## On the topological 4-genus of torus knots

HTML articles powered by AMS MathViewer

- by S. Baader, P. Feller, L. Lewark and L. Liechti PDF
- Trans. Amer. Math. Soc.
**370**(2018), 2639-2656

## Abstract:

We prove that the topological locally flat slice genus of large torus knots takes up less than three quarters of the ordinary genus. As an application, we derive the best possible linear estimate of the topological slice genus for torus knots with non-maximal signature invariant.## References

- Sebastian Baader,
*Scissor equivalence for torus links*, Bull. Lond. Math. Soc.**44**(2012), no. 5, 1068–1078. MR**2975163**, DOI 10.1112/blms/bds044 - Sebastian Baader and Lukas Lewark:
*The stable 4-genus of alternating knots*, 2015, to appear in Asian J. Math. arXiv:1505.03345. - J. Collins,
*Seifert matrix computation*, retrieved 2015. A computer program to compute Seifert matrices from braids, available from http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/. - Benson Farb and Dan Margalit,
*A primer on mapping class groups*, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR**2850125** - Peter Feller,
*The degree of the Alexander polynomial is an upper bound for the topological slice genus*, Geom. Topol.**20**(2016), no. 3, 1763–1771. MR**3523068**, DOI 10.2140/gt.2016.20.1763 - Peter Feller and Duncan McCoy,
*On 2-bridge knots with differing smooth and topological slice genera*, Proc. Amer. Math. Soc.**144**(2016), no. 12, 5435–5442. MR**3556284**, DOI 10.1090/proc/13147 - Michael H. Freedman and Frank Quinn,
*Topology of 4-manifolds*, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR**1201584** - Michael Hartley Freedman,
*The topology of four-dimensional manifolds*, J. Differential Geometry**17**(1982), no. 3, 357–453. MR**679066** - Stavros Garoufalidis and Peter Teichner,
*On knots with trivial Alexander polynomial*, J. Differential Geom.**67**(2004), no. 1, 167–193. MR**2153483** - C. McA. Gordon, R. A. Litherland, and K. Murasugi,
*Signatures of covering links*, Canadian J. Math.**33**(1981), no. 2, 381–394. MR**617628**, DOI 10.4153/CJM-1981-032-3 - Louis H. Kauffman and Laurence R. Taylor,
*Signature of links*, Trans. Amer. Math. Soc.**216**(1976), 351–365. MR**388373**, DOI 10.1090/S0002-9947-1976-0388373-0 - P. B. Kronheimer and T. S. Mrowka,
*The genus of embedded surfaces in the projective plane*, Math. Res. Lett.**1**(1994), no. 6, 797–808. MR**1306022**, DOI 10.4310/MRL.1994.v1.n6.a14 - Ronnie Lee and Dariusz M. Wilczyński,
*Representing homology classes by locally flat surfaces of minimum genus*, Amer. J. Math.**119**(1997), no. 5, 1119–1137. MR**1473071**, DOI 10.1353/ajm.1997.0029 - Livio Liechti,
*Signature, positive Hopf plumbing and the Coxeter transformation*, Osaka J. Math.**53**(2016), no. 1, 251–266. With an appendix by Peter Feller and Liechti. MR**3466832** - Charles Livingston,
*The stable 4-genus of knots*, Algebr. Geom. Topol.**10**(2010), no. 4, 2191–2202. MR**2745668**, DOI 10.2140/agt.2010.10.2191 - Kunio Murasugi,
*On a certain numerical invariant of link types*, Trans. Amer. Math. Soc.**117**(1965), 387–422. MR**171275**, DOI 10.1090/S0002-9947-1965-0171275-5 - The PARI Group, Bordeaux:
*Pari/gp, version 2.7.4*, 2015. Programming library available from http://pari.math.u-bordeaux.fr/. - Mark Powell,
*The four-genus of a link, Levine-Tristram signatures and satellites*, J. Knot Theory Ramifications**26**(2017), no. 2, 1740008, 28. MR**3604490**, DOI 10.1142/S0218216517400089 - Lee Rudolph,
*Nontrivial positive braids have positive signature*, Topology**21**(1982), no. 3, 325–327. MR**649763**, DOI 10.1016/0040-9383(82)90014-3 - Lee Rudolph,
*Some topologically locally-flat surfaces in the complex projective plane*, Comment. Math. Helv.**59**(1984), no. 4, 592–599. MR**780078**, DOI 10.1007/BF02566368 - Lee Rudolph,
*Quasipositivity as an obstruction to sliceness*, Bull. Amer. Math. Soc. (N.S.)**29**(1993), no. 1, 51–59. MR**1193540**, DOI 10.1090/S0273-0979-1993-00397-5 - John R. Stallings,
*Constructions of fibred knots and links*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 55–60. MR**520522** - A. G. Tristram,
*Some cobordism invariants for links*, Proc. Cambridge Philos. Soc.**66**(1969), 251–264. MR**248854**, DOI 10.1017/s0305004100044947

## Additional Information

**S. Baader**- Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- MR Author ID: 757518
- Email: sebastian.baader@math.unibe.ch
**P. Feller**- Affiliation: Department of Mathematics, Boston College, Maloney Hall, Chestnut Hill, Massachusetts 02467
- Address at time of publication: ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
- MR Author ID: 1052130
- Email: peter.feller@math.ch
**L. Lewark**- Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- MR Author ID: 1064492
- Email: lukas.lewark@math.unibe.ch
**L. Liechti**- Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- MR Author ID: 1151402
- Email: livio.liechti@math.unibe.ch
- Received by editor(s): October 19, 2015
- Received by editor(s) in revised form: June 20, 2016, and August 2, 2016
- Published electronically: December 19, 2017
- Additional Notes: The third author thanks the EPSRC grant EP/K00591X/1 for providing computing facilities

The second, third and fourth authors gratefully acknowledge support by the SNSF grants 155477 and 159208, respectively - © Copyright 2017 by the authors
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 2639-2656 - MSC (2010): Primary 57M25
- DOI: https://doi.org/10.1090/tran/7051
- MathSciNet review: 3748580