism represented by a string diagram should be
pre-/post-composed with the corresponding idempotent. We omit this composition
in order to make the presentation clearer.

Before we start proving the relations one by one, we state two useful results.

Lemma 6.10. For a Coxeter system of type I2(m) we have

e1

e2

= 0,

where e1 and e2 are idempotents corresponding to indecomposable Soergel bimod-
ules.

Proof. Without loss of generality we can assume that the morphism is given by

=
(ii)
=

1

2

⎛
⎝ αt

+
αt

⎞
⎠ (8)

=
1

2

⎛
⎝ αt

+
αt

⎞
⎠ (i)

= 0.

The general case follows easily from the above considerations. �
Proposition 6.11. As a morphism Bsi → Bsi in the category of Soergel modules
the following holds for i ≥ 2:

= −[2]ζ + [i− 1]ζ − [i+ 1]ζ .

Proof. By property (ii) we can slide the polynomial αt successively through the
strings and we obtain for some λn:

= −[2]ζ +
i−1∑
n=2

λn

n

+ x

where x = (i− 1)s(αt) is of positive degree. By Lemma 6.10 we have

= −[2]ζ + x .
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From now on assume that i is odd:

= −[2]ζ + x

(ii)
= −[2]ζ + s(x) + ∂s(x)

(iii)
= −[2]ζ + ∂s(x) ,

where we used that s acts grading preservingly and thus s(x) acts trivially on the
right since x was of positive degree. Recall that i is odd and hence by Lemma 4.2
we have

∂s(x) = ∂s ([i]ζαt + [i− 1]ζαs) = −[2]ζ [i]ζ + 2[i− 1]ζ
13
= [i− 1]ζ − [i+ 1]ζ .

The other case (i even) can be treated similarly using ∂t instead of ∂s. �

6.1.1. Relations (20) and (21). Clearly we have

(iii)
= 0

(iii)
= .

6.1.2. Relations (22) and (24). The desired relations for i ∈ {2, . . . ,m − 2} are
immediate consequences of the following lemma:

Lemma 6.12. For i ∈ {2, . . . ,m− 1} the following hold:

JWi =
[i−1]ζ
[i]ζ

,

JWi = − [i−1]ζ
[i]ζ

+ ([i− 1]ζ − [i+ 1]ζ) .

In particular,

JW = [2]ζ = JW .

Proof. Recall the recursive formula for JWi (see equation (17)) in the Temperley-
Lieb algebra setting in which we specialise q to ζ = e2πi/2m. Transforming the
Jones-Wenzl projector into a morphism in D and putting a trivalent vertex on the
left side and a dot on the right side yields a morphism between Bott-Samelson
bimodules. If we pre-/post-compose with the idempotents corresponding to the in-
decomposable Soergel bimodules every summand is cancelled by property (i) except
the following two summands (the lines from the last inductive step are dashed):

[i−1]ζ
[i]ζ

=
[i−1]ζ
[i]ζ

; = .

The first summand is a cup attached to the identity of JWi−1 at position i− 1,

and thus its scalar is
[i−1]ζ
[i]ζ

. The second summand corresponds to the identity, and
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therefore its scalar is 1. Hence in D we have

JWi =
[i−1]ζ
[i]ζ

+ ︸ ︷︷ ︸
=0 by (iii)

=
[i−1]ζ
[i]ζ

.

Similarly, we have

JWi =
[i−1]ζ
[i]ζ

+ .

The scalar in front of the first summand can be computed using the recursive
formula for JWi:

λi = λi−1 + Iiμi−1 ,(37)

where λi is the coefficient of in JWi, μi is the coefficient of in JWi and
Ii is the coefficient in the sum from the induction step.

Inductively it can be shown that μi =
1

[i]ζ
using the formula for JWi. Clearly

Ii =
1
[i] ζ

, and hence by another induction it follows that λi =
[i−1]ζ
[i]ζ

using

λi = λi−1 + Iiμi−1 =
[(i− 1)− 1]ζ [(i− 1) + 1]ζ + 1

[i]ζ [i− 1]ζ

14
=

[i− 1]2ζ
[i]ζ [i− 1]ζ

=
[i− 1]ζ
[i]ζ

.

