Nevanlinna-Pick interpolation problem in the ball
HTML articles powered by AMS MathViewer
- by Łukasz Kosiński and Włodzimierz Zwonek PDF
- Trans. Amer. Math. Soc. 370 (2018), 3931-3947 Request permission
Abstract:
We solve a 3-point Nevanlinna-Pick problem in the Euclidean ball. In particular, we determine a class of rational functions that interpolate this problem.References
- Jim Agler, Zinaida A. Lykova, and N. J. Young, Extremal holomorphic maps and the symmetrized bidisc, Proc. Lond. Math. Soc. (3) 106 (2013), no. 4, 781–818. MR 3056293, DOI 10.1112/plms/pds049
- J. Agler, Some interpolation theorems of Nevanlinna-Pick type, preprint, 1988.
- Jim Agler and John E. McCarthy, Nevanlinna-Pick interpolation on the bidisk, J. Reine Angew. Math. 506 (1999), 191–204. MR 1665697, DOI 10.1515/crll.1999.004
- Jim Agler and John E. McCarthy, The three point Pick problem on the bidisk, New York J. Math. 6 (2000), 227–236. MR 1781508
- Jim Agler and John E. McCarthy, Distinguished varieties, Acta Math. 194 (2005), no. 2, 133–153. MR 2231339, DOI 10.1007/BF02393219
- Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. MR 1882259, DOI 10.1090/gsm/044
- Éric Amar and Pascal J. Thomas, A notion of extremal analytic discs related to interpolation in the ball, Math. Ann. 300 (1994), no. 3, 419–433. MR 1304431, DOI 10.1007/BF01450495
- Eric Amar and Pascal J. Thomas, Finite interpolation with minimum uniform norm in $\mathbf C^n$, J. Funct. Anal. 170 (2000), no. 2, 512–525. MR 1740662, DOI 10.1006/jfan.1999.3509
- Brian Cole, Keith Lewis, and John Wermer, Pick conditions on a uniform algebra and von Neumann inequalities, J. Funct. Anal. 107 (1992), no. 2, 235–254. MR 1172022, DOI 10.1016/0022-1236(92)90105-R
- Dan Coman, The pluricomplex Green function with two poles of the unit ball of $\mathbf C^n$, Pacific J. Math. 194 (2000), no. 2, 257–283. MR 1760781, DOI 10.2140/pjm.2000.194.257
- Armen Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), no. 1, 83–96. MR 1348220, DOI 10.4064/ap-62-1-83-96
- Armen Edigarian and Włodzimierz Zwonek, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables Theory Appl. 35 (1998), no. 4, 367–380. MR 1635283, DOI 10.1080/17476939808815093
- Ryan Hamilton, Pick interpolation in several variables, Proc. Amer. Math. Soc. 141 (2013), no. 6, 2097–2103. MR 3034435, DOI 10.1090/S0002-9939-2013-11571-6
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, Second extended edition, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter GmbH & Co. KG, Berlin, 2013. MR 3114789, DOI 10.1515/9783110253863
- Greg Knese, The von Neumann inequality for $3\times 3$ matrices, Bull. Lond. Math. Soc. 48 (2016), no. 1, 53–57. MR 3455747, DOI 10.1112/blms/bdv087
- Łukasz Kosiński, Three-point Nevanlinna-Pick problem in the polydisc, Proc. Lond. Math. Soc. (3) 111 (2015), no. 4, 887–910. MR 3407188, DOI 10.1112/plms/pdv045
- Łukasz Kosiński and Włodzimierz Zwonek, Extremal holomorphic maps in special classes of domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 1, 159–182. MR 3524668
- Łukasz Kosiński and Włodzimierz Zwonek, Nevanlinna-Pick problem and uniqueness of left inverses in convex domains, symmetrized bidisc and tetrablock, J. Geom. Anal. 26 (2016), no. 3, 1863–1890. MR 3511461, DOI 10.1007/s12220-015-9611-9
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- Stanisław Łojasiewicz, Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991. Translated from the Polish by Maciej Klimek. MR 1131081, DOI 10.1007/978-3-0348-7617-9
- Georg Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, Math. Ann. 77 (1915), no. 1, 7–23 (German). MR 1511844, DOI 10.1007/BF01456817
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
- Tomasz Warszawski, (Weak) $m$-extremals and $m$-geodesics, Complex Var. Elliptic Equ. 60 (2015), no. 8, 1077–1105. MR 3350485, DOI 10.1080/17476933.2014.998659
Additional Information
- Łukasz Kosiński
- Affiliation: Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
- MR Author ID: 825007
- Email: lukasz.kosinski@im.uj.edu.pl
- Włodzimierz Zwonek
- Affiliation: Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
- Email: wlodzimierz.zwonek@im.uj.edu.pl
- Received by editor(s): May 18, 2016
- Received by editor(s) in revised form: September 5, 2016
- Published electronically: November 14, 2017
- Additional Notes: The first author was supported by the NCN grant UMO-2014/15/D/ST1/01972.
The second author was supported by the OPUS grant no. 2015/17/B/ST1/00996 financed by the National Science Centre, Poland. - © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3931-3947
- MSC (2010): Primary 32E30, 30E05
- DOI: https://doi.org/10.1090/tran/7063
- MathSciNet review: 3811515