Dehn fillings and elementary splittings
HTML articles powered by AMS MathViewer
- by Daniel Groves and Jason Fox Manning PDF
- Trans. Amer. Math. Soc. 370 (2018), 3017-3051 Request permission
Abstract:
We consider conditions on relatively hyperbolic groups about the nonexistence of certain kinds of splittings and show these properties persist in long Dehn fillings. We deduce that certain connectivity properties of the Bowditch boundary persist under long fillings.References
- Ian Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000), 431–449. MR 1799796, DOI 10.2140/gt.2000.4.431
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553
- Roger C. Alperin and Kenneth N. Moss, Complete trees for groups with a real-valued length function, J. London Math. Soc. (2) 31 (1985), no. 1, 55–68. MR 810562, DOI 10.1112/jlms/s2-31.1.55
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Mladen Bestvina, $\Bbb R$-trees in topology, geometry, and group theory, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 55–91. MR 1886668
- Mladen Bestvina and Mark Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), no. 2, 287–321. MR 1346208, DOI 10.1007/BF01884300
- Steven A. Bleiler and Craig D. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996), no. 3, 809–833. MR 1396779, DOI 10.1016/0040-9383(95)00040-2
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Brian H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145–186. MR 1638764, DOI 10.1007/BF02392898
- B. H. Bowditch, Boundaries of geometrically finite groups, Math. Z. 230 (1999), no. 3, 509–527. MR 1680044, DOI 10.1007/PL00004703
- B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3673–3686. MR 1624089, DOI 10.1090/S0002-9947-99-02388-0
- B. H. Bowditch, Peripheral splittings of groups, Trans. Amer. Math. Soc. 353 (2001), no. 10, 4057–4082. MR 1837220, DOI 10.1090/S0002-9947-01-02835-5
- B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66. MR 2922380, DOI 10.1142/S0218196712500166
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- I. M. Chiswell, Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 451–463. MR 427480, DOI 10.1017/S0305004100053093
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, DOI 10.1090/memo/1156
- M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), no. 1, 25–44. MR 1664694, DOI 10.1007/s002220050278
- B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840. MR 1650094, DOI 10.1007/s000390050075
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- Daniel Groves and Jason Fox Manning, Quasiconvexity and Dehn filling, in preparation.
- Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. MR 2448064, DOI 10.1007/s11856-008-1070-6
- Bradley W. Groff, Quasi-isometries, boundaries and JSJ-decompositions of relatively hyperbolic groups, J. Topol. Anal. 5 (2013), no. 4, 451–475. MR 3152211, DOI 10.1142/S1793525313500192
- Vincent Guirardel, Limit groups and groups acting freely on $\Bbb R^n$-trees, Geom. Topol. 8 (2004), 1427–1470. MR 2119301, DOI 10.2140/gt.2004.8.1427
- Vincent Guirardel, Actions of finitely generated groups on $\Bbb R$-trees, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 159–211 (English, with English and French summaries). MR 2401220, DOI 10.5802/aif.2348
- Dan P. Guralnik, Ends of cusp-uniform groups of locally connected continua. I, Internat. J. Algebra Comput. 15 (2005), no. 4, 765–798. MR 2160578, DOI 10.1142/S0218196705002499
- G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807–1856. MR 2684983, DOI 10.2140/agt.2010.10.1807
- Marc Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000), no. 2, 243–282. MR 1756996, DOI 10.1007/s002220000047
- Denis V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006), no. 1, 99–118. MR 2217644, DOI 10.1142/S0218196706002901
- Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. MR 2270456, DOI 10.1007/s00222-006-0012-3
- Panos Papasoglu and Eric Swenson, From continua to $\Bbb R$-trees, Algebr. Geom. Topol. 6 (2006), 1759–1784. MR 2263049, DOI 10.2140/agt.2006.6.1759
- Panos Papasoglu and Eric Swenson, The cactus tree of a metric space, Algebr. Geom. Topol. 11 (2011), no. 5, 2547–2578. MR 2836294, DOI 10.2140/agt.2011.11.2547
- E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), no. 3, 337–371. MR 1274119, DOI 10.1007/BF01896245
- Cornelius Reinfeldt and Richard Weidmann, Makanin-Razborov diagrams for hyperbolic groups, Preprint, 2014.
- Viktor Schroeder, A cusp closing theorem, Proc. Amer. Math. Soc. 106 (1989), no. 3, 797–802. MR 957267, DOI 10.1090/S0002-9939-1989-0957267-6
- Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), no. 3, 527–565. MR 1465334, DOI 10.1007/s002220050172
- Zlil Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31–105. MR 1863735, DOI 10.1007/s10240-001-8188-y
- William P. Thurston, Geometry and topology of three-manifolds, Princeton lecture notes available at http://www.msri.org/publications/books/gt3m/, 1980.
- Pekka Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157–187. MR 1313451
- Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41–89. MR 2039323, DOI 10.1515/crll.2004.007
Additional Information
- Daniel Groves
- Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, Illinois 60607-7045
- MR Author ID: 642547
- Email: groves@math.uic.edu
- Jason Fox Manning
- Affiliation: Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853
- MR Author ID: 690777
- Email: jfmanning@math.cornell.edu
- Received by editor(s): March 31, 2016
- Received by editor(s) in revised form: July 6, 2016
- Published electronically: January 18, 2018
- Additional Notes: The results in this paper were instigated at the Mathematisches Forschungsinstitut Oberwolfach in June 2011. Both authors were supported in part by the NSF (under grants DMS-0953794 and DMS-1462263)
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3017-3051
- MSC (2010): Primary 20F65, 20F67, 57M50
- DOI: https://doi.org/10.1090/tran/7017
- MathSciNet review: 3766840