Quantum subgroups of simple twisted quantum groups at roots of one
HTML articles powered by AMS MathViewer
- by Gastón Andrés García and Javier A. Gutiérrez PDF
- Trans. Amer. Math. Soc. 370 (2018), 3609-3637 Request permission
Abstract:
Let $G$ be a connected, simply connected simple complex algebraic group and let $\epsilon$ be a primitive $\ell$th root of unity with $\ell$ odd and coprime with $3$ if $G$ is of type $G_{2}$. We determine all Hopf algebra quotients of the twisted multiparameter quantum function algebra $\mathcal {O}_{\epsilon }^{\varphi }(G)$ introduced by Costantini and Varagnolo. This extends the results of Andruskiewitsch and the first author, where the untwisted case is treated.References
- Nicolás Andruskiewitsch, Notes on extensions of Hopf algebras, Canad. J. Math. 48 (1996), no. 1, 3–42. MR 1382474, DOI 10.4153/CJM-1996-001-8
- N. Andruskiewitsch and B. Enriquez, Examples of compact matrix pseudogroups arising from the twisting operation, Comm. Math. Phys. 149 (1992), no. 1, 195–207. MR 1182417, DOI 10.1007/BF02096630
- Nicolás Andruskiewitsch and Gastón Andrés García, Quantum subgroups of a simple quantum group at roots of one, Compos. Math. 145 (2009), no. 2, 476–500. MR 2501426, DOI 10.1112/S0010437X09003923
- N. Andruskiewitsch and G. A. García, Extensions of finite quantum groups by finite groups, Transform. Groups 14 (2009), no. 1, 1–27. MR 2480850, DOI 10.1007/s00031-008-9039-4
- Michael Artin, William Schelter, and John Tate, Quantum deformations of $\textrm {GL}_n$, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879–895. MR 1127037, DOI 10.1002/cpa.3160440804
- Georgia Benkart and Sarah Witherspoon, Two-parameter quantum groups and Drinfel′d doubles, Algebr. Represent. Theory 7 (2004), no. 3, 261–286. MR 2070408, DOI 10.1023/B:ALGE.0000031151.86090.2e
- Teodor Banica and Julien Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 75–114. MR 2492990, DOI 10.1515/CRELLE.2009.003
- Teodor Banica and Roland Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461–1501. MR 2554941, DOI 10.1016/j.aim.2009.06.009
- Julien Bichon and Michel Dubois-Violette, Half-commutative orthogonal Hopf algebras, Pacific J. Math. 263 (2013), no. 1, 13–28. MR 3069074, DOI 10.2140/pjm.2013.263.13
- Julien Bichon and Sonia Natale, Hopf algebra deformations of binary polyhedral groups, Transform. Groups 16 (2011), no. 2, 339–374. MR 2806496, DOI 10.1007/s00031-011-9133-x
- Julien Bichon and Robert Yuncken, Quantum subgroups of the compact quantum group $\rm SU_{-1}(3)$, Bull. Lond. Math. Soc. 46 (2014), no. 2, 315–328. MR 3194750, DOI 10.1112/blms/bdt105
- Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492, DOI 10.1007/978-3-0348-8205-7
- K. Brown, I. Gordon, and J. Stafford, $\mathcal {O}_{\epsilon }(G)$ is a free module over $\mathcal {O}(G)$. Preprint: arXiv:math/0007179v1.
