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EXPLICIT DESCENT FOR JACOBIANS OF PRIME POWER

CYCLIC COVERS OF THE PROJECTIVE LINE

EDWARD F. SCHAEFER

Abstract. The Jacobian of a cyclic cover of the projective line is isogenous
to a product of abelian subvarieties, one for each positive divisor of the degree
of the cover. In this article, we show how to compute a Selmer group that
bounds the Mordell-Weil rank for each abelian subvariety corresponding to a
non-trivial prime power divisor of the degree. In the case that the Chabauty

condition holds for that abelian subvariety, we show how to bound the number
of rational points on the curve.

1. Introduction

A classical Thue equation has the form g(x,w) = h where h is an integer and
g(x,w) is an irreducible, homogeneous polynomial of degree n ≥ 3, with integral
coefficients. In [LT], Lorenzini and Tucker associate to that Thue equation the
curve given by hvn = g(x, 1). They point out that the Jacobian of the curve is
isogenous to a product of abelian subvarieties over Q, one for each positive divisor
of n. They then prove beautiful results using the method of Chabauty-Coleman.
Some results depend on the Mordell-Weil rank of the Jacobian of the curve over Q.
This leads to the question of determining that rank, which is the sum of the ranks
of the abelian subvarieties. The abelian subvariety of the Jacobian of hvn = g(x, 1),
corresponding to a positive divisor d|n, is isogenous over Q to an abelian subvariety
of the Jacobian of the curve hyd = g(x, 1).

A Selmer group for an endomorphism, a power of which is an associate of an
integer greater than 1, can be used to give an upper bound on the Mordell-Weil
rank. In fortunate cases, we can then provably determine the Mordell-Weil rank.
The curve hyd = g(x, 1) has an automorphism τ given by τ (x, y) = (x, ζdy), where
ζd is a primitive d-th root of unity. We often denote a map and a map it induces
with the same notation. We shall see that τ induces an automorphism of the abelian
subvariety and in its endomorphism ring, τ acts like ζd. A method for computing
the (1− τ )-Selmer group in the case that d is a prime is described in [PS] (in that
case, the abelian subvariety corresponding to d is the entire Jacobian). A power of
1 − ζd is an associate of an integer greater than 1 if and only if d = pr where p is
a prime and r ≥ 1. So the endomorphism 1− τ appears to be useful for bounding
the Mordell-Weil rank in only this case. In this article, we describe a method for

Received by the editors July 29, 2015, and, in revised form, August 10, 2016.
2010 Mathematics Subject Classification. Primary 11G30; Secondary 11G10, 14G25, 14H40,

14H45.
The author is grateful for the hospitality of the Mathematisches Institut at the Universität

Bayreuth, where much of this research was done, and to his host there, Michael Stoll, for many
useful conversations. This article benefited from useful comments from the referees.

c©2017 American Mathematical Society

3487

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7060


3488 EDWARD F. SCHAEFER

computing the (1 − τ )-Selmer group for the abelian subvariety, mentioned above,
of the Jacobian of the curve hyp

r

= g(x, 1) with r > 1.
Typically when r > 1, the genus of hyp

r

= g(x, 1) is greater than 1. So by
Faltings’ Theorem, there is a finite number of rational points. Let us assume that
the Chabauty condition, i.e., that the Mordell-Weil rank is less than the dimension,
holds for the abelian subvariety mentioned above. For such a case we outline a
method of doing a Chabauty computation to give an upper bound on the number
of rational points on the curve hyp

r

= g(x, 1). With luck, this will equal the number
of known rational points on the curve. As a corollary, this would give us the integer
solutions to the Thue equation. Since most of the results in this article involve
computing a Selmer group, we use a slightly different model for the curve, namely
yp

r

= f(x), in order to agree with the notation used in similar articles. Though
the article of Lorenzini and Tucker [LT] is the inspiration for this work, we will no
longer address Thue equations and instead will present our results in the context
of rational points on cyclic covers of the projective line.

In Section 2, we define the abelian subvariety mentioned above, which we’ll
denote B, of the Jacobian J of the curve yp

r

= f(x) and set the rest of the notation
to be used throughout the article. In Section 3, we study the structures of and the
relationship between the kernels of the isogenies 1− τ on J and on B. In Section 4,
we prove, under an assumption, that the (1− τ )-Selmer group for B is isomorphic
to a Selmer group for an isogeny to J . As described in [Sc2] and [BPS16], the
computation of the latter kind of Selmer group can be practical. Since a convenient
spanning set for the kernel of the isogeny to J leads to a fake descent setup (as
described in [BPS16, §6]), we show in Section 5 how to get the Selmer group for
the isogeny to J from the fake Selmer group. In Section 6, assuming we can find
enough rational divisors whose images generate the fake Selmer group, we show
how to determine the Mordell-Weil rank of B. In Section 7, we discuss conditions
which imply part of the assumption made in Section 4.

In Section 8, we describe how to bound the number of rational points on yp
r

=
f(x) if the Chabauty condition holds for B. We give an example in Section 9 of the
use of the techniques of the article to show that for y4 = 2x4+x3+1 we have B(Q) ∼=
Z and that the set of points with coordinates in Q is {(0, 1), (0,−1), (−1/2, 1),
(−1/2,−1)}. In Appendix A, we prove the above claim that the subvarieties associ-
ated to d, as defined in the proof of [LT, Prop. 3.12], of the Jacobians of vn = f(x)
and yd = f(x) are isogenous and the corresponding Mordell-Weil ranks are the
same. We show in Appendix B that if p divides the multiplicity of a root of f , then
the geometry can be more complicated, which is why we assume that p does not
divide the multiplicity of any root of f .

2. Notation

Let p be a prime, let K be a field of characteristic different from p, and let Ks

denote a separable closure. For an object Y over K, we use Ys to denote its base
extension to Ks. Let X be the curve over K (smooth, projective, and geometrically
integral) with an affine model yp

r

= f(x) for some r > 1, where f is a polynomial
defined over K, of degree n. We assume K is sufficiently large so that we can
assume that n is divisible by pr. Let f(x) = an

∏m
i=1(x − αi)

ni , where the αi are
distinct elements of Ks. For simplicity, we add the restriction that p not divide
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any ni; otherwise the geometry becomes more complicated (see Section 12). Let
f0(x) :=

∏m
i=1(x− αi) ∈ K[x] be the radical of f .

Let Gal(K) := Gal(Ks/K) denote the absolute Galois group of K. For any
place q of K, let Kq denote the completion. Let ζd denote a primitive d-th root of
unity and K ′ := K(ζpr). We let J := AlbX be the Jacobian of X. We can identify

Pic0(Xs) with Js(Ks). Where it will not lead to confusion, we also use X and J to
denote the curve and its Jacobian over extension fields, e.g., X ×K K ′. We let K
(respectively K′) denote an arbitrary extension of K (respectively K ′), for example
when we want to prove a result for both K and Kq.

The curve X has an automorphism τ induced by τ (x, y) = (x, ζpry) over K ′. We
also use τ to denote the automorphism it induces on J . For a degree 0 divisor D on
Xs we use [D] to denote its divisor class in Js(Ks). Let Φ(u) := (upr−1)/(u−1) and
Ψ(u) := Φ(u)/Φpr(u), where Φt denotes the t-th cyclotomic polynomial. Note that
Ψ(u) =

∏
�|pr,� �=1,pr Φ�(u). When we replace u by τ , we can evaluate any of these

on divisors and, by extension, on Js(Ks). Let End(J) denote the endomorphism
ring of the abelian variety J . We let Υ := Ψ(τ ) ∈ End(J) and note that Υ maps
surjectively to an abelian subvariety that we denote B. That B is defined over
K follows from the argument in the proof of [LT, Prop. 3.12]. We have that Υ is
the composition of a surjective morphism Υo : J→B over K ′ with the embedding

ι : B ↪→ J over K. Let Xpr−1 denote the curve given by vp
r−1

= f(x) and Jpr−1

denote its Jacobian. It follows from the results in Section 11 that J is isogenous
over K to Jpr−1 ⊕B. We can identify ι(Bs(Ks)) with the image of Υ on Pic0(Xs).
Since τ and Υ commute in End(J), we note that τ induces an automorphism of B,
which we also denote by τ , except when adding a subscript will add clarity.