The second summand in (37) arises again from the identity and hence its scalar
is 1. With Proposition 6.11 we obtain

JWi =
(

[i−1]ζ
[i]ζ

− [2]ζ

)
+ ([i− 1]ζ − [i+ 1]ζ)

where the scalar in front of the first summand is

(
[i− 1]ζ
[i]ζ

− [2]ζ

)
=

[i− 1]ζ − [2]ζ [i]ζ
[i]ζ

13
=

[i− 1]ζ − [i+ 1]ζ − [i− 1]ζ
[i]ζ

= − [i+ 1]ζ
[i]ζ

.

�
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For i = m − 1 the Soergel bimodule is embedded diagonally, and therefore we
have

1

2

( )
1

2

⎛
⎜⎜⎜⎜⎝

JW 2m

2m JW

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

=
1

4

(
JW + 2m + 2m + JW

)

((iv))
=

1

4

(
JW + 2 2m + JW

)

((v))
=

1

4

(
JW + 3 JW

)

6.12
= [2]ζ .

6.1.3. Relation (23). Clearly, we have:

(ii)
= −[2]ζ .

6.1.4. Relations (25) and (26). The bimodules BsBt and BtBs are indecomposable
and therefore the corresponding idempotent is trivial; hence by isotopy invariance

(iv)
=

(iv)
= .

6.1.5. Relations (27) and (28). The relations (27) and (28) for i ∈ {2, . . . ,m− 2}
are direct consequences of the following lemma:

Lemma 6.13. For i ∈ {2, . . . ,m− 2} the following hold:

JWi = 1
[i]ζ

+ ,

JWi = + 1
[i]ζ

.

In particular,

JW = + = JW .

Proof. Similarly to the proof of Lemma 6.12. �

For i = m − 1 relations (27) and (28) agree (see Remark 6.2), and the relation
is proven similarly to relations (22) and (24) since Bw0

is embedded diagonally.
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6.1.6. Relations (29) and (31). Inspecting both sides of the relation (29) gives us

JWj = , JWj =

since by property (i) every summand except the identity is cancelled (when pre-
/post-composed with the idempotents). The right-hand sides are equal by the
following lemma (which proves the desired relation).

Lemma 6.14. In SB we have the following equality as morphisms Bsi → B
s(i+2)

for i ≥ 0:

= .

Proof. The case i = 0 is trivial, so let us assume i = 1:

(ii)
=

1

2

(
αs

+
αs

)
(i)
=

1

2

αs (ii)
=

sαs

2
+

∂s(αs)

2
︸ ︷︷ ︸

=1

(i)
= .

The general case follows immediately by using the above equation repeatedly. �

Relation (31) can be dealt with in the same way by flipping the diagrams hori-
zontally.

6.1.7. Relations (30) and (32). Translating relation (30) into the Soergel bimodule
setting yields

JWj = JWj .

In JWj on both sides above, every summand is cancelled by property (i) except
the one corresponding to the identity with scalar 1 (after pre-/post-composing with
the idempotents). Hence, the equation above becomes

= ,

which clearly holds. Relation (32) holds for the same reasons after flipping the
above diagrams horizontally.

Step III. The path algebra Pm has by Lemma 6.4 dimension
∑

x,y |V≤x ∩ V≤y|
over R, whereas by Theorem 3.6,

dimR(A) =
∑

x,y∈W

dimR Hom•
S(Bx, By) =

∑
x,y∈W

|W≤x ∩W≤y|.

Altogether we conclude that ϕ is an isomorphism. �

7. Proof of the Koszul self-duality

7.1. Linear resolutions of the standard modules. The indexing set Λ of iso-
morphism classes of simple graded Pm-modules is in bijection with W by Proposi-
tion 6.6. Hence, the reverse Bruhat order ≤r turns Λ into a finite partially ordered
set (Λ,≤r). For x ∈ W define the left modules

Δ(x) := P (x)/M(x)
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where M(x) := 〈all paths starting in x passing through y, y �r x of length ≥ 1〉.
Therefore we have the short exact sequence

0 �� M(x) �� P (x)
π �� Δ(x) �� 0 .(38)

Note that eyΔ(x) = 0 for all y �r x, which means that no path in Δ(x) ends
in such a y. The following lemma gives a precise formula for the dimensions of the
involved modules in this short exact sequence.

