
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 4, April 2018, Pages 2639–2656
http://dx.doi.org/10.1090/tran/7051

Article electronically published on December 19, 2017

ON THE TOPOLOGICAL 4-GENUS OF TORUS KNOTS

S. BAADER, P. FELLER, L. LEWARK, AND L. LIECHTI

Abstract. We prove that the topological locally flat slice genus of large torus
knots takes up less than three quarters of the ordinary genus. As an applica-
tion, we derive the best possible linear estimate of the topological slice genus
for torus knots with non-maximal signature invariant.

1. Introduction

The Thom conjecture asserts that algebraic curves in CP2 are genus-minimising
within their homology class [KM94]. More precisely, no smooth embedded surface
in CP2 has smaller genus than an algebraic curve homologous to that surface.
Regularity plays an important role here. In fact, Rudolph proved the existence of
topological locally flat surfaces with strictly smaller genus than all algebraic curves
homologous to it [Rud84]. A precise quantitative measure of the drop in genus for
locally flat surfaces was given in [LW97]. The knot theoretic version of the Thom
conjecture asserts that the smooth slice genus of a positive braid knot coincides with
the ordinary genus [Rud93]. Much less is known about the topological locally flat
slice genus g4 of positive braid knots, or even torus knots. Positive braid knots have
non-zero signature invariant σ [Rud82], whence g4 > 0, by the following signature
bound: |σ| ≤ 2g4. This bound was proven smoothly in [Mur65], and for the locally
flat slice genus in [KT76]. Using the existence of quasipositive knots with Alexander
polynomial 1, Rudolph showed that the torus knot T (5, 6) has g4 < g, where g is
the classical minimal genus of knots [Rud84]. The main purpose of this paper is to
show that the genus defect Δg = g − g4 takes up a large portion of the genus for
most torus knots.

Theorem 1. Let K = T (p, q) be a torus knot with non-maximal signature invari-
ant, i.e., K �= T (2, n), T (3, 4), T (3, 5). Then

g4(K) ≤ 6

7
g(K).

This result is sharp, since the torus knot T (3, 8) has g4 = 6 and g = 7. However,
a larger genus defect is attained for torus knots with large parameters p, q ∈ N.
The classical genus formula g(T (p, q)) = 1

2 (p− 1)(q − 1) yields

lim
p,q→∞

2

pq
g(T (p, q)) = 1.
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Here the limit is understood as limmin{p, q} → ∞ (i.e., both parameters must be
taken to infinity). As we will see, the corresponding limit for g4 drops by at least one
quarter. The existence of this limit follows from the subadditivity of the function
g4(T (p, q)) in both parameters (see the proof of Proposition 9 in the Appendix of
[Liv10] for the one-variable case known as Fekete’s Lemma; the two-variable case

follows from an analogous estimate between the ratios g4(T (p,q))
pq and g4(T (N,N))

N2 ,

where p = aN + b and q = cN + d).

Theorem 2.

lim
p,q→∞

2

pq
g4(T (p, q)) <

3

4
.

To the best of our knowledge, no attempt at determining the actual limit has
been made so far. The signature bound |σ| ≤ 2g4 potentially allows a drop down
to one-half, since

lim
p,q→∞

1

pq
σ(T (p, q)) =

1

2
.

The latter is an easy consequence of the signature formula for torus knots by Gor-
don, Litherland and Murasugi [GLM81].

We will prove Theorems 1 and 2 in Sections 3 and 4, respectively. The reason for
the reverse order is simple: Theorem 2 implies Theorem 1, up to finitely many values
of the braid index min{p, q}, since 3

4 < 6
7 . The main tool for proving Theorem 2 is a

homological improvement of Rudolph’s method, which we will explain in Section 2.
The strength of this method is demonstrated in Proposition 7, which provides a

sharp estimate of the topological slice genus for positive fibred arborescent links. In
particular, we find prime positive braid links of arbitrarily large genus with g4

g = 1
2 .

2. Construction of locally flat surfaces

Let us first briefly fix notation and conventions. We assume all Seifert surfaces to
be connected. The genus g(L) and Betti number b1(L) of a link L are the minimal
genus and Betti number of a Seifert surface of L, respectively. Homology groups
are considered over the integers. The topological slice genus g4(L) is the minimal
genus of a slice surface of L, i.e., of a connected oriented compact surface, properly
and locally flatly embedded into the 4-ball, whose boundary is L. For any surface
Σ, a subsurface Σ′ ⊂ Σ is simply a surface contained in Σ, assuming neither that
Σ′ is connected, nor that it is embedded properly into Σ. We write a1, . . . , an−1 for
the standard generators of the braid group on n strands. If a braid is given by a

braid word β, we write β̂ for its closure. A non-split braid word β yields a canonical

Seifert surface for β̂, which we denote by Σ(β). If, in addition, β is positive, Σ(β)

is in fact the fibre surface of β̂ [Sta78]. The Alexander polynomial of a bilinear
integral form represented by a matrix M is det(t ·M −M�) ∈ Z[t±]; this does not
depend on the chosen matrix, and is considered up to multiplication with a unit.

Our main tool uses Freedman’s celebrated result [Fre82,FQ90] to construct slice
surfaces of lower genus from Seifert surfaces by ambient surgery. See [Fel16,BL15,
FM15] for other applications of this method. Here we prove a version for multi-
component links.