We denote the divisor on X that is the formal sum of the distinct points at
infinity (with respect to the given affine model) by ∞. We use Δ to denote the
Gal(K)-subset of Xs that is {(αi, 0)}.

For a homomorphism of abelian varieties g : A1→A2, let ĝ : Â2→Â1 denote the
dual homomorphism between dual abelian varieties. Let λ : J→Ĵ be the canonical
principal polarization of J coming from its being the Jacobian of X. For any
homomorphism h : A3→A4 of abelian varieties or of groups, let A3[h] denote its
kernel. For any Gal(K)-module M , we use H1(K,M) to denote H1(Gal(K),M),
the first Gal(K)-cohomology group of M . If g (defined above) is an isogeny defined
over K, we let δg : A2(K)→H1(K,A1[g]) denote the connecting homomorphism of
cohomology. If G is a group, S is a G-set, and M is a G-module, let MS denote
the G-module of maps from S to M .

For a vector space V over Fp, we let dimV denote its dimension. In the case
that W is an algebraic variety, we use dimW to denote its dimension. For a finitely
generated Z-module M , let rankM denote its free Z-rank.

For the remainder of this section, letK be a number field. We recall the definition
of the Selmer group for an isogeny of abelian varieties ε : A1→A2 over K. For any
place q ofK, we denote the restriction map r1,q : H1(K,A1[ε])→H1(Kq, A1[ε]). The
Selmer group, denoted Sε(A1,K), is defined to be {γ ∈ H1(K,A1[ε]) | r1,q(γ) ∈
δε(A2(Kq)/εA1(Kq)), ∀q}.

We recall the definition of the Shafarevich-Tate group for an abelian variety A1

over K. For any place q of K we denote the restriction map

r2,q : H1(K,A1)→H1(Kq, A1).
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The Shafarevich-Tate group, denoted X(A1,K), is defined to be the kernel of

(2.1) H1(K,A1)
∏

r2,q→
∏

H1(Kq, A1),

where the products are taken over all places q of K. We have the classic short exact
sequence

(2.2) 0→A2(K)/εA1(K)→Sε(A1,K)→X(A1,K)[ε]→0.

3. The isogenies 1− τ on J and on B

In this section, we want to describe J [1− τ ] and B[1− τ ]. Let Xp be the curve
with an affine model wp = f(x) and Jp be its Jacobian, which over Ks we associate

to Pic0(Xp,s). Let π : X→Xp be the covering given by π(x, y) = (x, yp
r−1

); it
induces π∗ : Jp→J (see [Si, Remark 3.7]). We define an automorphism induced by

τp(x,w) = (x, ζp
r−1

pr w) of Xp.
From the proof of [Sc2, Prop. 3.2], which was suggested by Michael Stoll, we have

Js(Ks)[1 − τ ] = 〈[(αj , 0) − (αi, 0)]〉 (here each (αk, 0) ∈ Xs(Ks)) and
Jp,s(Ks)[1− τp] = 〈[(αj , 0)− (αi, 0)]〉 (here each (αk, 0) ∈ Xp,s(Ks)).

Lemma 3.1. We have dim Jp,s(Ks)[1− τp] = m− 2.

Proof. This follows from [PS, Lem. 6.1]. �

Proposition 3.2. The map π∗ induces an isomorphism from Jp,s(Ks)[1 − τp] to
pr−1Js(Ks)[1− τ ].

Proof. That the image of Jp,s(Ks)[1− τp] is exactly pr−1Js(Ks)[1− τ ] follows from
the definition of π∗ (see [Si, p. 33]). Assume

∑m
i=1 �ip

r−1(αi, 0) = div(h) for some
h ∈ Ks(Xs) where each �i ∈ Z and each (αi, 0) ∈ Xs(Ks). To prove that π∗ induces
an injection on Jp,s(Ks)[1− τp], we need to prove that h ∈ π∗Ks(Xp,s).

We can consider τp to be a generator of Gal(Ks(Xs)/π
∗Ks(Xp,s)). Note that

div(h) = τp(div(h)) = div(τph). Thus there is a κ ∈ K×
s such that τph = κh. We

expand both sides of the equation τph = κh on a power basis generated by y for
the extension Ks(Xs)/π

∗Ks(Xp,s). Then an easy exercise equating scalars shows
that κ = 1 and thus h ∈ π∗Ks(Xp,s) or h = gyj for some g ∈ π∗Ks(Xp,s)

× and
j ∈ Z.

In the latter case it suffices to prove that yj ∈ π∗Ks(Xp,s). Since the supports
of div(h) and div(yj) are contained in Δ, the same is true of div(g). Since g ∈
π∗Ks(Xp,s)

×, the definition of π∗ implies that div(g) =
∑m

i=1 �
′
ip

r−1(αi, 0), where
each �′i ∈ Z. Therefore div(yj) is of this form as well. So j = pr−1d for some d ∈ Z
and yj = π∗(wd). �

Corollary 3.3. We have dim pr−1Js(Ks)[1− τ ] = m− 2.

Proof. This follows from Lemma 3.1 and Proposition 3.2. �

We will no longer consider Xp. The following lemma is a straightforward com-
putation.

Lemma 3.4. The pr closed points at infinity for the affine model yp
r

= f(x) of Xs

are given by (u, z) = (0, ζipr
pr
√
an) for 0 ≤ i < pr, where an is the leading coefficient

of f , u := 1/x, and z := y/(xn/pr

).
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Over Ks, the divisor we denote ∞ is the formal sum of the pr points listed in
the above lemma.

Proposition 3.5. We have J [1− τ ] ∼= (Z/prZ)m−2.

Proof. From above we know that Js(Ks)[1 − τ ] = 〈[(αj , 0) − (αi, 0)]〉= 〈[(αi, 0) −
(α1, 0)]〉. Using Lemma 3.4 we can show that div(y) =

∑m
i=1 ni(αi, 0) − n

pr ∞ and

div(x−αi) = pr(αi, 0)−∞. A straightforward computation using the above and the
fact that gcd(nm, pr) = 1 shows that [(αm, 0)−(α1, 0)] ∈ 〈[(αi, 0)−(α1, 0)] | 2 ≤ i ≤
m− 1〉. Since J [1− τ ] can be generated by m− 2 elements and dim pr−1Js(Ks)[1−
τ ] = m− 2, the result follows. �

Lemma 3.6. Considering τ as an automorphism of B the map τ i 
→ ζipr induces
an isomorphism of the Gal(K)-modules 〈τ 〉 and μpr .

Proof. We know that Js(Ks) is generated by divisor classes of the kind [Q−R] where
Q,R are closed points of Xs and Q,R are not points at infinity. Note that the image
of the divisor Q−R under Φ(τ ) is the divisor of the function (x−xQ)/(x−xR). Thus
Φ(τ ) = Φpr (τ )Υ = 0 on J and Φpr(τ ) = 0 on B = ΥoJ . Clearly the Gal(K)-actions
are the same. �

The following lemma comes from [LT, Lem. 3.13].

Lemma 3.7. The dimension of B is ϕ(pr)(m − 2)/2, where ϕ denotes the Euler
totient function.