Lemma 7.1. For 0 ≤ i ≤ m we have

dimR P (si) =

⎧⎪⎨
⎪⎩
2m if i = 0,

2i(2m− i) if 1 ≤ i ≤ m− 1,

1 + 2m2 if i = m;

(39)

dimR Δ(si) =

{
2(m− i) if 0 ≤ i ≤ m− 1,

1 if i = m;
(40)

dimRM(si) =

⎧⎪⎨
⎪⎩
0 if i = 0,

2i(2m− i)− 2(m− i) if 1 ≤ i ≤ m− 1,

2m2 if i = m.

(41)

Proof. For fixed x ∈ W the indecomposable projective cover P (x) has a basis
consisting of all paths starting in x. Hence by Lemma 6.4 and its proof we have

dimR P (x) =
∑
y∈W

dimR eyPmex =
∑
y∈W

|V≥ry ∩ V≥rx|.(42)

Note that we reversed the order on the vertices. For x = si and 1 ≤ i ≤ m− 1 this
becomes

= 1︸︷︷︸
y=e

+ 2

i−1∑
j=1

2j

︸ ︷︷ ︸
1≤�(y)≤i−1

+2i+ (2i− 1)︸ ︷︷ ︸
�(y)=i

+ 2

m−1∑
j=i+1

2i

︸ ︷︷ ︸
i+1≤�(y)≤m−1

+ 2i︸︷︷︸
y=w0

(43)

= 2i(2m− i).

Consider equation (43), which reduces for i = m to 1 +
∑m−1

j=1 4j + 2m = 1+ 2m2.

The case i = 0 follows easily from equation (42). By construction of Δ(x) we have

dimR Δ(x) =
∑
y∈W

|V≤ry ∩ {x}| =
∑
y≤rx

1 =

{
2(m− �(x)) if x �= w0,

1 if x = w0,

which yields (40). The dimension of M(si) follows directly from the calculations
above combined with the short exact sequence in equation (38). �

Theorem 7.2. The set {Δ(x)}x∈W of left modules defines a quasi-hereditary struc-
ture on (Pm, (W,≤r)); i.e., for x ∈ W the (left) module Δ(x) is the (left) standard
module.

Proof. We prove that P (x) has a Δ-filtration with subquotients isomorphic to Δ(y)
for y ≥r x (each with multiplicity 1) and x = si via induction over i (this proves
the first condition for being quasi-hereditary).
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si

ω



���
���

���
��

ω′

��
t(i− 1)

β

��

α

����
��

��
��

� s(i− 1)

t(i− 2) s(i− 2)

Figure 2. Exemplary setting of the proof of Theorem 7.2

For x = e, i.e., i = 0, there is nothing to show since P (x) = Δ(x) (by comparing
dimensions via Lemma 7.1). For i = 1, that is, x = s, we have the short exact
sequence

0 �� P (e)〈−1〉 f �� P (s) �� Δ(s) �� 0

where f is given by pre-composition with (s, e). It is clear that im f ⊆ M(s) and
equality follows from comparing dimensions (by Lemma 7.1).