Proposition 3. Let L be a link with a Seifert surface Σ. Let V ⊂ H1(Σ) be a
subgroup. If the Seifert form of Σ restricted to V has Alexander polynomial 1, then
L has a slice surface of genus g(Σ)− rkV/2.
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We will call such a subgroup V Alexander-trivial. Before the proof, let us show
a sample application.

Figure 1. The surface X̃, which is a plumbing of six positive Hopf
bands. For simplicity, the twists of the individual Hopf bands are
not drawn. Two curves representing homology classes of interest
are drawn in red and dashed blue – see Example 4 for details.

Example 4. The link L given as the closure of the positive 4-braid a1a3a
2
2a1a3a

3
2

has topological slice genus one. Calculating the signature yields 1 = |σ(L)|−2
2 ≤

g4(L) by the bound provided in [KT76]. We now show that L has a genus one slice

surface. For this, let X̃ be the canonical fibre surface Σ(a1a3a
2
2a1a3a

3
2). Observe

that X̃ is a plumbing of six positive Hopf bands along an X-shaped tree, as shown
in Figure 1. Here we use the fact that fibre surfaces with the same boundary
link are isotopic. The two additional simple closed curves in the figure (red and

dashed blue) represent homology classes [γ1] and [γ2] in H1(X̃). We claim that the
subspace V generated by [γ1] and [γ2] is Alexander-trivial. A matrix for the Seifert
form of the boundary link is given by the 6× 6 matrix A, where

Aii = A12 = A23 = A43 = A53 = A63 = 1

and Aij = 0 otherwise. In the chosen basis, [γ1] and [γ2] are represented by the
vectors (0, 1,−2, 1, 1, 1)� and (1, 0, 0, 0, 0, 0)�, respectively. A direct computation
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yields

[γ1]
�A[γ1] = [γ1]

�A[γ2] = 0,

[γ2]
�A[γ2] = [γ2]

�A[γ1] = 1,

so a matrix B of the Seifert form restricted to V is given by

B =

(
0 0
1 1

)
.

Indeed, we now have det(t · B − B�) = t, which is a unit in Z[t±1]. Thus, by

Proposition 3, the boundary link ∂X̃ possesses a slice surface of genus g(X̃)−1 = 1.
Geometrically, what happens if we apply Proposition 3 is the following: starting

from X̃ we cut out the punctured torus T defined by the union of the thickened
red and dashed blue curves. Then, using Freedman’s disc theorem, we reglue a disc
whose interior lies in the 4-dimensional unit ball along ∂T , obtaining a slice surface

with smaller genus than X̃. For this we use that ∂T is a knot with Alexander
polynomial 1.

Let us now turn to the proof of Proposition 3. A crucial ingredient is the following
fact about the mapping class group of surfaces, which is well-known for surfaces
with at most one boundary component (see, e.g., [FM12]).

Lemma 5. Let Σ be a connected oriented compact surface of genus g with n
boundary components. An automorphism ϕ of H1(Σ) is induced by an orientation-
preserving diffeomorphism ϕ̃ of Σ if and only if ϕ preserves the intersection form
of Σ and permutes the homology classes of the boundary curves.

Proof. Clearly every orientation-preserving diffeomorphism preserves the intersec-
tion form and maps boundary curves to boundary curves (preserving the orienta-
tions), which induces a permutation of the corresponding homology classes.

Now let us prove that the conditions are sufficient. Let

γ1,1, γ2,1, . . . , γg,1, γ1,2, . . . , γg,2, δ1, . . . , δn−1

be a geometric basis on Σ (a term taken from [GT04]); that is, the δi are boundary
curves, γi,j intersects γi,3−j once (geometrically), and there are no other geometric
intersections between any of these curves. The homology classes of these curves
then form a basis of H1(Σ).

One easily finds a simple closed curve ζ ⊂ Σ with the following properties:
it intersects γ1,1 once, does not intersect any other curve in the geometric basis,
and [ζ] = [γ1,2] + [δ1]. So the only basis curve affected by a Dehn twist along
ζ is γ1,1, whose homology class is sent to [γ1,1] + [γ1,2] + [δ1]. Composing with
another Dehn twist along γ1,2, one finds a diffeomorphism that sends [γ1,1] �→
[γ1,1] + [δ1]. Similarly, for all i ∈ {1, . . . , g}, j ∈ {1, 2}, k ∈ {1, . . . , n − 1}, there is
a diffeomorphism sending [γi,j ] �→ [γi,j ] + [δk]. Composing these diffeomorphisms,
one may realise automorphisms of H1(Σ) with a matrix of the following kind:(

� 0
M �

)
,

where M is an arbitrary (n − 1) × 2g matrix. Next we make use of the fact that
for a surface Σ′ of genus g with one boundary component, the mapping class group
surjects onto the symplectic group; see, e.g., [FM12], where this is established for
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closed surfaces, which essentially implies the result for surfaces with one boundary
component. Since Σ contains Σ′ as a subsurface, the following matrices may be
realised as orientation-preserving diffeomorphisms:(

X 0
0 �

)
,

where X is symplectic. Finally, it is easy to see that boundary curves may be per-
muted (though by diffeomorphisms not coming from Dehn twists). So, composing,
one may realise any matrix of the form(

X 0
M P

)
,

where X is symplectic, M is arbitrary, and P is a permutation matrix. This
completes the proof since such matrices are precisely those which represent an
automorphism of H1(Σ) that preserves the intersection form and permutes the
homology classes of the boundary. �

A Seifert surface Σ may inherit genus defect from an incompressible subsurface,
i.e., a subsurface Σ′ ⊂ Σ such that the induced map on the first homology group is
injective.