Proposition 3.8. The endomorphism 1− τ on B is an isogeny, defined over K ′,
whose kernel B[1− τ ] is an Fp-vector space of dimension m− 2.

Proof. Since ιB[1 − τ ] ⊂ J [1− τ ], Proposition 3.5 tells us that the endomorphism
1−τ of B is an isogeny. From Lemma 3.6, τ acts like ζpr on B. Since (1−ζpr )ϕ(p

r) is
an associate of p, the kernel of 1− τ on B is contained in B[p]. Since the dimension
of B is ϕ(pr)(m − 2)/2 (from Lemma 3.7), we have dimB[p] = ϕ(pr)(m − 2) and
dimB[1− τ ] = m− 2 as Fp-vector spaces. �

Lemma 3.9. We have ιB[1− τ ] = pr−1J [1− τ ] = J [1− τ ][p].

Proof. Since ιB ⊂ J we have ιB[1−τ ] ⊆ J [1−τ ]. From Proposition 3.8, ιB[1−τ ] ⊆
J [p]. So ιB[1− τ ] ⊆ J [1− τ ][p]. From Proposition 3.5, J [1− τ ][p] = pr−1J [1− τ ].
From Corollary 3.3 and Proposition 3.8, dim pr−1J [1− τ ] = dim ιB[1− τ ]. �

Proposition 3.10. The map Υo induces a surjection from J [1 − τ ] to B[1 − τ ].
When composed with the map induced by ι we get the pr−1 map on J [1− τ ].

Proof. Since τ acts trivially on J [1 − τ ], we see that Υ = Φ(1)/Φpr(1) = pr−1 on
J [1− τ ]. The result then follows from Lemma 3.9. �

4. An isomorphism of Selmer groups

For K a number field, we want to find a homomorphism on B(K ′)/(1− τ )B(K ′)
to use for descent. However, the usual methods for explicitly computing a Selmer
group ([Sc2], improved by [BPS16]) are for an isogeny from some abelian variety to a
Jacobian. In this section, we describe (under a certain assumption) an isomorphism
from the Selmer group associated to (1 − τ )B over K ′ to the Selmer group for an
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isogeny from an abelian variety to J over K ′. We begin this section by letting K
be a field of characteristic different from p.

Recall that Δ := {(αi, 0)}. In the notation and nomenclature of [BPS16, §6],
we have that (p,Δ, pr−1ΔDiag) is a fake descent setup for X over K ′. Note that
in the third coordinate, ΔDiag is the diagonal embedding of Δ in X ×Δ, and we
give the divisor on X ×Δ representing the line bundle that should be in the third
coordinate. To be a fake descent setup means that there is a divisor D ∈ Div(X),
defined over K ′ (in our case D = ∞), such that p(pr−1ΔDiag)−(D×Δ) is principal,
i.e., the divisor of some h ∈ K ′(X ×Δ)×. In our case, at K ′(X × (αi, 0)), we have
h = x− αi.

Let E := (Z/pZ)Δdeg 0 be the Gal(K ′)-module of maps from Δ to Z/pZ with
the property that the sum of the images is 0. There is a homomorphism α̂ :
E→Ĵs(Ks)[p] induced by the divisor pr−1ΔDiag. Specifically, if e ∈ E and e((αi, 0))
= mi, then α̂(e) = λ[

∑m
i=1 mip

r−1(αi, 0)], where the mi are integers summing to 0
and each mi reduces mod p to mi. From Lemma 3.9, we have α̂(E) = λι(B[1− τ ]).

Define φ̂ : Ĵ→Â, where Â := Ĵ/α̂(E). Then φ : A→J is an isogeny, defined over
K ′, whose kernel has dimension m−2 (from Proposition 3.8). We proceed to clarify
the relation between φ and (1− τ )J .

Proposition 4.1. We have λ(J [1− τ ]) = Ĵ [ ˆ1− τ ].

Proof. By the definition of the Rosati involution, diagram (4.1) commutes:

(4.1) J

λ
��

(1−τ)†
�� J

λ
��

Ĵ
ˆ1−τ

�� Ĵ

Since τ is an automorphism of X it induces an automorphism of the pair (J, λ).
From the proof of [Mi1, Prop. 17.5] we have τ † = τ−1. So (1 − τ )† = 1 − τ−1 =
−τ−1(1− τ ), which is an associate of 1− τ . �

Corollary 4.2. We have Ĵ [φ̂] = λι(B[1− τ ]) = (Ĵ [ ˆ1− τ ])[p].

Proof. This follows from Lemma 3.9 and Proposition 4.1. �

From Corollary 4.2 there is an isogeny η̂, over K ′, such that η̂φ̂ = ( ˆ1− τ )Ĵ . Thus
there is an isogeny η, over K ′, such that φη = (1− τ )J .

Lemma 4.3. We have J [η] = p(J [1− τ ]).

Proof. This follows from Proposition 3.5 and Corollary 4.2. �
As Υ and 1− τ commute in End(J), diagram (4.2) commutes:

(4.2) J

Υo

��

η
�� A

φ
�� J

Υo

��

B
1−τ

�� B

Proposition 4.4. We have J [η] ⊆ J [Υ].

Proof. Since τ acts trivially on J [η] ⊂ J [1− τ ], we see that Υ acts as pr−1 on J [η]
from Proposition 3.10. From Lemma 4.3, we have Υ(Js(Ks)[η]) = 〈pr[(αi, 0) −
(α1, 0)]〉 = 0. �
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Recall that J [Υ] = J [Υo] and η : J→A is surjective. So from Proposition 4.4,
the map Υ′

o := Υoη
−1 is a well-defined homomorphism of abelian varieties from A

to B over K ′.

Corollary 4.5. Diagram (4.3) commutes:

(4.3) A
φ

��

Υ′
o

��

J

Υo

��

B
1−τ

�� B

Proposition 4.6. The homomorphism of abelian varieties Υ′
o : A→B induces an

isomorphism of groups Υ′
o : A[φ]→B[1− τ ] over K ′.

Proof. Let q̄ : J [1 − τ ]→J [1 − τ ]/pJ [1 − τ ] be the quotient map. By Lemma 4.3,
there is an isomorphism ν : A[φ]→J [1 − τ ]/pJ [1 − τ ] over K ′ making the upper-
right parallelogram of diagram (4.4) commute. From Proposition 3.10, the lower-left
parallelogram of diagram (4.4) commutes:

(4.4) J [1− τ ]
η

��

Υo

��

=

����
���

���
���

A[φ]

ν

����
���

���
���

���
�

B[1− τ ]

ι

����
���

���
���

J [1− τ ]
q̄

��

pr−1

��

J [1− τ ]/pJ [1− τ ]

pr−1J [1− τ ]

From Proposition 3.5, pr−1(q̄)−1 : J [1−τ ]/pJ [1−τ ]→pr−1J [1−τ ] is an isomorphism
over K ′, as are ι (see Lemma 3.9) and ν. Thus Υ′

o = Υoη
−1 : A[φ]→B[1−τ ] induces

an isomorphism over K ′. �

Corollary 4.7. The isomorphism Υ′
o : A[φ]→B[1 − τ ] induces an isomorphism

Υ′
o : H1(K′, A[φ]) → H1(K′, B[1− τ ]).

From Corollary 4.5 and Proposition 4.6, diagram (4.5) is a commutative diagram
of Gal(K′)-modules:

(4.5) 0 �� A[φ] ��

Υ′
o

��

A(K′
s)

φ
��

Υ′
o

��

J(K′
s) ��

Υo

��

0

0 �� B[1− τ ] �� B(K′
s)

1−τ
�� B(K′

s) �� 0

Taking Gal(K′)-invariants gives us the following.