Now let i ≥ 2. Pre-composing with ω′ := (si, s(i− 1)) (as indicated in Figure 2)
gives us

f : P (s(i− 1))〈−1〉 �� P (si),(44)

which turns out to be injective since basis elements are mapped to pairwise non-
equivalent paths. Clearly πf = 0. Hence we obtain the following commutative
diagram using equation (38):

M(si) �� P (si)
π �� Δ(si)

P (s(i− 1))〈−1〉

f

��

∃! ι

��� � � � � � 0



�����������

Consider the composition

g : P (t(i− 1))〈−1〉 h �� M(si) �� M(si)/ im ι

where h is given by pre-composition with ω := (si, t(i − 1)). The module M(si)
has generators ω and ω′ as a left module. We can conclude that g is surjective
since ω ∈ im h and ω′ ∈ im ι. Similarly, the module M(t(i − 1)) has generators
α := (t(i − 1), s(i − 2)) and β := (t(i − 1), t(i − 2)). Using the relations (31) and
(32) we obtain the following identities:

αω = (si, t(i− 1), s(i− 2)) = (si, s(i− 1), s(i− 2)),

βω = (si, t(i− 1), t(i− 2)) = (si, s(i− 1), t(i− 2)).

Hence we can deduce that M(t(i− 1))〈−1〉 ⊆ ker g and therefore

P (t(i− 1))〈−1〉 g �� ��

����

M(si)/ im ι

Δ(t(i− 1))〈−1〉.
∃! ϕ

��							
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Since g is surjective ϕ is surjective, too. Using Lemma 7.1, we can compare
dimensions of both sides and deduce that ϕ is an isomorphism. Thus we have the
short exact sequence

0 �� P (s(i− 1))〈−1〉 �� M(si) �� Δ(t(i− 1))〈−1〉 �� 0 .

By our induction hypothesis P (s(i − 1)) has Δ-filtration with subquotients iso-
morphic to Δ(y) with y ≥r s(i − 1) (each with multiplicity 1). Thus M(si) has
a Δ-filtration with subquotients isomorphic to Δ(y) with y >r si, and therefore
P (si) has the desired Δ-filtration.

For x ∈ W there clearly exists a surjective map π′ : Δ(x) → L(x), and by
construction ker π′ has only composition factors isomorphic to L(μi) where μi ≤r x.
Since every non-trivial path from x to x passes through a vertex y >r x, we have
[Δ(x) : L(x)] = 1, and hence the second condition is satisfied. �

Theorem 7.3. Pm is standard Koszul; i.e., every left (resp. right) standard module
admits a linear resolution.

Proof. By Proposition 6.7 we have an isomorphism Pm
∼= Pop

m , and thus left and
right modules can be identified. Therefore it is enough to show that the (left)
standard modules admit such resolutions. Since e ∈ W is maximal we have Δ(e) =
P (e) and there is nothing to show. For x ∈ W \{e} we construct a linear resolution

P•(x)
ε→ Δ(x) → 0 with P•(x) := (Pi)i≥0 defined by

Pi :=

⎛
⎜⎜⎝ ⊕

w≥rx
�(x)−�(w)=i

P (w)

⎞
⎟⎟⎠ 〈−i〉.

Note that P0 = P (x). The augmentation map ε : P0 → Δ(x) is just the canonical
projection π : P (x) → Δ(x) (see (38)). For x = s� the boundary maps pi : Pi →
Pi−1 for i ≥ 1 are defined as follows:

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
(
(s�, s(�− 1)) (s�, t(�− 1))

)
if i = 1 < �,

·
(
(s, e)

)
if i = 1 = �,

·
(

(s(�− i+ 1), s(�− i)) (−1)i+1 (s(�− i+ 1), t(�− i))

(−1)i+1 (t(�− i+ 1), s(�− i)) (t(�− i+ 1), t(�− i))

)
if 2 ≤ i < �,

·
(

(s, e)

(−1)i+1(t, e)

)
if i = �,

0 if i > �.

Recall that we compose paths from right to left (just as morphisms), and hence
the defined pi’s are given by pre-composition with certain arrows. All indecompos-
able projective modules P (w) are generated by the corresponding idempotent ew
which lies in degree 0. Thus, by construction each Pi is projective and generated
by its degree i component. Clearly, the augmentation map ε is surjective.

