On the eigenvariety of Hilbert modular forms at classical parallel weight one points with dihedral projective image
HTML articles powered by AMS MathViewer
- by Shaunak V. Deo PDF
- Trans. Amer. Math. Soc. 370 (2018), 3885-3912 Request permission
Abstract:
We show that the $p$-adic eigenvariety constructed by Andreatta-Iovita-Pilloni, parameterizing cuspidal Hilbert modular eigenforms defined over a totally real field $F$, is smooth at certain classical parallel weight one points which are regular at every place of $F$ above $p$ and also determine whether the map to the weight space at those points is étale or not. We prove these results assuming the Leopoldt conjecture for certain quadratic extensions of $F$ in some cases, assuming the $p$-adic Schanuel conjecture in some cases, and unconditionally in some cases, using the deformation theory of Galois representations. As a consequence, we also determine whether the cuspidal part of the $1$-dimensional parallel weight eigenvariety, constructed by Kisin-Lai, is smooth or not at those points.References
- F. Andreatta, A. Iovita, and V. Pilloni, $p$-Adic families of Hilbert modular cuspform, to appear in Astérisque.
- Baskar Balasubramanyam, Eknath Ghate, and Vinayak Vatsal, On local Galois representations associated to ordinary Hilbert modular forms, Manuscripta Math. 142 (2013), no. 3-4, 513–524. MR 3117174, DOI 10.1007/s00229-013-0614-1
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314 (English, with English and French summaries). MR 2656025
- Joël Bellaïche and Mladen Dimitrov, On the eigencurve at classical weight 1 points, Duke Math. J. 165 (2016), no. 2, 245–266. MR 3457673, DOI 10.1215/00127094-3165755
- A. Betina, Les variétés de Hecke-Hilbert aux points classiques de poids $1$, Journal de Theorie des Nombres de Bordeaux, to appear.
- Armand Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124. MR 220694, DOI 10.1112/S0025579300003703
- Kevin Buzzard, Eigenvarieties, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59–120. MR 2392353, DOI 10.1017/CBO9780511721267.004
- Frank Calegari and Barry Mazur, Nearly ordinary Galois deformations over arbitrary number fields, J. Inst. Math. Jussieu 8 (2009), no. 1, 99–177. MR 2461903, DOI 10.1017/S1474748008000327
- Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690
- S. Cho and V. Vatsal, Deformations of induced Galois representations, J. Reine Angew. Math. 556 (2003), 79–98. MR 1971139, DOI 10.1515/crll.2003.025
- Henri Darmon, Alan Lauder, and Victor Rotger, Overconvergent generalised eigenforms of weight one and class fields of real quadratic fields, Adv. Math. 283 (2015), 130–142. MR 3383798, DOI 10.1016/j.aim.2015.07.007
- M. Emsalem, H. H. Kisilevsky, and D. B. Wales, Indépendance linéaire sur $\overline \textbf {Q}$ de logarithmes $p$-adiques de nombres algébriques et rang $p$-adique du groupe des unités d’un corps de nombres, J. Number Theory 19 (1984), no. 3, 384–391 (French, with English summary). MR 769790, DOI 10.1016/0022-314X(84)90079-9
- Haruzo Hida, On $p$-adic Hecke algebras for $\textrm {GL}_2$ over totally real fields, Ann. of Math. (2) 128 (1988), no. 2, 295–384. MR 960949, DOI 10.2307/1971444
- Haruzo Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 115–134. MR 1463699
- Frazer Jarvis, On Galois representations associated to Hilbert modular forms, J. Reine Angew. Math. 491 (1997), 199–216. MR 1476093, DOI 10.1515/crll.1997.491.199
- Mark Kisin and King Fai Lai, Overconvergent Hilbert modular forms, Amer. J. Math. 127 (2005), no. 4, 735–783. MR 2154369
- D. Nelson, A variation on Leopoldt’s conjecture: Some local units instead of all local units, arXiv:1308.4637.
- Louise Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), no. 2, 257–283 (French). MR 1411348, DOI 10.1007/BF01445251
- Masami Ohta, Hilbert modular forms of weight one and Galois representations, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 333–352. MR 763021
- J. D. Rogawski and J. B. Tunnell, On Artin $L$-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), no. 1, 1–42. MR 722724, DOI 10.1007/BF01388529
- Raphaël Rouquier, Caractérisation des caractères et pseudo-caractères, J. Algebra 180 (1996), no. 2, 571–586 (French). MR 1378546, DOI 10.1006/jabr.1996.0083
- Richard Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265–280. MR 1016264, DOI 10.1007/BF01388853
- A. Wiles, On ordinary $\lambda$-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243, DOI 10.1007/BF01394275
Additional Information
- Shaunak V. Deo
- Affiliation: Department of Mathematics, MS 050, Brandeis University, 415 South Street, Waltham, Massachusetts 02453
- Address at time of publication: Université du Luxembourg, Maison du Nombre, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
- Email: deoshaunak@gmail.com, shaunak.deo@uni.lu
- Received by editor(s): June 10, 2016
- Received by editor(s) in revised form: August 19, 2016, and August 31, 2016
- Published electronically: December 20, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 3885-3912
- MSC (2010): Primary 11F41, 11F80
- DOI: https://doi.org/10.1090/tran/7064
- MathSciNet review: 3811513