Lemma 4.8. Diagram (4.6) commutes:

(4.6) J(K′)/φA(K′)
δφ

��

Υo

��

H1(K′, A[φ])

Υ′
o

��

B(K′)/(1− τ )B(K′)
δ1−τ

�� H1(K′, B[1− τ ])
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Proposition 4.9. The map Υo : J(K′)/φA(K′)→B(K′)/(1− τ )B(K′) is an injec-
tion.

Proof. This follows from Corollary 4.7 and Lemma 4.8 and the fact that δφ is an
injection. �

For the remainder of this article, K is a number field. Let S be any finite set of
finite places of K ′, which includes the places of bad reduction of J and places lying
over p. If q is a finite place of K ′, not lying over p, at which the coefficients of f
are integral and q does not divide the discriminant of f or the leading coefficient
of f , then J has good reduction at q.

Assumption 1. For all places q ∈ S, the map

Υo : J(K ′
q)/φA(K ′

q)→B(K ′
q)/(1− τ )B(K ′

q)

is a surjection.

We are unaware of whether there is a counterexample to Assumption 1.

Proposition 4.10. Under Assumption 1, the map

Υo : J(K ′
q)/φA(K ′

q)→B(K ′
q)/(1− τ )B(K ′

q)

induces an isomorphism for all finite places q of K ′.

Proof. From Proposition 4.9, the map is always injective. The result follows for
places in S from Assumption 1. From [Sc1, Lem. 3.8], for finite places outside S, we
have #J(K ′

q)/φA(K ′
q) = #A(K ′

q)[φ] and #B(K ′
q)/(1−τ )B(K ′

q) = #B(K ′
q)[1−τ ].

From Proposition 4.6, we have #A(K ′
q)[φ] = #B(K ′

q)[1− τ ]. �

Theorem 4.11. Under Assumption 1, the map Υ′
o induces an isomorphism of

Sφ(A,K ′) and S1−τ (B,K ′).

Proof. Consider diagram (4.7):

(4.7) H1(K ′, A[φ])

r1,q

��

Υ′
o

�����
����

����
����

J(K ′
q)/φA(K ′

q)
δφ

��

Υo

����
���

���
���

���
H1(K ′

q, A[φ])

Υ′
o

�����
����

����
���

H1(K ′, B[1− τ ])

r1,q

��

B(K ′
q)/(1− τ )B(K ′

q)
δ1−τ

�� H1(K ′
q, B[1− τ ])

That the upper parallelogram commutes is trivial. That the lower parallelogram
commutes is Lemma 4.8. From Corollary 4.7, the two maps induced by Υ′

o are
isomorphisms. Since K ′ contains ζpr and pr ≥ 4, the completion of K ′ with re-
spect to any infinite place is isomorphic to C. So for infinite places, the groups
J(K ′

q)/φA(K ′
q) and B(K ′

q)/(1 − τ )B(K ′
q) are trivial, hence isomorphic. From

Proposition 4.10, the map induced by Υo on J(K ′
q)/φA(K ′

q) is an isomorphism
for all finite places. Since all maps in the commutative diagram induced by Υo and
Υ′

o are isomorphisms, the result follows. �
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5. The fake Selmer group

Let us describe an explicit way to compute Sφ(A,K ′); we primarily follow
[BPS16] and [Sc2]. Though K denotes a number field, the results of this section up
to and including Proposition 5.3 hold for any field of characteristic different from
p.

Now Δ, considered as a finite étaleK′-scheme, is equal to Spec LK′ for the algebra
LK′ := K′[T ]/(f0(T )). We can identify LK′,s with

∏m
i=1 K′

s, where the image of T
corresponds to (α1, . . . , αm). If � = (�1, . . . , �m) ∈ LK′,s, we define N : LK′,s→K′

s

by N(�) =
∏m

i=1 �
ni
i . Note that N is a Gal(K′)-equivariant map.

The function h ∈ K′(X ×Δ), described in the second paragraph of Section 4, is
then x−T . We define a divisor of X to be good if it has degree 0, is K′-rational, and
its support does not intersect the supports of the divisors of the functions x − αi.
Over K′

s we can write a good divisor as a sum of closed points D′ :=
∑

nPP , with
nP ∈ Z. We define (x − T )(D′) =

∏
(x(P ) − T )nP ∈ L×

K′ . Let J(K′)/φA(K′)0
denote the subgroup of J(K′)/φA(K′) that is represented by good divisors.

Proposition 5.1. The map x − T induces a well-defined homomorphism from
J(K′)/φA(K′)0 to the kernel of the norm N : L×

K′/(L
×p
K′ K

′×) → K′×/K′×p.

Proof. That x−T factors through principal divisors and through φA(K′) is proven
in [BPS16, Cor. 6.6 and Cor. 6.15]. The proof that the image is in the kernel of

N : L×
K′/(L

×p
K′ K

′×) → K′×/K′×p is essentially the same as the proof in [PS, §5 and
Prop. 12.1]. �

Now let us give a cohomological interpretation of the x − T map. Recall the

notation in the third paragraph of Section 4. Dualizing α̂ : (Z/pZ)Δdeg 0→Â[φ̂]

gives α : A[φ]→μΔ
p /μp. We have a short exact sequence of Gal(K′)-modules,

1→μp→μΔ
p →μΔ

p /μp→1, which leads to the long exact sequence of Gal(K′)-cohomol-

ogy, part of which is K′×/K′×p → L×
K′/L

×p
K′ →H1(K′, μΔ

p /μp). This induces an

injection k : L×
K′/(L

×p
K′ K

′×) → H1(K′, μΔ
p /μp).

Proposition 5.2. Diagram (5.1) commutes:

(5.1) J(K′)/φA(K′)0
x−T

��
� �

δφ

��

L×
K′/(L

×p
K′ K

′×)� �

k

��

H1(K′, A[φ])
α �� H1(K′, μΔ

p /μp)

Proof. This follows from Proposition 5.1 and [BPS16, Prop. 6.10]. �

To use diagram (5.1), we need to understand the kernel of the x− T map. The
proof of the following proposition can be adapted mutatis mutandis from the proof
of [PS, Thm. 11.3].

Proposition 5.3. Assume that X has a K′-rational divisor class D of degree 1.
Then the kernel of the x − T map on J(K′)/φA(K′)0 is generated by (1 − τ )(D).
This kernel has order 1 if Δ has a Gal(K′)-orbit of size relatively prime to p or
p = 2, m ≡ 2(mod 4), and Δ is the disjoint union of two sets, each of size m/2,
which, as a pair, are Gal(K′)-stable. This kernel has order p otherwise.
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Let H1(K ′, A[φ];S) denote the finite subgroup of H1(K ′, A[φ]), unramified at
places outside S. From the proof of Theorem 4.11, the completion of K ′ with
respect to an infinite place is isomorphic to C and H1(C, A[φ]) = 0. So we need
not consider infinite places. We have

Sφ(A,K ′) = {γ ∈ H1(K ′, A[φ];S) | r1,q(γ) ∈ δφJ(K
′
q)/φA(K ′

q), ∀q ∈ S}
(see [Mi3, p. 92]). We now make a standard assumption for descent using divisors
and functions on a curve.

Assumption 2. The curve X has a K ′
q-rational divisor class of degree 1 for each

q ∈ S.

For discussions of Assumption 2, see [BPS16, Lem. 10.2] and [Sc2, Prop. 2.7].
Note that if X(K ′) is non-empty, then Assumption 2 holds. From [La, Lem. 3,
p. 166] (and see [PS, Prop. 32]), it follows from Assumption 2 that every ele-
ment of J(K ′

q)/φA(K ′
q) is represented by a good divisor with respect to K ′

q (i.e.,
J(K ′

q)/φA(K ′
q)0 = J(K ′

q)/φA(K ′
q)).