The fact that the above sequence P•(x) is a complex for fixed x is a direct
consequence of relations (31) and (32). We only present the generic case 2 ≤ i <
�(x). Each P (w) is generated by ew, so it is enough to check that p2(ew) = 0. Let
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w = s(i− 2). Then we have

p(ew) =

(
(s(i− 1), s(i− 2))

(−1)∗(t(i− 1), s(i− 2))

)
,

p2(ew) =

(
(si, s(i− 1), s(i− 2)) + (−1)∗+•(si, t(i− 1), s(i− 2))

(−1)•(ti, s(i− 1), s(i− 2)) + (−1)∗(ti, t(i− 1), s(i− 2))

)
,

where ∗ and • depend on the parity of �−i (resp. �−i−1). Nevertheless, the parity of
∗ and • is always different and therefore (−1)∗+• = −1 and (−1)∗ = −(−1)•. Thus
by relations (31) and (32) we can deduce that p2(ew) = 0. The other remaining
cases are similar. Hence the sequence is a complex, and it remains to show that
this complex is exact.

We only deal with the generic case 2 ≤ i ≤ �(x)− 2, which covers all important
arguments. Assume that we have (y, x) ∈ ker pi where pi : Pi → Pi−1. Without
loss of generality,

Pi =
[
P (sj)

⊕
P (tj)

]
〈−i〉, Pi−1 =

[
P (s(j + 1))

⊕
P (t(j + 1))

]
〈−i+ 1〉

for some 2 ≤ j ≤ �(x)− 2. From the definition of the Pi we know that y (resp. x)
is a path starting in sj (resp. tj). By assumption we have pi((y, x)) = 0 and in
particular π1(pi((y, x))) = 0 ∈ P (s(j−1))〈−i+1〉. Recall that π1pi is given by pre-
composition with ω′ = (s(j + 1)), sj) in the first component and pre-composition
with ω = (s(j + 1), tj) in the second component. Since (y, x) ∈ ker pi we can
conclude that they must end in the same vertex, say z (see Figure 3). Note that
it is not possible for either x or y to be the trivial path because then the other
path would have to be of length ≥ 2 and hence they would be linearly independent.
Assuming that both x and y pass only through vertices v with v ≤r sj we have
z /∈ {sj, tj} (otherwise one path would pass through a vertex v with v >r sj).
Moreover, xω (resp. yω′) does not pass through sj (resp. tj). In particular, the
highest vertex xω (resp. yω′) passes through is tj (resp. sj). Thus xω and yω′ are
linearly independent by Remark 6.5 (which is formulated in terms of the Bruhat
order). This is a contradiction to (y, x) ∈ ker pi. If only one path passes through
a vertex v with v >r sj, then the same argument using Remark 6.5 again yields
a contradiction to (y, x) ∈ ker pi. Therefore x and y pass only through vertices v
such that v >r sj. Hence we can deduce that y starts either with α or β and x
starts either with γ or δ. But that means that (y, x) ∈ im pi+1. Thus the complex
is exact and indeed a linear resolution. �

z

s(j + 1)
ω

�����
���

���
ω′
��

tj

x

��
��
��
��
��
��
��
��

α
��

β

		��
���

���
� sj

y

��
��

��
��
��
��
��

δ��

γ

�����
���

���

t(j − 1) s(j − 1)

Figure 3. Exemplary setting of the proof of Theorem 7.3
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By Theorem 5.8 we obtain the following corollary:

Corollary 7.4. Pm is Koszul.

7.2. The quadratic dual of Pm. By construction Pm = RQm/(Rh
m). Since

A := RQm =
⊕

i≥0A
i is graded by path length and Rh

m ⊆ A2 is homogeneous,

Pm inherits the grading by path length. We note that A = TA0A1 =
⊕

i≥0 A
i,

and thus Pm = TA0V/(Rh
m) is the desired quadratic structure for the A0-bimodule

V = A1. V is a vector space spanned by the edges in Qm on which we can define
the standard scalar product

〈α, β〉 :=
{
1 if t(α) = s(β) and t(β) = s(α),

0 otherwise

for edges α = (s(α), t(α)) and β = (s(β), t(β)). Using this scalar product we can
identify V ∼= V ∗. In the construction of the quadratic dual we have to consider

R⊥ := {x | ∀v ∈ Rh
m : 〈v, x〉 = 0} ⊆ V ∗ ⊗A0 V ∗ ∼= (V ⊗A0 V )∗.