Lemma 6. Let Σ be a Seifert surface of a link L, and let Σ′ ⊂ Σ be an incompress-
ible subsurface with boundary link L′. If L′ bounds a slice surface S′, then L bounds
a slice surface S of genus g(Σ)− g(Σ′) + g(S′). In particular, if g(Σ) = g(L), then
Δg(L) ≥ Δg(L′).

Proof. To construct S, simply cut out Σ′ and glue in S′. �

Proof of Proposition 3. Let B be a matrix of the Seifert form of Σ restricted to V ,
with respect to an arbitrary basis of V . Setting t = 1 gives det(B−B�) = ±1 and,
in fact, +1: indeed, B −B� is antisymmetric, so det(B − B�) is the square of its
Pfaffian. It also follows that V is of even rank. Because B − B� is antisymmetric
and unimodular, we may assume the basis x1,1, . . . , xk,1, x1,2, . . . , xk,2 of V has been
chosen such that B −B� is the 2k × 2k matrix

Jk =

(
0 �

−� 0

)
.

Let δ1, . . . , δn be the boundary curves of Σ. Note that the intersection form of Σ
is unimodular on V (in fact it is represented by the matrix B − B� = Jk), and
identically zero on 〈[δ1], . . . , [δn−1]〉. This implies that one can extend the basis of
V to a basis of H1(Σ) of the form

x1,1, . . . , xk,1, x1,2, . . . , xk,2, y1,1, . . . , yg−k,1, y1,2, . . . , yg−k,2, [δ1], . . . , [δn−1].

Let A be the matrix of the Seifert form of Σ with respect to this basis. Then A−A�

has the form ⎛
⎝ Jk ∗ 0

∗ ∗ 0
0 0 0

⎞
⎠ .

Since A − A� restricted to the span of the xi,j and yi,j is antisymmetric and
unimodular, one may assume w.l.o.g. that the yi were chosen such that A−A� is
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in fact ⎛
⎝ Jk 0 0

0 Jg−k 0
0 0 0

⎞
⎠ .

Now let
γ1,1, γ2,1, . . . , γg,1, γ1,2, . . . , γg,2, δ1, . . . , δn−1

be a geometric basis on Σ as in Lemma 5. Let ϕ be the automorphism of H1(Σ)
given by

[γi,j ] �→ xi,j for 1 ≤ i ≤ k,

[γi,j ] �→ yi−k,j for k < i ≤ g,

[δi] �→ [δi].

As the computation of A − A� shows, ϕ preserves the intersection form. It also
acts by permutation (in fact, as the identity) on the homology classes of bound-
ary curves, and is therefore realised by a diffeomorphism ϕ̃ (see Lemma 5). Take
a simple closed curve ζ that separates the curves γ1,∗, . . . , γk,∗ from the curves
γk+1,∗, . . . , γg,∗, δ1, . . . , δn. Then ϕ̃(ζ) is a separating simple closed curve, which
bounds an incompressible subsurface Σ′ of Σ of genus k. By construction,
H1(Σ

′) = V ⊂ H1(Σ), and hence the boundary knot ϕ̃(ζ) of Σ′ has Alexander
polynomial 1. Thus, Freedman’s theorem implies that it bounds a slice disc. Using
Lemma 6, this concludes the proof. �

Let us come back to Example 4. So far we have proved that ∂X̃ has topological
slice genus equal to one, while its classical genus equals two. Lemma 8 will show
how this example can be used to build larger examples with Δg = g4 = g/2. As
a sample application, we calculate the topological slice genus of the infinite family
provided in the proof of Proposition 7. These examples are of particular interest
since they maximise the ratio

2Δg(L)

b1(L)

of genus defect and first Betti number among tree-like plumbings of positive Hopf
bands. Indeed, for any plumbing of positive Hopf bands along a tree, this ratio is
at most 1/3 by a theorem of the fourth author [Lie16]. Therefore, an infinite family
of examples that attain this ratio is sufficient to prove the following proposition.

Proposition 7. For the class of links arising as plumbings of positive Hopf bands
along a finite tree, we have

lim sup
b1(L)→∞

2Δg(L)

b1(L)
=

1

3
.

Lemma 8. Let Σ be a Seifert surface. Let Σ′ be a plumbing of Σ and X̃ along

a square on the right-most Hopf band of X̃ (see Figure 1). If there is an Alexander-
trivial subgroup V ⊂ H1(Σ), then there is also an Alexander-trivial subgroup
V ′ ⊂ H1(Σ

′) of rank rkV ′ = 2 + rkV .

Proof. Let γ1, γ2 be the red and dashed blue curves on X̃ as in Example 4. Let

V ′ = V +〈[γ1], [γ2]〉, where we understand H1(Σ)⊕H1(X̃) as a subgroup of H1(Σ
′),

because Σ and X̃ are incompressible subsurfaces of Σ′, and H1(Σ)∩H1(X̃) = {0}.
The crucial observation is that, algebraically, γ1 does not pass through the plumbing
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location on the right-most Hopf band of X̃. Therefore, γ1 algebraically does not
intersect curves on Σ; and so, using that Σ′ is a plumbing, any small push-off of γ1
along a normal direction of Σ′ has linking number 0 with curves on Σ. Thus the
Seifert form of Σ′ restricted to V ′ is represented by the following matrix:

M ′ =

⎛
⎜⎜⎜⎜⎜⎝

0 ∗

M
...