Let L denote the subgroup of the kernel of N : L×
K′/(L

×p
K′K

′×)→K
′×/K

′×p that
is unramified outside S, as described in [BPS16, §7]. For an algorithm for determin-

ing generators of L, see [PS, §12]. Let rq : L→L×
K′

q
/(L×p

K′
q
K

′×
q ) denote the “restric-

tion” map that comes from the canonical embeddings of number fields into their
localizations. Define Sfake(A,K ′) := {� ∈ L | rq(�) ∈ (x−T )(J(K ′

q)/φA(K ′
q)), ∀q ∈

S}.
In practice, if Assumption 2 holds, then to compute (x − T )(J(K ′

q)/φA(K ′
q)),

we usually search for divisors on X, good with respect to K ′
q, and compute their

images in L×
K′

q
/(L×p

K′
q
K

′×
q ), where it is easiest to determine whether they are in-

dependent. Let us discuss the issue of finding enough independent good divisors.
There are two ways, which have been described in the literature, for determining
the size of J(K ′

q)/φA(K ′
q), and neither is especially practical. The first is the for-

mula #J(K ′
q)/φA(K ′

q) = cJ#A(K ′
q)[φ]I/cA, where cJ and cA are the Tamagawa

numbers of J and A over K ′
q and I is essentially the index of the image of φ on

formal groups. For a more precise formulation of I and a proof see [Sc1, Lem. 3.8].
The second is the algorithm described in [BPS16, §11], which also finds generators.

However, with luck, our näıve search will succeed at both determining
(x− T )(J(K ′

q)/φA(K ′
q)) and also verifying that Assumption 1 holds. First we use

Proposition 5.3 to determine the dimension dker,q of the kernel of the x−T map on
J(K ′

q)/φA(K ′
q). Second, we use Propositions 5.4 and 5.5 below to determine dB,q :=

dimB(K ′
q)/(1− τ )B(K ′

q). Recall that Υo : J(K ′
q)/φA(K ′

q)→B(K ′
q)/(1− τ )B(K ′

q)
is injective from Proposition 4.9. So if for each place q ∈ S we can find dB,q−dker,q
good divisors with independent images under the x − T map, then Assumption 1
holds and we have generators for each (x−T )(J(K ′

q)/φA(K ′
q)). If our näıve search

does not succeed, we can start the algorithm of [BPS16, §11] and quit when we
find enough generators. Otherwise we finish the algorithm without finding enough
generators and thus prove that Assumption 1 does not hold.

In the previous paragraph, we saw that we need dimB(K ′
q)/(1 − τ )B(K ′

q) for
each q ∈ S.

Proposition 5.4. Let K ′
q be a finite extension of Qq, t := ordp(q), and let d

be the dimension of B. As an Fp-vector space we have dimB(K ′
q)/(1 − τ )B(K ′

q)
= dt[K ′

q : Q′
q] + dimB(K ′

q)[1− τ ].
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Proof. This proof can be adapted mutatis mutandis from that for [Sc2, Cor. 3.6].
�

The proof of the following can be adapted mutatis mutandis from that for [PS,
Lem. 12.9].

Proposition 5.5. Let � denote the number of distinct irreducible factors of f0(x)
over K′. Suppose that one of these factors has degree prime to p. We have
dimA(K′)[φ] = dimB(K′)[1− τ ] = �− 2.

If all factors of f(x) have degree divisible by p, then it is usually a straightforward
computation using the Galois action on Δ to determine dimB(K′)[1− τ ].

Now that we can determine the group Sfake(A,K ′) (under the two assumptions),
we want to understand its relation to Sφ(A,K ′). The proof of the following propo-
sition can be adapted mutatis mutandis from the proof of [PS, Thm. 13.2]. Note
that k induces an injection from Sfake(A,K ′) to H1(K ′, μΔ

p /μp).

Proposition 5.6. Under Assumption 2, α maps Sφ(A,K ′) onto k(Sfake(A,K ′)).
The kernel has order 1 if Δ has a Gal(K ′)-orbit of size relatively prime to p or
p = 2, m ≡ 2(mod 4), and Δ is the disjoint union of two sets, each of size m/2,
which as a pair are Gal(K ′)-stable. This kernel has order p otherwise.

Thus, given the two assumptions and Theorem 4.11, if we can compute the size
of Sfake(A,K ′) and the Gal(K ′)-action on Δ, then we can compute the sizes of
Sφ(A,K ′) and S1−τ (B,K ′).

6. Determining the rank of B(K)

The following proposition tells us what follows if we can find good divisors, with
respect to K ′, whose images under the x− T map generate Sfake(A,K ′).

Proposition 6.1. Assume that X has a K ′-rational degree 1 divisor class. Assume
that x − T is a surjective map from J(K ′) to Sfake(A,K ′). Then under Assump-
tion 1, we have dimB(K ′)/(1− τ )B(K ′) = dimSφ(A,K ′) and dimX(A,K ′)[φ] =
dimX(B,K ′)[1− τ ] = 0.

Proof. Using Propositions 5.3 and 5.6 (and see diagram (5.1)), we know that
δφ : J(K ′)/φA(K ′) →Sφ(A,K ′) is a surjection. So from equation (2.2), we have
X(A,K ′)[φ] = 0 and δφ is an isomorphism. From Lemma 4.8 and Theorem 4.11,
diagram (6.1) commutes, and the map induced by Υ′

o on Selmer groups is an iso-
morphism:

(6.1) J(K ′)/φA(K ′)
δφ

��

Υo

��

Sφ(A,K ′)

Υ′
o

��

B(K ′)/(1− τ )B(K ′)
δ1−τ

�� S1−τ (B,K ′)

We know that δ1−τ is injective and from Proposition 4.9 that the map induced
by Υo is injective. So all four maps in diagram (6.1) are isomorphisms; the result
follows. �

Regardless of whether x− T : J(K ′)/φA(K ′)→Sfake(A,K ′) is a surjective map,
let us assume that we have somehow managed to determine dimS1−τ (B,K ′) and
dimX(B,K ′)[1− τ ], and thus dimB(K ′)/(1− τ )B(K ′) (see equation (2.2)). The
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proofs of the next two propositions can be adapted, mutatis mutandis, from the
proofs of [Sc2, Cor. 3.7] and [PS, Lem. 13.4], respectively (the second was suggested
independently by Armand Brumer and Michael Stoll).

Proposition 6.2. We have

rankB(K ′) = ϕ(pr)(dimB(K ′)/(1− τ )B(K ′)− dimB(K ′)[1− τ ]).

Proposition 6.3. We have rankB(K) = (rankB(K ′))/[K ′ : K].

7. Conditions implying Assumption 1

In the case that the place q ∈ S does not lie over p, we present two conditions
implying that the map Υo : J(K ′

q)/φA(K ′
q)→B(K ′

q)/(1− τ )B(K ′
q) is a surjection.

Proposition 7.1. Assume that q ∈ S and does not lie over p. Let cJ and cA
be the Tamagawa numbers of J and A over K ′

q. If cJ ≥ cA, then the map Υo :
J(K ′

q)/φA(K ′
q)→B(K ′

q)/(1− τ )B(K ′
q) is a surjection.

Proof. From Proposition 5.4 we have #B(K ′
q)/(1−τ )B(K ′

q) = #B(K ′
q)[1−τ ]. We

have #B(K ′
q)[1 − τ ] = #A(K ′

q)[φ] from Proposition 4.6. From [Sc1, Lem. 3.8] we
have #J(K ′

q)/φA(K ′
q) = cJ (#A(K ′

q)[φ])/cA. So since cJ ≥ cA we have

#J(K ′
q)/φA(K ′

q) ≥ B(K ′
q)/(1− τ )B(K ′

q).

