On certain $L$-functions for deformations of knot group representations
HTML articles powered by AMS MathViewer
- by Takahiro Kitayama, Masanori Morishita, Ryoto Tange and Yuji Terashima PDF
- Trans. Amer. Math. Soc. 370 (2018), 3171-3195 Request permission
Abstract:
We study the twisted knot module for the universal deformation of an $\textrm {SL}_2$-representation of a knot group and introduce an associated $L$-function, which may be seen as an analogue of the algebraic $p$-adic $L$-function associated to the Selmer module for the universal deformation of a Galois representation. We then investigate two problems proposed by Mazur: Firstly we show the torsion property of the twisted knot module over the universal deformation ring under certain conditions. Secondly we compute the $L$-function by some concrete examples for $2$-bridge knots.References
- Henri Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 213–237 (French). MR 1279611, DOI 10.1090/conm/165/01601
- Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of $3$-manifolds, Ann. of Math. (2) 117 (1983), no. 1, 109–146. MR 683804, DOI 10.2307/2006973
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Stefan Friedl and Stefano Vidussi, A survey of twisted Alexander polynomials, The mathematics of knots, Contrib. Math. Comput. Sci., vol. 1, Springer, Heidelberg, 2011, pp. 45–94. MR 2777847, DOI 10.1007/978-3-642-15637-3_{3}
- Takako Fukaya, Hasse zeta functions of non-commutative rings, J. Algebra 208 (1998), no. 1, 304–342. MR 1644015, DOI 10.1006/jabr.1998.7489
- Ralph Greenberg, Iwasawa theory and $p$-adic deformations of motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 193–223. MR 1265554
- S. Harada, Modular representations of fundamental groups and associated Weil-type zeta functions, Thesis, Kyushu University, 2008.
- Haruzo Hida, Galois representations into $\textrm {GL}_2(\textbf {Z}_p[[X]])$ attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613. MR 848685, DOI 10.1007/BF01390329
- Haruzo Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 231–273. MR 868300, DOI 10.24033/asens.1507
- Jonathan Hillman, Algebraic invariants of links, 2nd ed., Series on Knots and Everything, vol. 52, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2931688, DOI 10.1142/8493
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI 10.2307/1970784
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- Teruaki Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), no. 2, 431–442. MR 1405595, DOI 10.2140/pjm.1996.174.431
- Paul Kirk and Charles Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), no. 3, 635–661. MR 1670420, DOI 10.1016/S0040-9383(98)00039-1
- K. Kodama, Knot program, available at http://www.math.kobe-u.ac.jp/~kodama/knot.html
- Masato Kurihara, Iwasawa theory and Fitting ideals, J. Reine Angew. Math. 561 (2003), 39–86. MR 1998607, DOI 10.1515/crll.2003.068
- Le Ty Kuok Tkhang, Varieties of representations and their subvarieties of cohomology jumps for knot groups, Mat. Sb. 184 (1993), no. 2, 57–82 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 187–209. MR 1214944, DOI 10.1070/SM1994v078n01ABEH003464
- Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, DOI 10.1090/memo/0336
- B. Mazur, Remarks on the Alexander Polynomial, available at http://www.math.harvard.edu/~mazur/older.html
- B. Mazur, Deforming Galois representations, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385–437. MR 1012172, DOI 10.1007/978-1-4613-9649-9_{7}
- B. Mazur, The theme of $p$-adic variation, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 433–459. MR 1754790
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Masanori Morishita, Knots and primes, Universitext, Springer, London, 2012. An introduction to arithmetic topology. MR 2905431, DOI 10.1007/978-1-4471-2158-9
- Masanori Morishita, Yu Takakura, Yuji Terashima, and Jun Ueki, On the universal deformations for $\textrm {SL}_2$-representations of knot groups, Tohoku Math. J. (2) 69 (2017), no. 1, 67–84. MR 3640015, DOI 10.2748/tmj/1493172129
- Kazunori Nakamoto, Representation varieties and character varieties, Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 159–189. MR 1753200, DOI 10.2977/prims/1195143100
- Louise Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), no. 2, 257–283 (French). MR 1411348, DOI 10.1007/BF01445251
- Tadashi Ochiai, Control theorem for Greenberg’s Selmer groups of Galois deformations, J. Number Theory 88 (2001), no. 1, 59–85. MR 1825991, DOI 10.1006/jnth.2000.2611
- Tadashi Ochiai, On the two-variable Iwasawa main conjecture, Compos. Math. 142 (2006), no. 5, 1157–1200. MR 2264660, DOI 10.1112/S0010437X06002223
- Joan Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997), no. 612, x+139 (French, with English and French summaries). MR 1396960, DOI 10.1090/memo/0612
- C. Procesi, The invariant theory of $n\times n$ matrices, Advances in Math. 19 (1976), no. 3, 306–381. MR 419491, DOI 10.1016/0001-8708(76)90027-X
- Józef H. Przytycki and Adam S. Sikora, On skein algebras and $\textrm {Sl}_2(\textbf {C})$-character varieties, Topology 39 (2000), no. 1, 115–148. MR 1710996, DOI 10.1016/S0040-9383(98)00062-7
- Robert Riley, Nonabelian representations of $2$-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191–208. MR 745421, DOI 10.1093/qmath/35.2.191
- Kyoji Saito, Character variety of representations of a finitely generated group in $\textrm {SL}_2$, Topology and Teichmüller spaces (Katinkulta, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 253–264. MR 1659663
- Jean-Pierre Serre, Classes des corps cyclotomiques (d’après K. Iwasawa), Séminaire Bourbaki, Vol. 5, Soc. Math. France, Paris, 1995, pp. Exp. No. 174, 83–93 (French). MR 1603459
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Jean-Pierre Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, No. 5, Springer-Verlag, Berlin-New York, 1965 (French). With a contribution by Jean-Louis Verdier; Troisième édition, 1965. MR 0201444, DOI 10.1007/978-3-662-21576-0
- Richard Taylor, Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), no. 2, 281–332. MR 1115109, DOI 10.1215/S0012-7094-91-06312-X
- Jacques Tilouine, Deformations of Galois representations and Hecke algebras, Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad; by Narosa Publishing House, New Delhi, 1996. MR 1643682
- Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241–256. MR 1273784, DOI 10.1016/0040-9383(94)90013-2
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Additional Information
- Takahiro Kitayama
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
- Address at time of publication: Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
- MR Author ID: 880899
- Email: kitayama@ms.u-tokyo.ac.jp
- Masanori Morishita
- Affiliation: Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- MR Author ID: 261276
- Email: morisita@math.kyushu-u.ac.jp
- Ryoto Tange
- Affiliation: Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Email: rtange.math@gmail.com
- Yuji Terashima
- Affiliation: Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
- Email: tera@is.titech.ac.jp
- Received by editor(s): December 17, 2015
- Received by editor(s) in revised form: February 8, 2016, and July 22, 2016
- Published electronically: November 15, 2017
- Additional Notes: The first author was partly supported by JSPS Research Fellowships for Young Scientists 26800032
The second author was partly supported by Grants-in-Aid for Scientific Research (B) 24340005
The fourth author was partly supported by Grants-in-Aid for Scientific Research (C) 25400083 - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3171-3195
- MSC (2010): Primary 57M25
- DOI: https://doi.org/10.1090/tran/7037
- MathSciNet review: 3766846