...
0 ∗

0 · · · 0 0 0
∗ · · · ∗ 1 1

⎞
⎟⎟⎟⎟⎟⎠ .

Here, M is a matrix of the Seifert form restricted to V . It has Alexander polynomial
1, hence so does M ′. �

Figure 2. How to stick together three copies of the tree corre-

sponding to X̃ in order to obtain a link with b1 = 18.

Proof of Proposition 7. In Example 4, we considered such a link L with b1 = 6. In
order to obtain an example Ln with b1 = 6n, we simply stick together n distinct

copies of the tree corresponding to X̃ and take the corresponding positive tree-like
Hopf plumbing; compare Remark 9 for an explicit braid description. This is shown
in Figure 2 for the case n = 3. By Lemma 8, the corresponding fibre surface has
defect Δg ≥ n, which establishes the proposition. �

Remark 9. For all n ≥ 1, the link Ln used in the proof of Proposition 7 can also
be obtained as the closure of the (3n+ 1)-braid

a1(a1a3a
2
2a4a1a3a

2
2)(a4a6a

2
5a7a4a6a

2
5) · · ·

(a3k−2a3ka
2
3k−1a3k+1a3k−2a3ka

2
3k−1) · · · (a3n−2a3na

2
3n−1a3n−2a3na

2
3n−1).

Furthermore, if we compare the topological slice genus with the classical genus
(instead of the first Betti number), the quotient becomes even larger: since the
links Ln have topological slice genus n and genus 2n, they form an infinite family
of examples of positive braid links with Δg = g4 = g/2.

Next, let us focus on braids. Incompressible subsurfaces of canonical Seifert
surfaces of positive braids will typically be constructed as in the following lemma,
whose proof we leave to the reader. We call a braid word β′ a subword of a braid
word β if the former arises from the latter by deleting some occurrences of genera-
tors.

Lemma 10. If β′ is a subword of β, then Σ(β′) is an incompressible subsurface of
Σ(β). �
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Figure 3. A fence diagram (obtained from a braid diagram by
replacing the crossings by horizontal line segments) of the braid
a1(a

2
2a

2
1)

2. The tree induced by the distinguished homology gener-

ators exhibits X̃ as an incompressible subsurface of the fibre surface
Σ(a1(a

2
2a

2
1)

2).

Example 11. Consider the torus knot T (4, 5). It is obtained as the closure of
the positive braid (a1a2a3)

5, which contains the subword a1a
2
2a3a1a

3
2a3, whose clo-

sure equals the closure of a1a3a
2
2a1a3a

3
2. In particular, the fibre surface Σ(T (4, 5))

contains X̃ as an incompressible subsurface. Together with the bound coming
from the signature function σeπit(T (4, 5)) = 10 for 7/10 < t < 9/10, this yields
g4(T (4, 5)) = 5.

Remark 12. In Example 11, we used half the absolute value of a Levine-Tristram
signature as a lower bound for the topological slice genus of a knot. While well-
known to experts, until recently this lower bound had not been explicitly stated in
the literature in the topological setting (compare [Tri69] for the smooth setting).
This gap in the literature was closed by Powell with a new proof [Pow16].

Example 13. Consider the torus knot T (3, 7). It is obtained as the closure of the
positive braid (a1a2)

7, which contains a1(a
2
2a

2
1)

2 as a subword. On the other hand,

Σ(a1(a
2
2a

2
1)

2) contains X̃ as an incompressible subsurface. This is schematically
depicted in Figure 3. Together with the bound coming from the signature function
σeπit(T (3, 7)) = 10 for 16/21 < t < 20/21, this yields g4(T (3, 7)) = 5.

Suppose α and β are braid words for non-split n-braids. Then Σ(αβ) contains
Σ(α) � Σ(β) as an incompressible subsurface. So if Proposition 3 produces genus
defects d1 and d2 in Σ(α) and Σ(β), respectively, this will yield a defect of d1 + d2
in Σ(αβ). The following lemma is a refinement of this strategy for constructing
genus defect in the product of two braids. See Examples 15 and 17 for applications.

Lemma 14. Let α, β be two braid words representing non-split n-braids. Let β′

be the braid word of length n − 1 obtained from β by deleting for all i ∈ {1, . . . ,
n − 1} all but the first occurrences of the generator ai. Let V ⊂ H1(Σ(αβ

′)) and
V ′ ⊂ H1(Σ(β)) be Alexander-trivial subgroups. Let a basis of V be given with respect
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to which the Seifert form of Σ(αβ′) has a matrix of the following kind, built from
four square blocks:∗ ⎛

⎜⎜⎜⎜⎝
0

1 ∗. . .
0 1

0 0. . .
∗ 0

∗

⎞
⎟⎟⎟⎟⎠ .

Suppose moreover that the first half of that basis is supported in H1(Σ(α)), which
can be seen as a subgroup of H1(Σ(αβ

′)) by Lemma 10. Then there is an Alexander-
trivial subgroup V ′′ ⊂ H1(Σ(αβ)) of rank rkV + rkV ′.

