## Sensitivity, proximal extension and higher order almost automorphy

HTML articles powered by AMS MathViewer

- by Xiangdong Ye and Tao Yu PDF
- Trans. Amer. Math. Soc.
**370**(2018), 3639-3662 Request permission

## Abstract:

Let $(X,T)$ be a topological dynamical system, and $\mathcal {F}$ be a family of subsets of $\mathbb {Z}_+$. $(X,T)$ is strongly $\mathcal {F}$-sensitive if there is $\delta >0$ such that for each non-empty open subset $U$ there are $x,y\in U$ with $\{n\in \mathbb {Z}_+: d(T^nx,T^ny)>\delta \}\in \mathcal {F}$. Let $\mathcal {F}_t$ (resp. $\mathcal {F}_{ip}$, $\mathcal {F}_{fip}$) consist of thick sets (resp. IP-sets, subsets containing arbitrarily long finite IP-sets).

The following Auslander-Yorke’s type dichotomy theorems are obtained: (1) a minimal system is either strongly $\mathcal {F}_{fip}$-sensitive or an almost one-to-one extension of its $\infty$-step nilfactor; (2) a minimal system is either strongly $\mathcal {F}_{ip}$-sensitive or an almost one-to-one extension of its maximal distal factor; (3) a minimal system is either strongly $\mathcal {F}_{t}$-sensitive or a proximal extension of its maximal distal factor.

