Classification of modules for infinite-dimensional string algebras
HTML articles powered by AMS MathViewer
- by William Crawley-Boevey PDF
- Trans. Amer. Math. Soc. 370 (2018), 3289-3313 Request permission
Abstract:
We relax the definition of a string algebra to also include infinite-dimensional algebras such as $k[x,y]/(xy)$. Using the functorial filtration method, which goes back to Gelfand and Ponomarev, we show that finitely generated modules and artinian modules (and more generally finitely controlled and pointwise artinian modules) are classified in terms of string and band modules. This subsumes the known classifications of finite-dimensional modules for string algebras and of finitely generated modules for $k[x,y]/(xy)$. Unlike in the finite-dimensional case, the words parameterizing string modules may be infinite.References
- Igor Burban and Yuriy Drozd, Derived categories of nodal algebras, J. Algebra 272 (2004), no. 1, 46–94. MR 2029026, DOI 10.1016/j.jalgebra.2003.07.025
- M. C. R. Butler and Claus Michael Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179. MR 876976, DOI 10.1080/00927878708823416
- William Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Algebras and modules, I (Trondheim, 1996) CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 29–54. MR 1648602
- P. W. Donovan and M.-R. Freislich, The indecomposable modular representations of certain groups with dihedral Sylow subgroup, Math. Ann. 238 (1978), no. 3, 207–216. MR 514428, DOI 10.1007/BF01420248
- I. M. Gel′fand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspehi Mat. Nauk 23 (1968), no. 2 (140), 3–60 (Russian). MR 0229751
- Henning Krause, A note on infinite string modules [ MR1206952 (93k:16027)], Representations of algebras (Ottawa, ON, 1992) CMS Conf. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 1993, pp. 309–312. MR 1265293, DOI 10.1142/s0129626493000599
- Reinhard C. Laubenbacher and Bernd Sturmfels, A normal form algorithm for modules over $k[x,y]/\langle xy\rangle$, J. Algebra 184 (1996), no. 3, 1001–1024. MR 1407881, DOI 10.1006/jabr.1996.0295
- Lawrence S. Levy, Modules over Dedekind-like rings, J. Algebra 93 (1985), no. 1, 1–116. MR 780485, DOI 10.1016/0021-8693(85)90176-0
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- L. A. Nazarova and A. V. Roĭter, Finitely generated modules over a dyad of two local Dedekind rings, and finite groups which possess an abelian normal divisor of index $p$, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 65–89 (Russian). MR 0260859
- L. A. Nazarova, A. V. Roĭter, V. V. Sergeĭčuk, and V. M. Bondarenko, Application of modules over a dyad to the classification of finite $p$-groups that have an abelian subgroup of index $p$ and to the classification of pairs of mutually annihilating operators, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 69–92 (Russian). Investigations on the theory of representations. MR 0332963, DOI 10.1016/0550-3213(71)90022-8
- Claus Michael Ringel, The indecomposable representations of the dihedral $2$-groups, Math. Ann. 214 (1975), 19–34. MR 364426, DOI 10.1007/BF01428252
- Claus Michael Ringel, Some algebraically compact modules. I, Abelian groups and modules (Padova, 1994) Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 419–439. MR 1378216
- Andrzej Skowroński and Josef Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172–181. MR 717892
- Burkhard Wald and Josef Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), no. 2, 480–500. MR 801283, DOI 10.1016/0021-8693(85)90119-X
Additional Information
- William Crawley-Boevey
- Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Address at time of publication: Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
- MR Author ID: 230720
- Email: wcrawley@math.uni-bielefeld.de
- Received by editor(s): March 7, 2016
- Received by editor(s) in revised form: July 26, 2016
- Published electronically: December 20, 2017
- Additional Notes: This material is based upon work supported by the National Science Foundation under grant No. 0932078 000 while the author was in residence at the Mathematical Science Research Institute (MSRI) in Berkeley, California, during the spring semester 2013.
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3289-3313
- MSC (2010): Primary 16D70; Secondary 13C05
- DOI: https://doi.org/10.1090/tran/7032
- MathSciNet review: 3766850