Proof. The idea is similar to the proof of Lemma 8. The surface Σ(αβ) has incom-
pressible subsurfaces Σ(αβ′) and Σ(β), so we may treat H1(Σ(αβ

′)) and H1(Σ(β))
as subgroups of H1(Σ(αβ)). Their intersection is in fact trivial, and so we have
V ∩V ′ = {0} as well. Extend the given basis of V to a basis of V +V ′. With respect
to this basis, the restriction of the Seifert form of Σ(αβ) to V + V ′ is represented
by the following matrix:

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1 ∗. . .
0 1

0

0 0. . .
∗ 0

∗ ∗

0 ∗ M

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here, M is the matrix of the Seifert form restricted to V ′, which has Alexander
polynomial 1. After some basis changes, one sees thatM ′ has Alexander polynomial
1 as well. �

Example 15. We have seen in Example 13 how the closure of

β = a1(a
2
2a

2
1)

2

has defect at least one, which comes from two vectors v, w restricted to which the
Seifert form has the matrix (

0 1
0 ∗

)
.

The vectors v and w are the homology classes of the red and blue curves drawn in
Figure 1. As already discussed in the proof of Lemma 8, v ∈ H1(Σ(α)) ⊂ H1(Σ(β)),
where α = a1a

2
2a

2
1a

2
2a1. Let β

′ = a1a2 as in the previous lemma. Then αβ′ contains
β as a subword, and so Σ(αβ′) also has defect at least 1. So the previous lemma
implies that αβ = a1(a

2
2a

2
1)

4 has defect at least 2. Continuing inductively, one finds
a defect of at least i in the closure of the braid

αi−1β = a1(a
2
2a

2
1)

2i.

The same result may be obtained using Lemma 8, since X̃ ⊂ Σ(β), as shown in
Figure 3.

∗For example, all trivial Alexander bases [GT04] are of this kind (but not vice versa). In fact,
one can prove that every Alexander-trivial subgroup V has such a basis; but we will not need this
fact here.
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Remark 16. Proposition 3 shows how to construct slice surfaces using nothing but
linear algebra. The following randomised algorithm exploits this. As input, it takes
an arbitrary integral square matrix A, and returns as output the basis of a subgroup
V ⊂ Z2g with respect to which A|V has a matrix of the following kind:⎛

⎜⎜⎜⎜⎝
0

1 0. . .
0 1

0 ∗. . .
0 0

∗

⎞
⎟⎟⎟⎟⎠ .

Note that such a matrix has Alexander polynomial 1. Here is a brief description of
the algorithm:

(1) Randomly pick a primitive vector v with v�Av = 0, if such a vector exists.
Otherwise, return the empty basis.

(2) Randomly pick a solution w of the following system of linear equations, if
it is solvable:

v�Aw = 1, w�Av = 0.

Otherwise, go back to (1), or eventually give up and return the empty basis.
(3) Let U be the subgroup of solutions of the following system of homogeneous

linear equations:

v�Au = 0, u�Av = 0, u�Aw = 0.

Let (v1, . . . , vk, w1, . . . , wk) be the result of the recursive application of the
algorithm to A|U . Return

(v, v1, . . . , vk, w, w1, . . . , wk).

Implemented in pari/gp [PAR15], the algorithm performs quite well for small knots.
See Table 1 for the results thus obtained for small torus knots, and Example 17 for
the application to another positive braid. The bases of the respective subgroups V
are available from ancillary files with the arXiv-version of this paper, which enables
anybody to independently verify their correctness.

Example 17. Consider the positive braids ω = a1a2a3a4, ω̃ = a4a3a2a1. The algo-
rithm described in Remark 16 returns an Alexander-trivial subgroup
V ⊂ H1(Σ((ωω̃)

4)) of rank eight (we used [Col15] to obtain Seifert matrices).
Moreover, the first half of the basis of V is supported in H1(Σ((ωω̃)

3ω)). Simi-
larly, there is an Alexander-trivial subgroup V ′ ⊂ H1(Σ((ω̃ω)

4)) of rank eight with
a basis whose first half is supported in H1(Σ((ω̃ω)

3ω̃)). Applying Lemma 14 to
(ωω̃)3ω and (ω̃ω)4 gives a defect of eight in Σ((ωω̃)7ω). We may continue applying
the lemma inductively, first to (ωω̃)7 and (ωω̃)4, producing a defect of twelve in
Σ((ωω̃)11), then to (ωω̃)10ω and (ω̃ω)4, etc. In summary, we find for all i ≥ 0 a
defect of 4 + 8i for Σ((ωω̃)4+7i), and of 8i for Σ((ωω̃)7iω).

3. Slice genus of large torus knots

The aim of this section is to prove the asymptotic bound for the genus defect
of torus knots given by Theorem 2. As a start, we establish a weaker version of
Theorem 2 with the benefit that its proof, unlike the proof of Theorem 2, does not
require computer calculations. The strategies of both proofs are very much alike.
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Proposition 18.

lim
n,m→∞

g4(T (n,m))

g(T (n,m))
≤ 4

5
.