## References

- Ethan Akin and Sergiĭ Kolyada,
*Li-Yorke sensitivity*, Nonlinearity**16**(2003), no. 4, 1421–1433. MR**1986303**, DOI 10.1088/0951-7715/16/4/313 - Joseph Auslander,
*On the proximal relation in topological dynamics*, Proc. Amer. Math. Soc.**11**(1960), 890–895. MR**164335**, DOI 10.1090/S0002-9939-1960-0164335-7 - Joseph Auslander,
*Minimal flows and their extensions*, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR**956049** - J. Auslander and Brindell Horelick,
*Regular minimal sets. II. The proximally equicontinuous case*, Compositio Math.**22**(1970), 203–214. MR**267554** - Joseph Auslander and James A. Yorke,
*Interval maps, factors of maps, and chaos*, Tohoku Math. J. (2)**32**(1980), no. 2, 177–188. MR**580273**, DOI 10.2748/tmj/1178229634 - Vitaly Bergelson,
*Ultrafilters, IP sets, dynamics, and combinatorial number theory*, Ultrafilters across mathematics, Contemp. Math., vol. 530, Amer. Math. Soc., Providence, RI, 2010, pp. 23–47. MR**2757532**, DOI 10.1090/conm/530/10439 - Felipe García-Ramos,
*Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy*, Ergodic Theory Dynam. Systems**37**(2017), no. 4, 1211–1237. MR**3645516**, DOI 10.1017/etds.2015.83 - Pandeng Dong, Sebastián Donoso, Alejandro Maass, Song Shao, and Xiangdong Ye,
*Infinite-step nilsystems, independence and complexity*, Ergodic Theory Dynam. Systems**33**(2013), no. 1, 118–143. MR**3009105**, DOI 10.1017/S0143385711000861 - Pandeng Dong, Song Shao, and Xiangdong Ye,
*Product recurrent properties, disjointness and weak disjointness*, Israel J. Math.**188**(2012), 463–507. MR**2897741**, DOI 10.1007/s11856-011-0128-z - Tomasz Downarowicz and Eli Glasner,
*Isomorphic extensions and applications*, Topol. Methods Nonlinear Anal.**48**(2016), no. 1, 321–338. MR**3586277**, DOI 10.12775/TMNA.2016.050 - Robert Ellis, Shmuel Glasner, and Leonard Shapiro,
*Proximal-isometric ($\scr P\scr J$) flows*, Advances in Math.**17**(1975), no. 3, 213–260. MR**380755**, DOI 10.1016/0001-8708(75)90093-6 - H. Furstenberg,
*Recurrence in ergodic theory and combinatorial number theory*, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR**603625**, DOI 10.1515/9781400855162 - H. Furstenberg and Y. Katznelson,
*An ergodic Szemerédi theorem for IP-systems and combinatorial theory*, J. Analyse Math.**45**(1985), 117–168. MR**833409**, DOI 10.1007/BF02792547 - J. Gillis,
*Note on a Property of Measurable Sets*, J. London Math. Soc.**11**(1936), no. 2, 139–141. MR**1574762**, DOI 10.1112/jlms/s1-11.2.139 - Eli Glasner,
*Book Review: Minimal flows and their extensions*, Bull. Amer. Math. Soc. (N.S.)**21**(1989), no. 2, 316–319. MR**1567809**, DOI 10.1090/S0273-0979-1989-15843-6 - Eli Glasner, Yonatan Gutman, and Xiangdong Ye,
*Higher order regionally proximal equivalence relations for general group actions*, arXiv:1706.07227[math.DS]. - Eli Glasner and Benjamin Weiss,
*Sensitive dependence on initial conditions*, Nonlinearity**6**(1993), no. 6, 1067–1075. MR**1251259**, DOI 10.1088/0951-7715/6/6/014 - S. Glasner and B. Weiss,
*On the construction of minimal skew products*, Israel J. Math.**34**(1979), no. 4, 321–336 (1980). MR**570889**, DOI 10.1007/BF02760611 - Bernard Host, Bryna Kra, and Alejandro Maass,
*Nilsequences and a structure theorem for topological dynamical systems*, Adv. Math.**224**(2010), no. 1, 103–129. MR**2600993**, DOI 10.1016/j.aim.2009.11.009 - Wen Huang, Danylo Khilko, Sergiĭ Kolyada, and Guohua Zhang,
*Dynamical compactness and sensitivity*, J. Differential Equations**260**(2016), no. 9, 6800–6827. MR**3461085**, DOI 10.1016/j.jde.2016.01.011 - Wen Huang, Sergiĭ Kolyada, and Guohua Zhang,
*Analogues of Auslander-Yorke theorems for multi-sensitivity*, arXiv:1509.08818[math.DS], Ergodic Theory Dynam. Systems, to appear. - Wen Huang, Ping Lu, and Xiangdong Ye,
*Measure-theoretical sensitivity and equicontinuity*, Israel J. Math.**183**(2011), 233–283. MR**2811160**, DOI 10.1007/s11856-011-0049-x - Wen Huang, Song Shao, and Xiangdong Ye,
*Nil Bohr-sets and almost automorphy of higher order*, Mem. Amer. Math. Soc.**241**(2016), no. 1143, v+83. MR**3476203**, DOI 10.1090/memo/1143 - Jian Li,
*Dynamical characterization of C-sets and its application*, Fund. Math.**216**(2012), no. 3, 259–286. MR**2890544**, DOI 10.4064/fm216-3-4 - Risong Li and Yuming Shi,
*Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces*, Abstr. Appl. Anal. , posted on (2014), Art. ID 769523, 10. MR**3208565**, DOI 10.1155/2014/769523 - Jian Li, Siming Tu, and Xiangdong Ye,
*Mean equicontinuity and mean sensitivity*, Ergodic Theory Dynam. Systems**35**(2015), no. 8, 2587–2612. MR**3456608**, DOI 10.1017/etds.2014.41 - Jian Li and Xiang Dong Ye,
*Recent development of chaos theory in topological dynamics*, Acta Math. Sin. (Engl. Ser.)**32**(2016), no. 1, 83–114. MR**3431162**, DOI 10.1007/s10114-015-4574-0 - Heng Liu, Li Liao, and Lidong Wang,
*Thickly syndetical sensitivity of topological dynamical system*, Discrete Dyn. Nat. Soc. , posted on (2014), Art. ID 583431, 4. MR**3200824**, DOI 10.1155/2014/583431 - Leonard Shapiro,
*Proximality in minimal transformation groups*, Proc. Amer. Math. Soc.**26**(1970), 521–525. MR**266183**, DOI 10.1090/S0002-9939-1970-0266183-2 - T. K. Subrahmonian Moothathu,
*Stronger forms of sensitivity for dynamical systems*, Nonlinearity**20**(2007), no. 9, 2115–2126. MR**2351026**, DOI 10.1088/0951-7715/20/9/006 - David Ruelle,
*Dynamical systems with turbulent behavior*, Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977) Lecture Notes in Phys., vol. 80, Springer, Berlin-New York, 1978, pp. 341–360. MR**518445** - Song Shao and Xiangdong Ye,
*Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence*, Adv. Math.**231**(2012), no. 3-4, 1786–1817. MR**2964624**, DOI 10.1016/j.aim.2012.07.012

## Additional Information

**Xiangdong Ye**- Affiliation: Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- MR Author ID: 266004
- Email: yexd@ustc.edu.cn
**Tao Yu**- Affiliation: Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- MR Author ID: 870424
- Email: ytnuo@mail.ustc.edu.cn
- Received by editor(s): May 7, 2016
- Received by editor(s) in revised form: August 19, 2016
- Published electronically: November 15, 2017
- Additional Notes: The authors were supported by NNSF of China (11371339, 11431012, 11571335).
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 3639-3662 - MSC (2010): Primary 37B05; Secondary 54H20
- DOI: https://doi.org/10.1090/tran/7100
- MathSciNet review: 3766861