By Lemma 6.4 the algebra Pm is finite dimensional, and with the above identifi-
cation R⊥ is just the usual orthogonal complement of Rh

m inside A2 with respect
to the standard scalar product. The vector space A2 has a basis consisting of all
paths of length 2, and therefore it is of the form A2 =

⊕
x,y∈W eyA

2ex. Taking
duals commutes with finite direct sums, so for fixed x, y ∈ W the complement of
all relations starting in x and ending in y lies inside eyA

2ex, which has at most

R-dimension 4. With the above considerations it follows that P!
m = TA0V/(R⊥).

Recall that all defining relations in Pm are homogeneous of degree 2 and can be
interpreted as linear combinations of paths of length 2. Using this identification
there are three types of relations in Pm: paths with the same starting and terminal
point, paths with different starting and terminal points between vertices of the
same length and paths with different starting and terminal points between vertices
of different lengths. We only present the cases where the starting point x is of the
form si for 0 ≤ i ≤ m. The cases where x = ti can be treated similarly since all
relations are symmetric in s and t. For the sake of simplicity define i := m− i for
0 ≤ i ≤ m.

7.2.1. Relations (20)–(24). These relations have in common that the starting point
and terminal point coincide, say x. For fixed x all calculations in this section take
place in A(x) := exA

2ex. We have to distinguish five different cases:

• x = e: We have dimR A(e) = 2 and both basis elements (e, s, e) and (e, t, e)
are in Rh

m; hence the orthogonal complement is 0 and there are no orthog-
onal relations.

• x = s: The vector space A(s) has a basis consisting of

us
1 := (s, st, s), us

2 := (s, ts, s), us
3 := (s, e, s).

The relations are us
1 = 0 and us

2+ [2]ζu
s
3 = 0. Thus the orthogonal comple-

ment is spanned by [2]ζu
s
2 − us

3.
• x = si for some 2 ≤ i ≤ m−2: The vector space A(si) has a basis consisting
of

vs,i1 := (si, s(i+ 1), si), vs,i2 := (si, t(i+ 1), si),

vs,i3 := (si, s(i− 1), si), vs,i4 := (si, t(i− 1), si).
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The relations are vs,i1 − λiv
s,i
3 = 0 and vs,i2 − μiv

s,i
3 + νiv

s,i
4 = 0 where

λi :=
[i− 1]ζ
[i]ζ

, μi := [i− 1]ζ − [i+ 1]ζ , νi :=
[i+ 1]ζ
[i]ζ

.

The orthogonal complement is spanned by λiv
s,i
1 +μiv

s,i
2 +vs,i3 and νiv

s,i
2 −

vs,i4 .
• x = s(m− 1) = s1: The vector space A(s1) has a basis consisting of

ws
1 := (s1, w0, s1), ws

2 := (s1, s2, s1), ws
3 := (s1, t2, s1).

The relation is 0 = ws
1 − [m−2]ζ

[m−1]ζ
ws

2 = ws
1 − [2]ζw

s
2 (using equation (15)).

Therefore the orthogonal complement is spanned by [2]ζw
s
1 + ws

2 and ws
3.

• x = w0: We have dimR A(w0) = 2 and there are no relations. Hence the
orthogonal complement is the complete subspace with basis (w0, s1, w0) and
(w0, t1, w0).

7.2.2. Relations (25)–(28). All these relations are paths from x to y such that x �= y
and �(x) = �(y). All computations in this section take place in A(x, y) := eyA

2ex,
i.e., the vector subspace consisting of all paths of length 2 from x to y. For these
relations there are three cases to consider:

• x = s and y = t: The vector space A(s, t) has a basis consisting of

us
1 := (s, st, t), us

2 := (s, ts, t), us
3 := (s, e, t).

