## Strictly convex central configurations of the planar five-body problem

HTML articles powered by AMS MathViewer

- by Kuo-Chang Chen and Jun-Shian Hsiao PDF
- Trans. Amer. Math. Soc.
**370**(2018), 1907-1924 Request permission

## Abstract:

In this paper we investigate strictly convex central configurations of the planar five-body problem, and prove some necessary conditions for such configurations. In particular, given such a central configuration with multiplier $\lambda$ and total mass $M$, we show that all exterior edges are less than $r_0=(M/\lambda )^{1/3}$, at most two interior edges are less than or equal to $r_0$, and its subsystem with four masses cannot be a central configuration. We also obtain some other necessary conditions for strictly convex central configurations with five bodies, and show numerical examples of strictly convex central configurations with five bodies that have either one or two interior edges less than or equal to $r_0$. Our work develops some formulae in a classic work by W. L. Williams in 1938 and we rectify some unsupported assumptions there.## References

- A. Albouy,
*On a paper of Moeckel on central configurations*, Regul. Chaotic Dyn.**8**(2003), no. 2, 133–142. MR**1988854**, DOI 10.1070/RD2003v008n02ABEH000232 - Alain Albouy, Hildeberto E. Cabral, and Alan A. Santos,
*Some problems on the classical $n$-body problem*, Celestial Mech. Dynam. Astronom.**113**(2012), no. 4, 369–375. MR**2970201**, DOI 10.1007/s10569-012-9431-1 - Alain Albouy and Alain Chenciner,
*Le problème des $n$ corps et les distances mutuelles*, Invent. Math.**131**(1998), no. 1, 151–184 (French). MR**1489897**, DOI 10.1007/s002220050200 - Alain Albouy and Vadim Kaloshin,
*Finiteness of central configurations of five bodies in the plane*, Ann. of Math. (2)**176**(2012), no. 1, 535–588. MR**2925390**, DOI 10.4007/annals.2012.176.1.10 - Kuo-Chang Chen and Jun-Shian Hsiao,
*Convex central configurations of the $n$-body problem which are not strictly convex*, J. Dynam. Differential Equations**24**(2012), no. 1, 119–128. MR**2890340**, DOI 10.1007/s10884-011-9233-2 - O. Dziobek,
*Über einen merkwürdigen Fall des Vielkörperproblems*, Astron. Nach.**152**(1900), 33–46. - L. Euler,
*Considerationes de motu corporum coelestium*, Novi commentarii academiae scientiarum Petropolitanae, Berlin Acad., April 1762, Vol. 10, 1764. pp. 544–558. Also in Opera Omnia, Vol. 25, S. 2, pp. 246–257, with corrections and comments by M. Schürer. - Antonio Carlos Fernandes and Luis Fernando Mello,
*On stacked planar central configurations with five bodies when one body is removed*, Qual. Theory Dyn. Syst.**12**(2013), no. 2, 293–303. MR**3101261**, DOI 10.1007/s12346-012-0084-y - Marian Gidea and Jaume Llibre,
*Symmetric planar central configurations of five bodies: Euler plus two*, Celestial Mech. Dynam. Astronom.**106**(2010), no. 1, 89–107. MR**2570900**, DOI 10.1007/s10569-009-9243-0 - G. Hall,
*Central configurations in the planar $1+ n$ body problem*, Boston University, preprint. - M. Hampton,
*Convex central configurations in the four body problem*, Ph.D. Thesis, University of Washington (2002). - Marshall Hampton,
*Stacked central configurations: new examples in the planar five-body problem*, Nonlinearity**18**(2005), no. 5, 2299–2304. MR**2164743**, DOI 10.1088/0951-7715/18/5/021 - Marshall Hampton and Richard Moeckel,
*Finiteness of relative equilibria of the four-body problem*, Invent. Math.**163**(2006), no. 2, 289–312. MR**2207019**, DOI 10.1007/s00222-005-0461-0 - J. L. Lagrange,
*Essai sur le probléme des trois corps*, Œuvres, Vol. 6, 1772, pp. 229–324. - W. D. MacMillan and Walter Bartky,
*Permanent configurations in the problem of four bodies*, Trans. Amer. Math. Soc.**34**(1932), no. 4, 838–875. MR**1501666**, DOI 10.1090/S0002-9947-1932-1501666-7 - Richard Moeckel,
*On central configurations*, Math. Z.**205**(1990), no. 4, 499–517. MR**1082871**, DOI 10.1007/BF02571259 - Richard Moeckel,
*Linear stability of relative equilibria with a dominant mass*, J. Dynam. Differential Equations**6**(1994), no. 1, 37–51. MR**1262722**, DOI 10.1007/BF02219187 - Richard Moeckel,
*Generic finiteness for Dziobek configurations*, Trans. Amer. Math. Soc.**353**(2001), no. 11, 4673–4686. MR**1851188**, DOI 10.1090/S0002-9947-01-02828-8 - Richard Moeckel,
*Lectures on central configurations*, 2014. http://www.math.umn.edu/ ˜rmoeckel/notes/Notes.html - F. R. Moulton,
*The straight line solutions of the problem of $n$ bodies*, Ann. of Math. (2)**12**(1910), no. 1, 1–17. MR**1503509**, DOI 10.2307/2007159 - Dieter S. Schmidt,
*Central configurations in $\textbf {R}^2$ and $\textbf {R}^3$*, Hamiltonian dynamical systems (Boulder, CO, 1987) Contemp. Math., vol. 81, Amer. Math. Soc., Providence, RI, 1988, pp. 59–76. MR**986257**, DOI 10.1090/conm/081/986257 - Steve Smale,
*Mathematical problems for the next century*, Math. Intelligencer**20**(1998), no. 2, 7–15. MR**1631413**, DOI 10.1007/BF03025291 - W. L. Williams,
*Permanent configurations in the problem of five bodies*, Trans. Amer. Math. Soc.**44**(1938), no. 3, 563–579. MR**1501982**, DOI 10.1090/S0002-9947-1938-1501982-4 - Zhihong Xia,
*Convex central configurations for the $n$-body problem*, J. Differential Equations**200**(2004), no. 2, 185–190. MR**2052612**, DOI 10.1016/j.jde.2003.10.001 - Z. Xia,
*Central configurations for the four-body and five-body problems*, Preprint.

## Additional Information

**Kuo-Chang Chen**- Affiliation: Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan
- MR Author ID: 637019
- ORCID: 0000-0002-6618-4784
- Email: kchen@math.nthu.edu.tw
**Jun-Shian Hsiao**- Affiliation: Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan
- MR Author ID: 970245
- Email: d9621804@oz.nthu.edu.tw
- Received by editor(s): February 29, 2016
- Received by editor(s) in revised form: April 28, 2016, May 10, 2016, and June 27, 2016
- Published electronically: July 19, 2017
- Additional Notes: This work was supported in part by the Ministry of Science and Technology (Grant NSC 102-2628-M-007-004-MY4) and the National Center for Theoretical Sciences in Taiwan.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 1907-1924 - MSC (2010): Primary 70F10, 70F15; Secondary 37J45
- DOI: https://doi.org/10.1090/tran/7010
- MathSciNet review: 3739196