Since Υo : J(K ′
q)/φA(K ′

q)→B(K ′
q)/(1 − τ )B(K ′

q) is an injection from Proposi-
tion 4.9, the result follows. �

Note that if q ∈ S does not lie over p, then from [Sc1, Lem. 3.8] we have that
the finite groups J(K ′

q)/(1− τ )J(K ′
q) and J(K ′

q)[1− τ ] have the same size.

Proposition 7.2. Assume that q ∈ S and does not lie over p. If J(K ′
q)/(1 −

τ )J(K ′
q)

∼= J(K ′
q)[1− τ ], then the map Υo : J(K ′

q)/φA(K ′
q)→B(K ′

q)/(1− τ )B(K ′
q)

is a surjection.

Proof. We first want to show that η(J(K ′
q)[1− τ ]) = A(K ′

q)[φ]. Let

w := dimB(K ′
q)[1− τ ].

Note that w is determined by the Gal(K ′
q)-action on Δ. Clearly η(J(K ′

q)[1 −
τ ]) ∼= J(K ′

q)[1 − τ ]/J(K ′
q)[η]. We then see from Proposition 3.5, Lemma 3.9, and

the definition of η in Section 4 that J(K ′
q)[1 − τ ] ∼= (Z/prZ)w and J(K ′

q)[η] =
pJ(K ′

q)[1− τ ] ∼= (pZ/prZ)w. Thus dim η(J(K ′
q)[1− τ ]) = w. From Proposition 4.6

we have dimA(K ′
q)[φ] = w.

From [Sc1, Prop. 2.6] we have the following exact sequence:

(7.1) 0 →
A(K ′

q)[φ]

ηJ(K ′
q)[1− τ ]

→
A(K ′

q)

ηJ(K ′
q)

φ→
J(K ′

q)

(1− τ )J(K ′
q)

→
J(K ′

q)

φA(K ′
q)

→ 0.

From the previous paragraph we see that A(K ′
q)[φ]/ηJ(K

′
q)[1 − τ ] = 0. Since

A(K ′
q)/ηJ(K

′
q) has exponent pr−1 and injects into J(K ′

q)/(1 − τ )J(K ′
q), which

is isomorphic to (Z/prZ)w, we see that #A(K ′
q)/ηJ(K

′
q) ≤ pw(r−1). From [Sc1,

Lem. 3.8] we have #A(K ′
q)/ηJ(K

′
q) = cA(#J(K ′

q)[η])/cJ = pw(r−1)cA/cJ . Thus
cA ≤ cJ , and the result follows from Proposition 7.1. �
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8. Chabauty computations

Assume that X has a K-rational degree 1 divisor, namely D1. If rank J(K) <
dim J , then we can do a straightforward Chabauty computation (described in [PSS,
§12.2] and [MP]), possibly combined with a Mordell-Weil sieve (described in [BE]
and [ES], and more fully in [PSS, §12.1]). With luck, the upper bound it gives
on #X(K) is realized by known rational points. It is possible that rankJ(K) ≥
dim(J), but rankB(K) < dim(B). In this section, we assume that rankB(K) <
dimB. We would like to adapt a Chabauty argument to this situation. We describe
only what differs from standard Chabauty computations.

Proposition 8.1. The curve X has genus 1
2 (p

r − 1)(m − 2). A basis for the

holomorphic differentials is U := {xidx
yj | 1 ≤ j ≤ pr − 1, 0 ≤ i ≤ mj

pr − 2}. A basis

for the set of holomorphic differentials in the kernel of Φpr (τ )∗, and in the image

of Υ∗, is UB := {xidx
yj ∈ U | p � j}. A basis for the set of holomorphic differentials

in the kernel of Υ∗, and in the image of Φpr (τ )∗, is {xidx
yj ∈ U | p|j}.

Proof. Straightforward computations show that div(dx) = (
∑m

�=1(p
r − 1)(α�, 0))−

2∞, div(x) = D′ − ∞ (for an effective divisor D′ of degree pr) and div(y) =
(
∑m

�=1 n�(α�, 0))− n
pr ∞. The genus can be computed from the degree of the canon-

ical divisor div(dx). The basis for the holomorphic differentials can be computed
from the three divisors above using techniques found in [Si, §II.4] (these are not
original results). A straightforward computation with roots of unity and cyclotomic
polynomials gives the results for the images and kernels of Φpr (τ )∗ and Υ∗. �

To do a Chabauty computation, we would like a map from X to B over K.
Define ιD1

: X ↪→ J by P 
→ [P − D1]. We can compose this with Υo, but Υo is

not, in general, defined over K. Michael Stoll suggested that we use B̃ := J/(J [Υ])

instead. Since the image of Υ is defined over K, so is its kernel. Thus B̃ is defined
over K (it is a twist of B).

Proposition 8.2. We have rankB(K) = rank B̃(K).

Proof. Since both B/K and B̃/K, when base extended to K ′, are isomorphic to

B/K ′, the proof of Proposition 6.3 shows that both B(K) and B̃(K) have rank
equal to (rankB(K ′))/[K ′ : K]. �

Let Υ̃o : J→B̃ be the quotient map. We note that ιD1
and Υ̃o are both defined

over K. Their composition gives a map Υ̃oιD1
: X→B̃ that is defined over K. In

addition, if the Chabauty condition holds for B, then it also does for B̃, as shown
in Proposition 8.2. So Υ̃oιD1

can be used for a Chabauty computation.
Now let us explain which differentials should be used for the Chabauty compu-

tation. Note that Φpr (τ ) ∈ (End(J))(K).

Lemma 8.3. The abelian variety Φpr (τ )J has finite index in J [Υ].

Proof. From the proof of Lemma 3.6, we have that ΥΦpr (τ ) = 0 on J , so Φpr(τ )J ⊆
J [Υ]. From Proposition 8.1, we have dimΦpr (τ )J = dim J [Υ]. �

For a variety W , let Ω1(W ) denote the space of holomorphic differentials on W .

Proposition 8.4. The vector space Ω1(B̃) is isomorphic under the induced map

Υ̃∗
o to the kernel of the map Φpr (τ )∗ on Ω1(J) over K.
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Proof. From Lemma 8.3, the image of Φpr(τ ) : J→J has finite index in the kernel

of the quotient map Υ̃o : J→B̃. Both of these maps are defined over K, and
so are the maps they induce on differentials. Thus we have an exact sequence

0→Ω1(B̃)
Υ̃∗

o−−→ Ω1(J)
Φpr (τ)

∗

−−−−−→ Ω1(J) of Gal(K)-modules. �

The injection ιD1
: X→J induces an isomorphism ι∗D1

: Ω1(J)→Ω1(X) (see
[Mi2, Prop. 2.2]).

Corollary 8.5. The differentials in UB (described in Proposition 8.1) form a basis

for ι∗D1
Υ̃∗

oΩ
1(B̃).

So to do a Chabauty computation, we need a subgroup of finite index in any
subgroup of J(K) that maps onto B̃(K) and use only the differentials in UB . From
there, we can use the techniques described in [PSS, §12] and [MP]. We do an example
at the end of Section 9.

9. Example

All computations were done with Magma (see [BCP]) and GP-PARI. In this
section we use i to denote a choice of

√
−1.

Proposition 9.1. Let X/Q be the curve with an affine model y4 = 2x4 + x3 + 1.
Let J be its Jacobian and let B be the 2-dimensional abelian variety (1+ τ )J where
τ is induced by (x, y) 
→ (x, iy). We have B(Q) ∼= Z, J(Q) ∼= Z3, and

X(Q) = {(0,−1), (0, 1), (−1/2,−1), (−1/2, 1)}.

