Semi-parabolic tools for hyperbolic Hénon maps and continuity of Julia sets in $\mathbb {C}^{2}$
HTML articles powered by AMS MathViewer
- by Remus Radu and Raluca Tanase PDF
- Trans. Amer. Math. Soc. 370 (2018), 3949-3996 Request permission
Abstract:
We prove some new continuity results for the Julia sets $J$ and $J^{+}$ of the complex Hénon map $H_{c,a}(x,y)=(x^{2}+c+ay, ax)$, where $a$ and $c$ are complex parameters. We look at the parameter space of dissipative Hénon maps which have a fixed point with one eigenvalue $(1+t)\lambda$, where $\lambda$ is a root of unity and $t$ is real and small in absolute value. These maps have a semi-parabolic fixed point when $t$ is $0$, and we use the techniques that we have developed in a prior work for the semi-parabolic case to describe nearby perturbations. We show that for small nonzero $|t|$, the Hénon map is hyperbolic and has connected Julia set. We prove that the Julia sets $J$ and $J^{+}$ depend continuously on the parameters as $t\rightarrow 0$, which is a two-dimensional analogue of radial convergence from one-dimensional dynamics. Moreover, we prove that this family of Hénon maps is stable on $J$ and $J^{+}$ when $t$ is non-negative.References
- Zin Arai, On hyperbolic plateaus of the Hénon map, Experiment. Math. 16 (2007), no. 2, 181–188. MR 2339274
- Z. Arai and Y. Ishii, On parameter loci of the Hénon family, arXiv:1501.01368v2
- Eric Bedford, Complex Hénon maps with semi-parabolic fixed points, J. Difference Equ. Appl. 16 (2010), no. 5-6, 425–426. MR 2642457, DOI 10.1080/10236190903203838
- P. Berger and R. Dujardin, On stability and hyperbolicity for polynomial automorphisms of $\mathbb {C}^{2}$, arXiv:1409.4449, to appear in Ann. École Norm. Sup.
- X. Buff and J. H. Hubbard, Dynamics in One Complex Variable, to appear.
- Felix E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 27–35. MR 0230180
- Eric Bedford and John Smillie, Real polynomial diffeomorphisms with maximal entropy: Tangencies, Ann. of Math. (2) 160 (2004), no. 1, 1–26. MR 2119716, DOI 10.4007/annals.2004.160.1
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$: currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), no. 1, 69–99. MR 1079840, DOI 10.1007/BF01239509
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$. VI. Connectivity of $J$, Ann. of Math. (2) 148 (1998), no. 2, 695–735. MR 1668567, DOI 10.2307/121006
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$. VII. Hyperbolicity and external rays, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 4, 455–497 (English, with English and French summaries). MR 1693587, DOI 10.1016/S0012-9593(99)80020-2
- Eric Bedford, John Smillie, and Tetsuo Ueda, Semi-parabolic bifurcations in complex dimension two, Comm. Math. Phys. 350 (2017), no. 1, 1–29. MR 3606468, DOI 10.1007/s00220-017-2832-y
- Adrien Douady, Does a Julia set depend continuously on the polynomial?, Complex dynamical systems (Cincinnati, OH, 1994) Proc. Sympos. Appl. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1994, pp. 91–138. MR 1315535, DOI 10.1090/psapm/049/1315535
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Romain Dujardin and Mikhail Lyubich, Stability and bifurcations for dissipative polynomial automorphisms of $\Bbb {C}^2$, Invent. Math. 200 (2015), no. 2, 439–511. MR 3338008, DOI 10.1007/s00222-014-0535-y
- Shmuel Friedland and John Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 67–99. MR 991490, DOI 10.1017/S014338570000482X
- John Erik Fornæss and Nessim Sibony, Complex Hénon mappings in $\textbf {C}^2$ and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), no. 2, 345–380. MR 1150591, DOI 10.1215/S0012-7094-92-06515-X
- John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 2, Matrix Editions, Ithaca, NY, 2016. Surface homeomorphisms and rational functions. MR 3675959
- Monique Hakim, Attracting domains for semi-attractive transformations of $\textbf {C}^p$, Publ. Mat. 38 (1994), no. 2, 479–499. MR 1316642, DOI 10.5565/PUBLMAT_{3}8294_{1}6
- P. Haïssinsky, Applications de la chirurgie holomorphe aux systèmes dynamiques, notamment aux points paraboliques, Thèse de l’Université de Paris-Sud, Orsay, 1998.
- John H. Hubbard and Ralph W. Oberste-Vorth, Hénon mappings in the complex domain. I. The global topology of dynamical space, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 5–46. MR 1307296
- John H. Hubbard and Ralph W. Oberste-Vorth, Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 89–132. MR 1351520
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- William A. Kirk and Brailey Sims (eds.), Handbook of metric fixed point theory, Kluwer Academic Publishers, Dordrecht, 2001. MR 1904271, DOI 10.1007/978-94-017-1748-9
- Tomoki Kawahira, Semiconjugacies between the Julia sets of geometrically finite rational maps, Ergodic Theory Dynam. Systems 23 (2003), no. 4, 1125–1152. MR 1997970, DOI 10.1017/S0143385702001682
- P. Lavaurs, Systèmes dynamiques holomorphiques: explosion de points périodiques, Thèse, Université Paris-Sud, 1989.
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), no. 4, 535–593. MR 1789177, DOI 10.1007/s000140050140
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, Holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 66, Cambridge University Press, Cambridge, 2000. Translated from the 1995 Japanese original and revised by the authors. MR 1747010
- Remus Andrei Radu, Topological models for hyperbolic and semi-parabolic complex Henon maps, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Cornell University. MR 3193181
- Remus Radu and Raluca Tanase, A structure theorem for semi-parabolic Hénon maps, arXiv:1411.3824v1
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Raluca Elena Tanase, Henon maps, discrete groups and continuity of Julia sets, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Cornell University. MR 3193182
- William P. Thurston, On the geometry and dynamics of iterated rational maps, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. MR 2508255, DOI 10.1201/b10617-3
- Tetsuo Ueda, Local structure of analytic transformations of two complex variables. I, J. Math. Kyoto Univ. 26 (1986), no. 2, 233–261. MR 849219, DOI 10.1215/kjm/1250520921
Additional Information
- Remus Radu
- Affiliation: Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794-3660
- MR Author ID: 1156737
- Email: remus.radu@stonybrook.edu
- Raluca Tanase
- Affiliation: Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794-3660
- MR Author ID: 1156840
- Email: raluca.tanase@stonybrook.edu
- Received by editor(s): September 3, 2015
- Received by editor(s) in revised form: July 22, 2016, and September 6, 2016
- Published electronically: December 18, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3949-3996
- MSC (2010): Primary 37F45, 37D99, 32A99, 47H10
- DOI: https://doi.org/10.1090/tran/7061
- MathSciNet review: 3811516