The strategy of the proof of Proposition 18 is to establish that the fibre sur-
face Σ(T (n, n)) of the torus link T (n, n) contains as incompressible subsurface the
split union of fibre surfaces of the form Σ(a1(a

2
1a

2
2)

2i) such that this union takes up
roughly four-fifths of the genus of Σ(T (n, n)). This yields Proposition 18 since the
genus defect of the closure of a1(a

2
1a

2
2)

2i is at least i, which is about a quarter of the
genus. Indeed, first conjugating by a1 and then reading the braid word backwards
(both of these operations preserve the closure up to changing the orientation of all
components) turns a1(a

2
1a

2
2)

2i into a1(a
2
2a

2
1)

2i, whose defect is discussed in Exam-
ple 15. To make this strategy precise we use Lemma 19. Let Δn be the half twist
on n strands, i.e.,

Δn = (a1a2 · · · an−1)(a1a2 · · · an−2) · · · (a1a2)(a1).

Furthermore, we define the positive braids Ωi and Γj by

Ωi = a1a2 · · · ai−2a
2
i−1ai−2 · · · a2a1,

Γj = a1a2 · · · aj−2aj−1aj−2 · · · a2a1.

Δ10 = −→ =

−→ = −→

Figure 4. By applying braid relations and deleting gen-
erators, the 10-strand braid word Δ10 is transformed into
Γ2Γ3Γ4a4a5a6a7Γ4a4a5a6Γ4a4a5Γ4a4Γ4Γ3Γ2. In the final step,
deleting generators produces the disjoint union of Γ2Γ3Ω

5
3Γ3Γ2 and

Δ5. Arrows indicate the deletion of generators drawn red and
dashed.
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Lemma 19. Let n ≥ 2� be natural numbers. Then Σ(Δn) contains

Σ(Γ2 · · ·Γ�Ω
n−2�+1
� Γ� · · ·Γ2) � Σ(Δn−2�+1)

as an incompressible subsurface.

Proof. We proceed by showing that one can delete generators and apply braid rela-
tions in the braid word Δn such that the resulting positive braid is the split union
of the positive braids Γ2 · · ·Γ�Ω

n−2�+1
� Γ� · · ·Γ2 and Δn−2�+1. This suffices to es-

tablish Lemma 19 since deleting a generator in a positive braid word corresponds to
taking an incompressible subsurface of the associated fibre surface (see Lemma 10).
We start by considering the positive braid word

Δn = Γ2(a2 · · · an−1)Γ2(a2 · · · an−2) · · ·Γ2(a2a3)Γ2(a2)Γ2.

We delete the single occurrence of the generator an−1 in Δn and then apply braid
relations to obtain the positive braid word

Γ2Γ3(a3 · · · an−2)Γ3(a3 · · · an−3) · · ·Γ3(a3a4)Γ3(a3)Γ3Γ2.

This can be achieved by multiple substitutions of the form

(ai · · · aj)Γi(ai · · · aj) → Γi+1(ai+1 · · · aj)(ai · · · aj−1)

for i ≤ j, which can in turn be realised by braid relations. To see the realisation
of this substitution by braid relations, commute generators to rewrite the positive
braid word

(ai · · · aj)Γi(ai · · · aj)
as

aiΓiai+1aiai+2ai+1 · · · aj−1aj−2ajaj−1aj .

Then, applying the braid relation

akak−1ak → ak−1akak−1

once for each k starting at j and descending down to i yields the positive braid
word

Γi+1ai+1aiai+2 · · · aj−3aj−1aj−2ajaj−1,

for which generators can again be commuted to finally result in

Γi+1(ai+1 · · · aj)(ai · · · aj−1).

In the next step, we delete the single occurrence of the generator an−2 in the
positive braid word

Γ2Γ3(a3 · · · an−2)Γ3(a3 · · · an−3) · · ·Γ3(a3a4)Γ3(a3)Γ3Γ2

and, again using substitutions of the form

(ai · · · aj)Γi(ai · · · aj) → Γi+1(ai+1 · · · aj)(ai · · · aj−1),

obtain the positive braid word

Γ2Γ3Γ4(a4 · · · an−3)Γ4(a4 · · · an−4) · · ·Γ4(a4a5)Γ4(a4)Γ4Γ3Γ2.

We continue in the same way until we arrive at the positive braid word

Γ2 · · ·Γ�+1(a�+1 · · · an−�)Γ�+1(a�+1 · · · an−�−1) · · ·
Γ�+1(a�+1a�+2)Γ�+1(a�+1)Γ�+1 · · ·Γ2.
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Finally, we delete all occurrences of a�. The closure of the positive braid obtained
in this way is the split union of the closures of the braids Γ2 · · ·Γ�Ω

n−2�+1
� Γ� · · ·Γ2

and Δn−2�+1. This procedure is illustrated in Figure 4 for n = 10 and � = 3. �

Proof of Proposition 18. Consider the positive braid word Δ5n. By Lemma 19 with
� = 3, Σ(Δ5n) contains

Σ(Γ2Γ3Ω
5n−5
3 Γ3Γ2) � Σ(Δ5n−5)

as an incompressible subsurface. Using Lemma 19 with � = 3 inductively on the
last split summand, we obtain that Σ(Δ5n) contains

Σ(Γ2Γ3Ω
5n−5
3 Γ3Γ2) � · · · � Σ(Γ2Γ3Ω

5
3Γ3Γ2)

as an incompressible subsurface. The same argument gives

Σ(Γ2Γ3Ω
10n−10
3 Γ3Γ2) � · · · � Σ(Γ2Γ3Ω

10
3 Γ3Γ2)

as an incompressible subsurface of the fibre surface Σ(Δ2
5n). By the definitions of

Ω3, Γ2 and Γ3, the positive braid Γ2Γ3Ω
10i
3 Γ3Γ2 contains a1(a

2
1a

2
2)

10i as a subword.
Furthermore the closure of the braid a1(a

2
1a

2
2)

10i has genus defect at least 5i (see
Example 15). In this way, using all the surfaces of the split union, we can produce
a genus defect of at least

n−1∑
i=1

5i =
5n2 − 5n

2
.

