## Packet structure and paramodular forms

HTML articles powered by AMS MathViewer

- by Ralf Schmidt PDF
- Trans. Amer. Math. Soc.
**370**(2018), 3085-3112 Request permission

## Abstract:

We explore the consequences of the structure of the discrete automorphic spectrum of the split orthogonal group $\operatorname {SO}(5)$ for holomorphic Siegel modular forms of degree $2$. In particular, the combination of the local and global packet structure with the local paramodular newform theory for $\operatorname {GSp}(4)$ leads to a strong multiplicity one theorem for paramodular cusp forms.## References

- James Arthur,
*Automorphic representations of $\textrm {GSp(4)}$*, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 65–81. MR**2058604** - James Arthur,
*The endoscopic classification of representations*, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR**3135650**, DOI 10.1090/coll/061 - Armand Brumer and Kenneth Kramer,
*Paramodular abelian varieties of odd conductor*, Trans. Amer. Math. Soc.**366**(2014), no. 5, 2463–2516. MR**3165645**, DOI 10.1090/S0002-9947-2013-05909-0 - Ping-Shun Chan and Wee Teck Gan,
*The local Langlands conjecture for $\rm GSp(4)$ III: Stability and twisted endoscopy*, J. Number Theory**146**(2015), 69–133. MR**3267112**, DOI 10.1016/j.jnt.2013.07.009 - Laurent Clozel,
*Purity reigns supreme*, Int. Math. Res. Not. IMRN**2**(2013), 328–346. MR**3010691**, DOI 10.1093/imrn/rnr241 - Martin Eichler and Don Zagier,
*The theory of Jacobi forms*, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**781735**, DOI 10.1007/978-1-4684-9162-3 - David Farmer, Ameya Pitale, Nathan Ryan, and Ralf Schmidt,
*Multiplicity one for $L$-functions and applications*, Preprint, 2013. http://arxiv.org/abs/1305.3972. - David W. Farmer, Ameya Pitale, Nathan C. Ryan, and Ralf Schmidt,
*Survey article: Characterizations of the Saito-Kurokawa lifting*, Rocky Mountain J. Math.**43**(2013), no. 6, 1747–1757. MR**3178443**, DOI 10.1216/RMJ-2013-43-6-1747 - Wee Teck Gan and Shuichiro Takeda,
*The local Langlands conjecture for $\textrm {GSp}(4)$*, Ann. of Math. (2)**173**(2011), no. 3, 1841–1882. MR**2800725**, DOI 10.4007/annals.2011.173.3.12 - Stephen Gelbart and Hervé Jacquet,
*A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$*, Ann. Sci. École Norm. Sup. (4)**11**(1978), no. 4, 471–542. MR**533066**, DOI 10.24033/asens.1355 - Valeri Gritsenko,
*Arithmetical lifting and its applications*, Number theory (Paris, 1992–1993) London Math. Soc. Lecture Note Ser., vol. 215, Cambridge Univ. Press, Cambridge, 1995, pp. 103–126. MR**1345176**, DOI 10.1017/CBO9780511661990.008 - Guy Henniart,
*Sur la fonctorialité, pour $\rm GL(4)$, donnée par le carré extérieur*, Mosc. Math. J.**9**(2009), no. 1, 33–45, back matter (French, with English and Russian summaries). MR**2567395**, DOI 10.17323/1609-4514-2009-9-1-33-45 - Jennifer Johnson-Leung and Brooks Roberts,
*Twisting of paramodular vectors*, Int. J. Number Theory**10**(2014), no. 4, 1043–1065. MR**3208874**, DOI 10.1142/S1793042114500146 - Henry H. Kim,
*Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$*, J. Amer. Math. Soc.**16**(2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR**1937203**, DOI 10.1090/S0894-0347-02-00410-1 - Ameya Pitale, Abhishek Saha, and Ralf Schmidt,
*Transfer of Siegel cusp forms of degree 2*, Mem. Amer. Math. Soc.**232**(2014), no. 1090, vi+107. MR**3243731** - Cris Poor, Ralf Schmidt, and David Yuen,
*Paramodular forms of level $8$ and weights $10$ and $12$*, International Journal of Number Theory, to appear. - Cris Poor and David S. Yuen,
*Paramodular cusp forms*, Math. Comp.**84**(2015), no. 293, 1401–1438. MR**3315514**, DOI 10.1090/S0025-5718-2014-02870-6 - Brooks Roberts and Ralf Schmidt,
*On modular forms for the paramodular groups*, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 334–364. MR**2208781**, DOI 10.1142/9789812774415_{0}015 - Brooks Roberts and Ralf Schmidt,
*Local newforms for GSp(4)*, Lecture Notes in Mathematics, vol. 1918, Springer, Berlin, 2007. MR**2344630**, DOI 10.1007/978-3-540-73324-9 - Brooks Roberts and Ralf Schmidt,
*Some results on Bessel functionals for $\textrm {GSp}(4)$*, Doc. Math.**21**(2016), 467–553. MR**3522249** - David E. Rohrlich,
*Elliptic curves and the Weil-Deligne group*, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 125–157. MR**1260960**, DOI 10.1090/crmp/004/10 - Ralf Schmidt,
*Archimedean aspects of Siegel modular forms of degree $2$*, Preprint, 2015. To appear in Rocky Mountain J. Math. - Ramin Takloo-Bighash,
*$L$-functions for the $p$-adic group $\textrm {GSp}(4)$*, Amer. J. Math.**122**(2000), no. 6, 1085–1120. MR**1797657**, DOI 10.1353/ajm.2000.0049 - Rainer Weissauer,
*Endoscopy for $\textrm {GSp}(4)$ and the cohomology of Siegel modular threefolds*, Lecture Notes in Mathematics, vol. 1968, Springer-Verlag, Berlin, 2009. MR**2498783**, DOI 10.1007/978-3-540-89306-6

## Additional Information

**Ralf Schmidt**- Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019-3103
- MR Author ID: 636524
- Email: rschmidt@math.ou.edu
- Received by editor(s): May 18, 2016
- Received by editor(s) in revised form: July 19, 2016
- Published electronically: October 24, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 3085-3112 - MSC (2010): Primary 11F46, 11F70
- DOI: https://doi.org/10.1090/tran/7028
- MathSciNet review: 3766842