These results could probably be determined by combining the Chabauty com-
putation with the techniques found in [BPS16, §12] as well (though our result is
unconditional). This is just an example, however, and it is clear that our techniques
would be much simpler than those found in [BPS16] for most prime power cyclic
covers of the projective line.

Proof. The curve X is a double cover of the genus 1 curve E given by v2 = 2x4 +
x3 + 1. With the base point (x, v) = (0, 1), we see that E is an elliptic curve, and
Magma shows that E(Q) ∼= Z2. From Lemma 3.7, B has dimension 2. From the
results in Section 11, we have that J is isogenous over Q to E ⊕B.

We have Q′ = Q(i). Since X(Q(i)) is not empty, Assumption 2 holds and X has
a degree 1 divisor class defined over Q(i). We have L(= LQ(i)) = Q(i)[T ]/(2T 4 +

T 3 + 1), which is isomorphic to a degree 8 number field over Q. The discriminant
of 2x4 + x3 + 1 is 43 · 47; both places 43 and 47 are inert in Q(i), so we take
S = {1 + i, 43, 47}. We need to find a basis for L, the subgroup of the kernel of
N : L×/(L×2Q(i)×)→Q(i)×/Q(i)×2 that is unramified outside S. We let t be a
generator of L with minimal polynomial z8 + 4z4 + z2 + 4 over Q.

The field L has class number 1 and unit group isomorphic to (Z/4Z) ⊕ Z3,
generated by i = − 1

2 t
7−t3− 1

2 t, u2 = t6+t2−1, u3 = −t7+t6+t5−t4−3t3+3t2−3,

and u4 = − 3
2 t

7 − 2t6 − t5 + t4 − 3t3 − 5t2 − 9
2 t, and their norms in Q(i) are 1, i, 1,

and 1, respectively.
The prime ideal 〈1 + i〉 of Z[i] splits into three prime ideals of L with (e, f) =

(1, 1), (1, 1) and (1, 2) (this is the standard notation from algebraic number theory
and abuses our earlier notation f). They are generated by α2,1 = −t5 − 2t − 1,
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α2,2 = 1
2 t

7 + t3 + 3
2 t+ 1, and α2,3 = 1

2 t
7 − t5 + t4 + t3 − 3

2 t+ 2, and their norms in
Q(i) are −1 + i, −1− i, and 2, respectively.

The prime ideal 〈43〉 of Z[i] splits into three prime ideals of L with (e, f) = (1, 1),
(1, 1) and (2, 1). They are generated by α43,1 = − 1

2 t
7 − t5 − 1

2 t, α43,2 = −t6 + 2t4

−t2 + 3, and α43,3 = − 1
2 t

7 − t5 − 5
2 t, respectively. All three have norm 43 in Q(i).

The prime ideal 〈47〉 of Z[i] splits into three prime ideals of L with (e, f) = (1, 1),
(1, 1) and (2, 1). They are generated by α47,1 = − 1

2 t
7 + t6 − t4 − t3 + t2 + 5

2 t− 4,

α47,2 = 1
2 t

7 + 3
2 t, and α47,3 = 1

2 t
7 − t6 + t5 + t4 + t3 − 2t2 + 3

2 t+4, and their norms
in Q(i) are −47i, 47, and 47, respectively.

By factoring 1 + i, 43, and 47 over L, we note that the subgroup of the kernel
of N : L×/L×2→Q(i)×/Q(i)×2, represented by elements in Q(i)×, is generated
by i, α2,1α2,2α2,3, u3α43,1α43,2, and u2u4α47,1α47,2. So L = 〈u3, u4, u2α2,1α2,2,
α43,1α43,3, α47,2α47,3〉.

By Propositions 5.4 and 5.5 we have dim B(Q2(i))/(1 − τ )B(Q2(i)) = 3,
dim B(Q43(i))/(1− τ )B(Q43(i)) = 1, and dim B(Q47(i))/(1− τ )B(Q47(i)) = 1.

For q = 2, 43, and 47, let Lq (= LQq(i)) = Qq(i)[T ]/(2T
4 + T 3 + 1). There

are points in X(Q2(i)) with x-coordinates x2,1 := 4, x2,2 := 2i − 6, and x2,3 :=
−148988195836032i+83872897906219911831284694293. The images of [(x2,j , y2,j)

−(0, 1)] for 1 ≤ j ≤ 3 by the map x − T are independent in L×
2 /(L

×2
2 Q2(i)

×).
From Proposition 5.3, the kernel of x − T on J(Q2(i))/φA(Q2(i)) is trivial. Since
dimB(Q2(i))/(1 − τ )B(Q2(i)) = 3, the part of Assumption 1 for the place over 2
holds (see the discussion before Proposition 5.4).

Similarly for each place q ∈ {43, 47}, the kernel of x−T on J(Qq(i))/φA(Qq(i)) is
trivial. Since dimB(Qq(i))/(1−τ )B(Qq(i)) = 1 in both cases, from Proposition 4.10
we need to find single generators for each J(Qq(i))/φA(Qq(i)). There is a point in
X(Q43(i)) with x-coordinate 18i+34. The image of [(18i+34, y43)− (0, 1)] by the
map x− T is non-trivial in L×

43/(L
×2
43 Q43(i)

×). There is a point in X(Q47(i)) with
x-coordinate 25. The image of [(25, y47)− (0, 1)] by the map x− T is non-trivial in
L×
47/(L

×2
47 Q47(i)

×). Thus Assumption 1 holds, and we have found the local images
of x− T for all relevant places.

A computation shows that only the trivial element of L restricts to the image of
J(Qq(i))/φA(Qq(i)) by x−T for all three places. So we have dimSfake(A,Q(i)) = 0,
and from Proposition 5.6 and Theorem 4.11 we have

dimSφ(A,Q(i)) = dimS1−τ (B,Q(i)) = 1.

In addition, from Proposition 6.1, dimX(B,Q(i))[1− τ ] = dimX(A,Q(i))[φ] = 0
and dimB(Q(i))/(1 − τ )B(Q(i)) = 1. We have dimB(Q(i))[1 − τ ] = 0, so from
Proposition 6.2, the rank of B(Q(i)) is 2. From Proposition 6.3, the rank of B(Q)
is 1.

We have #J(F5) = 7 · 37 and #J(F11) = 25 · 34, so the torsion subgroups of
J(Q) and of B(Q) are trivial. Thus B(Q) ∼= Z and J(Q) ∼= Z3.

Let X(Q)k := {(0, 1), (0,−1), (−1/2, 1), (−1/2,−1)} be the set of known rational
points on X. We cannot determine the set X(Q) from E(Q), since E(Q) is not
finite, nor from a Chabauty argument using J(Q) alone, with no consideration of
its factors, since J(Q) has rank 3 and J has dimension 3. We can do Chabauty

computations using the fact that the rank of B̃(Q) is 1 (from Proposition 8.2) and

the dimension of B̃ is 2. We have four known points in X(Q), and the Chabauty
computation using Q3 shows that #X(Q) ≤ 6. So we try another local field.
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It turns out that a Mordell-Weil sieve computation combined with a Chabauty
computation using Q7 proves that #X(Q) ≤ 4. We outline these computations.

Let J(Q)k denote the subgroup of J(Q) generated by points in X(Q)k. We
do a Mordell-Weil sieve construction to prove that 5 does not divide the index of
Υ̃0(J(Q)k) in B̃(Q). For readability, for any abelian group G and positive integer
m, we denote G/mG by G/m.