From this we obtain

Δg(T (5n, 5n))

g(T (5n, 5n))
≥ 5n2 − 5n

25n2 − 15n+ 2

n→∞−−−−→ 1

5
,

which establishes Proposition 18. �

Proof of Theorem 2. We proceed as in the proof of Proposition 18. However, in-
stead of � = 3 we use � = 5 when applying Lemma 19 and obtain that Σ(Δ9n)
contains

Σ(Ω
9(n−1)
5 ) � Σ(Ω

9(n−2)
5 ) � · · · � Σ(Ω9

5)

as an incompressible subsurface. As seen in Example 17, the closure of the braid
Ω4+7j

5 has genus defect at least 4 + 8j. For every split summand Ω9i
5 , we consider

the largest subword of the form Ω4+7j
5 and produce genus defect accordingly. In

this way, we produce at least 4 + 8
⌊
9i−4
7

⌋
≥ 72i

7 − 60
7 genus defect per summand.

In total, this amounts to a genus defect of at least

n−1∑
i=1

72

7
i− 60

7
=

72n2

14
+O(n).

On the other hand, we have

g(Σ(Δ9n)) =
81n2

4
+O(n).
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From this we obtain

g4(Σ(Δ9n)) ≤
81n2

4
+O(n)− 72n2

14
−O(n) =

423n2

28
+O(n),

which finally yields

g4(T (9n, 9n))

g(T (9n, 9n))
≤

423n2

28 +O(n)
81n2

4 +O(n)

n→∞−−−−→ 47

63
<

3

4

and establishes Theorem 2. �

4. Slice genus of small torus knots

This section is devoted to the proof of Theorem 1. In fact, we will prove a
generalisation to links. For links, the topological slice genus is bounded by the
signature and nullity (denoted by μ) as follows [KT76]:

|σ(L)| −#L+ 1 + μ(L) ≤ 2g4(L).

Proposition 20. Let L = T (p, q) be a torus link with non-maximal signature and
nullity bound, i.e., L �= T (2, n), T (3, 3), T (3, 4), T (3, 5), T (3, 6), T (4, 4). Then

g4(L) ≤
6

7
g(L).

According to Theorem 2, most torus links satisfy g4
g < 3

4 . The bulk of the proof

of Proposition 20 is thus an investigation of small torus links. Their genus defects
can often be found by computer calculation (see Remark 16), or are inherited by
incompressible subsurfaces, e.g., using the following construction:

Lemma 21 ([Baa12, Proposition 1]). Let p, q, r ∈ N with p ≤ r. Then Σ(T (pq, r))
contains Σ(T (p, qr)) as incompressible subsurface. �

The following lemma helps us deal with the exceptional cases in the proof of
Proposition 20:

Lemma 22. The following lower bounds hold for the quotient 2Δg(T (p,q))
b1(T (p,q)) :

(i) For 3|p and q ≥ 10, the quotient is greater than or equal to 8/51.
(ii) For 4|p and q ≥ 7, the quotient is greater than or equal to 2/11.
(iii) For 5|p and q ≥ 6, the quotient is greater than or equal to 1/5.

Proof. To prove (i), let p = 3a. By Lemma 21, we have

Δg(T (p, q)) ≥ Δg(T (3, aq)).

Let aq = 17k+r with 0 ≤ r ≤ 16. Applying the computed defects shown in Table 1
of the knots T (3, 7), T (3, 10), T (3, 13) and T (3, 17) yields

Δg(T (3, aq)) ≥ 4k + s(r),
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where s(r) = 0, 1, 2, 3 for r in [0, 6], [7, 9], [10, 12], [13, 16], respectively. For

2Δg(T (3a, q))

b1(T (3a, q))
≥ 8

51
,

it suffices that

4k + s(r) ≥ 4

51
(3a− 1)(q − 1) ⇔

51k + 51s(r)/4 ≥ 3aq − 3a− q + 1 ⇔
51k + 51s(r)/4 ≥ 51k + 3r − 3a− q + 1 ⇔

3a+ q ≥ 1 + 3r − 51s(r)/4 ⇐

(to find the maximum of the right-hand side, which is at r = 6, it suffices to check
the cases r = 6, 9, 12, 16)

3a+ q ≥ 19 ⇔
(3a− 1) + (q − 1)

2
> 8.

Since the arithmetic mean dominates the geometric mean, this is implied by√
(3a− 1)(q − 1) > 8 ⇔√

b1(T (3a, q)) > 8 ⇔
b1(T (3a, q)) > 64.