- William Chin and Ian M. Musson, Multiparameter quantum enveloping algebras, J. Pure Appl. Algebra 107 (1996), no. 2-3, 171–191. Contact Franco-Belge en Algèbre (Diepenbeek, 1993). MR 1383171, DOI 10.1016/0022-4049(95)00062-3
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471–506. MR 1103601
- C. De Concini, V. G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), no. 1, 151–189. MR 1124981, DOI 10.1090/S0894-0347-1992-1124981-X
- M. Costantini and M. Varagnolo, Quantum double and multiparameter quantum groups, Comm. Algebra 22 (1994), no. 15, 6305–6321. MR 1303007, DOI 10.1080/00927879408825192
- M. Costantini and M. Varagnolo, Multiparameter quantum function algebra at roots of $1$, Math. Ann. 306 (1996), no. 4, 759–780. MR 1418352, DOI 10.1007/BF01445276
- Corrado De Concini and Volodimir Lyubashenko, Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), no. 2, 205–262. MR 1296515, DOI 10.1006/aima.1994.1071
- Yukio Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), no. 5, 1731–1749. MR 1213985, DOI 10.1080/00927879308824649
- Jie Du, Brian Parshall, and Jian Pan Wang, Two-parameter quantum linear groups and the hyperbolic invariance of $q$-Schur algebras, J. London Math. Soc. (2) 44 (1991), no. 3, 420–436. MR 1149005, DOI 10.1112/jlms/s2-44.3.420
- Uwe Franz, Adam Skalski, and Reiji Tomatsu, Idempotent states on compact quantum groups and their classification on $\mathrm {U}_q(2)$, $\mathrm {SU}_q(2)$, and $\mathrm {SO}_q(3)$, J. Noncommut. Geom. 7 (2013), no. 1, 221–254. MR 3032817, DOI 10.4171/JNCG/115
- Gastón Andrés García, Quantum subgroups of $\textrm {GL}_{\alpha ,\beta }(n)$, J. Algebra 324 (2010), no. 6, 1392–1428. MR 2671812, DOI 10.1016/j.jalgebra.2010.07.020
- Takahiro Hayashi, Quantum groups and quantum determinants, J. Algebra 152 (1992), no. 1, 146–165. MR 1190409, DOI 10.1016/0021-8693(92)90093-2
- Timothy J. Hodges, Thierry Levasseur, and Margarita Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52–92. MR 1440253, DOI 10.1006/aima.1996.1612
- Yufeng Pei, Naihong Hu, and Marc Rosso, Multi-parameter quantum groups and quantum shuffles. I, Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, pp. 145–171. MR 2642565, DOI 10.1090/conm/506/09939
- Serge Levendorskiĭ and Yan Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), no. 1, 141–170. MR 1116413, DOI 10.1007/BF02102732
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
- Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123 (1989), no. 1, 163–175. MR 1002037, DOI 10.1007/BF01244022
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Eric Müller, Finite subgroups of the quantum general linear group, Proc. London Math. Soc. (3) 81 (2000), no. 1, 190–210. MR 1757051, DOI 10.1112/S002461150001248X
- Sonia Natale, Hopf algebras of dimension 12, Algebr. Represent. Theory 5 (2002), no. 5, 445–455. MR 1935855, DOI 10.1023/A:1020504123567
- Masato Okado and Hiroyuki Yamane, $R$-matrices with gauge parameters and multi-parameter quantized enveloping algebras, Special functions (Okayama, 1990) ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 289–293. MR 1166822
- Piotr Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $\textrm {SU}(2)$ and $\textrm {SO}(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1–20. MR 1331688, DOI 10.1007/BF02099436
- David E. Radford, Hopf algebras, Series on Knots and Everything, vol. 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894855
- N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), no. 4, 331–335. MR 1077966, DOI 10.1007/BF00626530
- Dragoş Ştefan, Hopf algebras of low dimension, J. Algebra 211 (1999), no. 1, 343–361. MR 1656583, DOI 10.1006/jabr.1998.7602
- A. Sudbery, Consistent multiparameter quantisation of $\textrm {GL}(n)$, J. Phys. A 23 (1990), no. 15, L697–L704. MR 1068228, DOI 10.1088/0305-4470/23/15/001
- Mitsuhiro Takeuchi, A two-parameter quantization of $\textrm {GL}(n)$ (summary), Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no. 5, 112–114. MR 1065785
- Mitsuhiro Takeuchi, Cocycle deformations of coordinate rings of quantum matrices, J. Algebra 189 (1997), no. 1, 23–33. MR 1432363, DOI 10.1006/jabr.1996.6878
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 845–884. MR 1616348
Additional Information
- Gastón Andrés García
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CONICET. Casilla de Correo 172, 1900 La Plata, Argentina
- MR Author ID: 767324
- Email: ggarcia@mate.unlp.edu.ar
- Javier A. Gutiérrez
- Affiliation: FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba. Argentina
- Address at time of publication: Departamento de Matemáticas, Universidad Sergio Arboleda, Calle 74, Nro 14 - 14, Bloque B - Piso 3, Bogotá, Colombia
- Email: puiguti@gmail.com
- Received by editor(s): August 16, 2016
- Published electronically: December 1, 2017
- Additional Notes: The first author was partially supported by ANPCyT-Foncyt, CONICET, Secyt (UNLP-UNC)
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3609-3637
- MSC (2010): Primary 81R50, 17B37, 20G42, 16W30, 16W35
- DOI: https://doi.org/10.1090/tran/7078
- MathSciNet review: 3766860