The relations are us
1 − us

3 = 0 and us
2 − us

3 = 0. Thus the orthogonal
complement is spanned by us

1 + us
2 + us

3.
• x = si and y = ti for some 2 ≤ i ≤ m− 2: The vector space A(si, ti) has a
basis consisting of

vs,i1 := (si, s(i+ 1), ti), vs,i2 := (si, t(i+ 1), ti),

vs,i3 := (si, s(i− 1), ti), vs,i4 := (si, t(i− 1), ti).

The relations are vs,i1 − αiv
s,i
3 − vs,i4 = 0 and vs,i2 − vs,i3 − αiv

s,i
4 = 0 where

αi :=
1

[i]ζ
. Hence the orthogonal complement is spanned by αiv

s,i
1 +vs,i2 +vs,i3

and vs,i1 + αiv
s,i
2 + vs,i4 .

• x = s1 and y = t1: The vector space A(s1, t1) has a basis consisting of

ws
1 := (s1, w0, t1), ws

2 := (s1, s2, t1), ws
3 := (s1, t2, t1).

The relation is ws
1 − ws

2 − ws
3 (using (15)), and therefore the orthogonal

complement is spanned by ws
1 + ws

2 and ws
1 + ws

3.

7.2.3. Relations (29)–(32). For the relations for which the starting point x and the
terminal point y differ in their length, it is immediately clear that |�(x)− �(y)| = 2.
Hence, dimR A(x, y) = 2, say with basis {p1, p2}. The relations in (29)–(32) can
be reformulated as p1 − p2 = 0, and therefore their complements are spanned by
p1 + p2 = 0.
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Table 2. Relations and its orthogonal relations

Relations Orthogonal Relations

(e, s, e)
(e, t, e)

n/a

us
1

us
2 + [2]ζu

s
3

[2]ζu
s
2 − us

3

vs,i1 − λiv
s,i
3

vs,i2 − μiv
s,i
3 + νiv

s,i
4

λiv
s,i
1 + μiv

s,i
2 + vs,i3

νiv
s,i
2 − vs,i4

ws
1 − [2]ζw

s
2

[2]ζw
s
1 + ws

2

ws
3

n/a
(w0, s(m− 1), w0)
(w0, t(m− 1), w0)

us
1 − us

3

us
2 − us

3
us
1 + us

2 + us
3

vs,i1 − αiv
s,i
3 − vs,i4

vs,i2 − vs,i3 − αiv
s,i
4

αiv
s,i
1 + vs,i2 + vs,i3

vs,i1 + αiv
s,i
2 + vs,i4

ws
1 − ws

2 − ws
3

ws
1 + ws

2

ws
1 + ws

3

(sj, s(j + 1), s(j + 2)) (sj, s(j + 1), s(j + 2))
− (sj, t(j + 1), s(j + 2)) + (sj, t(j + 1), s(j + 2))

(sj, s(j + 1), t(j + 2)) (sj, s(j + 1), t(j + 2))
− (sj, t(j + 1), t(j + 2)) + (sj, t(j + 1), t(j + 2))

(s(j + 2), s(j + 1), sj) (s(j + 2), s(j + 1), sj)
− (s(j + 2), t(j + 1), sj) + (s(j + 2), t(j + 1), sj)

(s(j + 2), s(j + 1), tj) (s(j + 2), s(j + 1), tj)
− (s(j + 2), t(j + 1), tj) + (s(j + 2), t(j + 1), tj)

Table 2 summarises all relations and orthogonal relations. Define R⊥ ⊆ A2 to be
the set of all orthogonal relations from Table 2. Then as aforementioned we have
P!

m = A/(R⊥). Mimicking the proof of Lemma 6.4 we obtain the following lemma:

Lemma 7.5. The quadratic dual P!
m has the same dimension as Pm as R-vector

space.

7.3. Self-duality. In this section we prove the following theorem.

Theorem 7.6. The algebra Pm is Koszul self-dual, i.e., Pm
∼= E(Pm) ∼= P!

m.