The case b1(T (3a, q)) ≤ 64 is dealt with by Table 1. The proofs of (ii) and (iii)
proceed in the same way. For (ii), let aq = 11k + r, and use the computed defects
of T (4, 5), T (4, 7), T (4, 9) and T (4, 11). This covers the case b1(T (4a, q)) > 49. For
(iii), setting aq = 8k + r and using T (5, 4), T (5, 6), T (5, 7), T (5, 8) covers the case
b1(T (5a, q)) > 36. �
Proof of Proposition 20. The cases p, q ≤ 9 are all contained in Table 1. So let us
assume q ≥ 10. We will prove that in this case we even have 2Δg/b1 ≥ 1/7, which
suffices since b1 ≥ 2g. If p is divisible by 3, 4 or 5, then the statement follows from
Lemma 22. All other p can be written as p = 3a+4b with a, b ≥ 1. By Lemma 22,

2Δg(T (3a+ 4b, q)) ≥ 2Δg(T (3a, q)) + 2Δg(T (4b, q))

≥ 8(3a− 1)(q − 1)

51
+

2(4b− 1)(q − 1)

11
.

So now it suffices to show

8(3a− 1)(q − 1)

51
+

2(4b− 1)(q − 1)

11
≥ (3a+ 4b− 1)(q − 1)

7
⇔

616(3a− 1) + 714(4b− 1) ≥ 561(3a+ 4b− 1) ⇔
1848a− 616 + 2856b− 714 ≥ 1683a+ 2244b− 561 ⇔

165a+ 612b ≥ 769,

which follows from a, b ≥ 1. �
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Table 1. All (p, q)-torus links with p, q ≥ 3 up to Betti number b1 ≤ 64, including all
links of genus g ≤ 28. The upper bounds for the genus defect Δg are induced by the
signature and nullity functions. For the lower bounds, there is either a reference given, or
an incompressible subsurface from which the defect is inherited (see Lemmas 6 and 21).
Subsurfaces of the kind Σ(p− r, q) ⊂ Σ(p, q) are left out.

b1 (p, q) Δg Lower bound b1 (p, q) Δg Lower bound

4 (3,3) 0 40 (5,11) [5,6] Remark 16
6 (3,4) 0 40 (6,9) [4,6]
8 (3,5) 0 42 (3,22) [4,6]
9 (4,4) 0 42 (4,15) [4,6]
10 (3,6) 0 42 (7,8) [5,6] Remark 16
12 (3,7) 1 Example 13 44 (3,23) [5,6] Σ(3, 10) � Σ(3, 13)
12 (4,5) 1 Example 11 44 (5,12) [5,7]
14 (3,8) 1 45 (4,16) [5,6] Σ(4, 5) � Σ(4, 11)
15 (4,6) [1,2] 45 (6,10) [5,8] Σ(6 · 2, 5)
16 (3,9) 1 46 (3,24) [5,6]
16 (5,5) 1 48 (3,25) [5,7]
18 (3,10) 2 Remark 16 48 (4,17) [5,7]
18 (4,7) 2 Remark 16 48 (5,13) [5,8]
20 (3,11) 2 48 (7,9) [5,8]
20 (5,6) 2 Σ(5 · 2, 3) 49 (8,8) [5,6]
21 (4,8) 2 50 (3,26) [6,7] Σ(3, 13) � Σ(3, 13)
22 (3,12) 2 50 (6,11) [5,8]
24 (3,13) 3 Remark 16 51 (4,18) [6,8] Σ(4, 7) � Σ(4, 11)
24 (4,9) 3 Remark 16 52 (3,27) [6,7]
24 (5,7) 3 Remark 16 52 (5,14) [6,8] Σ(5, 6) � Σ(5, 8)
25 (6,6) 2 54 (3,28) [6,8]
26 (3,14) 3 54 (4,19) [6,8]
27 (4,10) [3,4] 54 (7,10) [6,9] Σ(4, 7) � Σ(6, 7)
28 (3,15) 3 55 (6,12) [6,8] Σ(5, 6) � Σ(6, 7)
28 (5,8) 4 Remark 16 56 (3,29) [6,8]
30 (3,16) [3,4] 56 (5,15) [7,10] Σ(5, 7) � Σ(5, 8)
30 (4,11) 4 Remark 16 56 (8,9) [6,9] Σ(4, 9) � Σ(4, 9)
30 (6,7) 4 Remark 16 57 (4,20) [7,8] Σ(4, 9) � Σ(4, 11)
32 (3,17) 4 Remark 16 58 (3,30) [7,8] Σ(3, 13) � Σ(3, 17)
32 (5,9) 4 60 (3,31) [7,9]
33 (4,12) 4 60 (4,21) [7,9]
34 (3,18) 4 60 (5,16) [8,10] Σ(5, 8) � Σ(5, 8)
35 (6,8) [4,6] 60 (6,13) [6,10] Σ(3, 13) � Σ(3, 13)
36 (3,19) [4,5] 60 (7,11) [7,10] Σ(5, 7) � Σ(6, 7)
36 (4,13) [4,5] 62 (3,32) [7,9]
36 (5,10) 4 63 (4,22) [8,10] Σ(4, 11) � Σ(4, 11)
36 (7,7) [4,6] 63 (8,10) [8,12] Σ(5, 8) � Σ(5, 8)
38 (3,20) [4,5] 64 (3,33) [7,9]
39 (4,14) [4,6] 64 (5,17) [8,11]
40 (3,21) [4,5] 64 (9,9) [7,9] Σ(4, 9) � Σ(5, 9)
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