For any appropriate field F , there is an isomorphism β over F ′ = F (i) making
diagram (9.1) commute:

(9.1) 0 �� J [Υ] ��

=

��

J
Υ̃0 ��

=

��

B̃

β

��

�� 0

0 �� J [Υ] �� J
Υo �� B �� 0

Now 5� | #J(F13), so 5� | #B(F13), and thus B(Q(i))[5] = B̃(Q(i))[5] = 0. So

B̃(Q)[5] = 0. Since B̃(Q) has rank 1, we see that B̃(Q)/5 is 1-dimensional as
an F5-vector space.

We have J(F9) ∼= Z/40× Z/40. The image of

Υo[(0,−1)− (0, 1)] = (1 + τ )[(0,−1)− (0, 1)]

in J(F9)/5, and hence in B(F9)/5, is non-trivial. From diagram (9.1), the image of

Υ̃0([(0,−1)− (0, 1)]) is non-trivial in B̃(F9)/5, and hence in B̃(F3)/5. We have ho-

momorphisms Υ̃0(J(Q)k)/5 →B̃(Q)/5 →B̃(F3)/5, which are induced by inclusion

and reduction, respectively. From the above, the image of Υ̃0([(0,−1)− (0, 1)]) is

then non-trivial in Υ̃0(J(Q)k)/5 and B̃(Q)/5. Since B̃(Q)/5 is 1-dimensional as an

F5-vector space, we see that 5 does not divide the index of Υ̃0(J(Q)k) in B̃(Q).
The following is a commutative diagram:

(9.2) X(Q)
ι(0,1)

��

��

J(Q)
Υ̃0 ��

��

B̃(Q) ��

��

B̃(Q(i))
β
��

��

B(Q(i))

��

Z
600 × Z

200
�� Z
5

X(F7)
ι(0,1)

�� J(F7)
Υ̃0 �� B̃(F7) �� B̃(F49)

β
�� B(F49)

ι �� J(F49)

��

where all arrows pointing down are reduction maps, the maps on B̃(Q) and B̃(F7)
are the obvious inclusion maps, the map on J(F49) is an isomorphism that Magma
chose, and the map on Z/600×Z/200 is a surjective homomorphism that we chose.
Note that all arrows in diagram (9.2) are homomorphisms except for the leftmost
three. The four points in X(Q)k reduce to four distinct points in X(F7), which
we denote X(F7)k. We use X(F7)u to denote the other eight points in X(F7). A
computation shows, in diagram (9.2), that the image of the subset X(F7)k of X(F7)
in Z/5 is 0. Therefore the image of the subgroup J(Q)k of J(Q) in Z/5 is 0. Since 5

does not divide the index of Υ̃0(J(Q)k) in B̃(Q), the image of B̃(Q), and therefore
of X(Q), is also 0. The image of the subset X(F7)u of X(F7) in Z/5 does not
contain 0. Thus, any point R ∈ X(Q) reduces, modulo 7, to a point in X(F7)k.

From Proposition 8.1 and Corollary 8.5, the set {dx
y3 ,

xdx
y3 } is a basis for

ι∗(0,1)Υ̃
∗
0Ω

1(B̃). We integrated each differential from (0,−1) to (0, 1) over Q7 and

found that the differential (3+O(7)+x)dx
y3 kills the Mordell-Weil group B̃(Q). Using
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this differential, we were able to show that there is at most one x-coordinate for a
point of X(Q) in the modulo 7 residue class of each of the four known points in
X(Q). �

10. Directions for future work

(1) Generalize the results of this article to curves of the form yp
r

= f(x), where
p divides the multiplicity of some roots of f . See Section 12 for a discussion.

(2) Adapt the results of [SvL] to the curves in this article so that functions on the
curve can be used to determine the entire Selmer group, not just the fake Selmer
group.

11. Appendix A - Isogenous subabelian varieties

In this section, we consider more than one curve, so we make the notation more
specific. Assume d, e, n are positive integers with d|e and e|n. Let K be a field of
characteristic not dividing e. Define Xe/K as ye = f(x) where f is a polynomial
over K of degree n. Assume f(x) = an

∏m
i=1(x−αi)

ni with gcd(e, ni) = 1 for each
i. Let Je be the Jacobian of Xe. Let τe(x, y) = (x, ζey), Υe,d :=

∏
�|e,� �=1,d Φ�(τe),

and Be,d := Υe,dJe. By replacing e by d everywhere we can define Xd, Jd, τd

(where we choose ζd = ζ
e/d
e ), Υd,d, and Bd,d. (For improved notation, we could use

a different variable instead of y in the equation for Xd.) In this appendix, we show
that Be,d and Bd,d are isogenous over K.

Let π : Xe→Xd by π(x, y) = (x, ye/d), which induces π∗ : Je→Jd and π∗ :
Jd→Je.

Lemma 11.1. The map π∗ has finite kernel.

Proof. Let D be a degree 0 divisor on Xd with the property that π∗([D]) = 0. Thus
π∗π

∗([D]) = e
d [D] = 0 and [D] ∈ Jd[

e
d ]. (This is not an original result.) �

Lemma 11.2. We have π∗(Bd,d) ⊆ Be,d.

Proof. We first consider how π∗ acts on a divisor. Let D be a divisor on Xd. Let
π−1(D) denote a divisor on Xe such that π∗π

−1(D) = D. Define γ := (1+τde +τ2de +
. . .+ τ e−d

e ). We note that π∗(D) = γπ−1(D). Clearly γ(1+ τe + . . .+ τd−1
e ) = (1+

τe + . . .+ τ e−1
e ), i.e., γ

∏
�|d,� �=1 Φ�(τe) =

∏
�|e,� �=1 Φ�(τe). Thus γ =

∏
�|e,��d Φ�(τe).

Next we consider how π∗ acts on divisors in the image of Υd,d. Let E be a
degree 0 divisor on Xd. Make a choice for π−1(E). Since π∗τe = τdπ∗ we can
then take π−1Υd,d(E) to be (

∏
�|d,� �=1,d Φ�(τe))π

−1(E) (recall that π∗π
−1(D) = D).

Therefore π∗Υd,d(E) = γπ−1Υd,d(E) = (
∏

�|e,��d Φ�(τe))(
∏

�|d,� �=1,d Φ�(τe))π
−1(E)

= (
∏

�|e,� �=1,d(τe))π
−1(E) = Υe,dπ

−1(E). �

Lemma 11.3. We have dimBd,d = dimBe,d = ϕ(d)(m−2)
2 .

Proof. See [LT, Lem. 3.13]. �
Theorem 11.4. The map π∗ : Bd,d→Be,d induces an isogeny of abelian varieties
over K.

Proof. This follows from Lemmas 11.1, 11.2, 11.3, and the fact that π is defined
over K. �
Corollary 11.5. The ranks of Bd,d(K) and Be,d(K) are the same.
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Consider the curve Xpt for some integer t > 1. From the proof of [LT, Prop.

3.12], we have that Jpt is isogenous over K to
⊕t

r=1 Bpt,pr . From Theorem 11.4 we

see that Jpt is isogenous over K to
⊕t

r=1 Bpr,pr . So the rank of Jpt(K) is the sum
of the ranks of the Bpr,pr (K), which, with this article, we now have some hope of
determining.

12. Appendix B - Roots of f(x) of multiplicity a multiple of p

If p divides the multiplicity of a root of f(x) it can lead to significant geometric
differences. For example, the curve X/Q given by y8 = x4 + x+ 1 is isomorphic to
the curve v8 = u8 + u7 + u4, where the right hand side has a root of multiplicity 4.
Magma shows that J [1− τ ] ∼= Z/2Z⊕ Z/8Z⊕ Z/8Z, and not (Z/8Z)3.
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