Proof. The algebra Pm is finite dimensional and Koszul by Corollary 7.4. Thus
there is a canonical isomorphism E(Pm) ∼= (P!

m)op. SincePm
∼= Pop

m by Proposition

6.7 it is enough to show that Pm
∼= P!

m = E(Pm).
Define the map Θ on the vertices of Qm via x 	→ x−1w0 which extends to an

A0-bimodule homomorphism Θ : A → A for A = RQm (see Figure 4). Note that
the images of the arrows are only determined up to scalars, which we choose as
±1 as indicated in Figure 5. Note that the scalar of an arrow only depends on the
adjacent vertices and is independent of the direction. The pattern is highly regular
except for the scalar for the edge (t(m− 1), w0). Since all scalars are invertible, the

map Θ is an isomorphism, and thus we have a surjection Φ : A
Θ−→ A � P!

m. It
suffices to show that Rh

m ⊆ ker Φ (or equivalently: Θ(Rh
m) ⊆ (R⊥)), which implies
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Figure 5. A choice of scalars yielding an isomorphism Pm
∼= P!

m

the existence of a surjection Ψ : Pm � P!
m, which is an isomorphism for dimension

reasons (see Lemma 7.5).
In order to show that Rh

m ⊆ ker Φ we check that each relation in Rh
m is mapped

to a relation in R⊥ (up to a sign). The map Θ : W → W is an isomorphism, and
for all w ∈ W we have �(Θ(w)) = m− �(w). Therefore we can treat the three types
mentioned above separately again. Note that

Θ(si) =

{
s(m− i) = si if i is even,

t(m− i) = ti if i is odd.
(45)

Recall the identity in equation (15) for the quantum numbers [i]ζ = [m− i]ζ =[
i
]
ζ
when q is specialised to ζ = e2πi/2m. Therefore we have the following identities
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for αi, λi, μi and νi:

αi = αi, λi = νi, μi = −μi.(46)

Since the calculations are not difficult but tedious we only compute the images
of the relations (20)–(24) under Θ using equation (45). Note that all basis elements
are loops and therefore all occurring scalars are 1 = (−1)2 since the scalar is
independent of the direction of the arrow:

(e, s, e) �−→ (w0, t(m− 1), w0),

(e, t, e) �−→ (w0, s(m− 1), w0),

us
1 �−→ wt

3,

us
2 + [2]ζu

s
3 �−→ wt

2 + [2]ζw
t
1,

vs,i1 − λiv
s,i
3 �−→

{
vs,i4 − λiv

s,i
2

46
= vs,i4 − νiv

s,i
2 if i is even,

vt,i4 − λiv
t,i
2

46
= vt,i4 − νiv

t,i
2 if i is odd,

vs,i2 − μiv
s,i
3 + νiv

s,i
4 �−→

{
vs,i3 − μiv

s,i
2 + νiv

s,i
1

46
= vs,i3 + μiv

s,i
2 + λiv

s,i
1 if i is even,

vt,i3 − μiv
t,i
2 + νiv

t,i
1

46
= vt,i3 + μiv

t,i
2 + λiv

t,i
1 if i is odd,

ws
1 − [2]ζw

s
2 �−→

{
ut
3 − [2]ζu

t
2 if m is even,

us
3 − [2]ζu

s
2 if m is odd.

The images of the relations agree with the right hand side in Table 2 up to a sign
after swapping the roles of s and t and replacing i with i. Therefore their image is
contained in (R⊥). The other relations can be treated analogously as above. �

Remark 7.7. There is a certain degree of freedom in the choice of the scalars for
this isomorphism. In types A2 and B2 there are 5 scalars which can be chosen
freely. However, solving such a system of quadratic equations gets more and more
complicated and is not very enlightening.

Remark 7.8. The basis for our approach in this paper was the equivalence of the
diagrammatic category D and the category of Soergel bimodules SB (see Theo-
rem 4.5). This equivalence holds in particular for all finite Coxeter groups with
the geometric realisation (see [EW13]). With the diagrammatic presentation one
can in principle write a complete description of the quiver; however outside small
examples this seems prohibitively difficult. Note that in higher rank the difficult
three-coloured Zamolodzhikov relations appear and there is no complete diagram-
matic description of the idempotents.
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