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ON THE EIGENVARIETY OF HILBERT MODULAR FORMS

AT CLASSICAL PARALLEL WEIGHT ONE POINTS

WITH DIHEDRAL PROJECTIVE IMAGE

SHAUNAK V. DEO

Abstract. We show that the p-adic eigenvariety constructed by Andreatta-
Iovita-Pilloni, parameterizing cuspidal Hilbert modular eigenforms defined over
a totally real field F , is smooth at certain classical parallel weight one points
which are regular at every place of F above p and also determine whether
the map to the weight space at those points is étale or not. We prove these
results assuming the Leopoldt conjecture for certain quadratic extensions of
F in some cases, assuming the p-adic Schanuel conjecture in some cases, and

unconditionally in some cases, using the deformation theory of Galois repre-
sentations. As a consequence, we also determine whether the cuspidal part
of the 1-dimensional parallel weight eigenvariety, constructed by Kisin-Lai, is
smooth or not at those points.

1. Introduction

In [4], Belläıche and Dimitrov studied the geometry of the eigencurve of tame
level N at classical, regular weight one points and proved that the eigencurve is
smooth at all such points. Moreover, they gave a precise criterion for étaleness over
the weight space at those points. The main motivation behind their investigation
came from questions about specializations of primitive Hida families in weight one
such as how many families pass through a given weight 1 eigenform? how do those
families meet? etc. The aim of this paper is to study the same question for Hilbert
modular forms, i.e., to study the geometry of the eigenvariety for Hilbert modular
forms constructed by Andreatta-Iovita-Pilloni in [1] at classical, regular points of
parallel weight 1.

Before elaborating more on the last paragraph and stating our results, let us fix
some notation that we will use throughout the paper. Denote by GL the absolute
Galois group of a field L. Let Q ⊂ C be the field of algebraic numbers. Let F be
a totally real field of degree n over Q. Let i1, · · · , in denote the distinct complex
embeddings of F . Fix complex embeddings m1, · · · ,mn of Q such that mj is an
extension of ij for all 1 ≤ j ≤ n. So, we have complex conjugations τ1, · · · , τn in GF

such that τj is the complex conjugation attached to ij ; i.e., mj(τj(x)) = (mj(x))
for all 1 ≤ j ≤ n. Note that τ1, · · · , τn need not be distinct. Fix a prime number
p and an integer N ≥ 4 such that p � N . Let us also fix an algebraic closure Qp of
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Qp and an embedding ip : Q → Qp. Let p1, · · · , pr denote the distinct primes of F
lying above p.

Let f be a cuspidal Hilbert modular eigenform over F of parallel weight one, level
M (and tame levelN) and nebentypus ψ. So, ψ is a character from ClF,+(M) → C∗,
where ClF,+(M) is the strict ray class group of F moduloM . From the works of Ro-
gawski and Tunnell ([20]) and Wiles ([23]), it follows that there exists a continuous,
irreducible representation with finite image: ρf : GF → GL2(C), which is unrami-
fied outside M and such that for all primes q � M , we have Trρf (Frobq) = a(q, f)
and det ρf (Frobq) = ψ(q), where Frobq denotes an arithmetic Frobenius at q and
a(q, f) denotes the eigenvalue of f with respect to the Hecke operator T (q). More-
over, ρf is odd in the sense that det ρf (τj) = −1 for every 1 ≤ j ≤ n. For
a prime pi of F above p, let αpi

and βpi
be the roots of the Hecke polynomial

X2 − a(pi, f)X + ψ(pi). We say that f is regular at pi if αpi
�= βpi

. We say that f
is regular at p if it is regular at all primes of F above p, i.e., when αpi

�= βpi
for all

1 ≤ i ≤ r.
In [1], Andreatta, Iovita, and Pilloni constructed the p-adic eigenvariety E for

cuspidal Hilbert modular eigenforms of tame level N defined over F with the Hecke
operators U(pi) for i = 1, · · · , r and T (q) for primes q � Np. The normalization
of the operators U(pi) used in [1] to construct E is different from the classical
normalization. The normalization that they use is the same as the one defined
by Hida in [13]. Note that these operators coincide with the classical U(pi)’s on
parallel weight Hilbert modular forms. See Remark 4.7 of [1] and [2, Section 3] for
more details. Let T be ResOF /ZGm and let M be a finite extension of Qp which
splits F . There exists a locally finite map κ : E → W , where the weight space
W is the rigid analytic space over M associated to the completed group algebra
OM [[T(Zp) × Z×

p ]] (see [1, Section 2] for more details). In the ordinary case, their
construction is the same as the construction of Hida families using Katz’s p-adic
modular forms.

On the other hand, Kisin and Lai ([16]) constructed the parallel weight eigen-
variety C of dimension 1 (which we will call the Kisin-Lai eigencurve) for parallel
weight Hilbert modular eigenforms of tame level N defined over F by extending the
original construction of the eigencurve for F = Q given by Coleman and Mazur.
The construction of Andreatta, Iovita, and Pilloni in the parallel weight case is
equivalent to Kisin-Lai’s construction (see [1, Section 1]). So, if we denote the
weights of E by (ν, w) following [1], then we can identify Ccusp, the cuspidal part
of the Kisin-Lai eigencurve C, with the closed subspace of E obtained after making
ν = 0.

If f is a classical, cuspidal Hilbert modular eigenform over F of parallel weight 1
and tame level N , then a p-stabilization of f with finite slope defines a point on E .
By a p-stabilization of f with finite slope, we mean an eigenform of tame level N
having the same eigenvalues as f away from p and having a non-zero Upi

eigenvalue
for i = 1, · · · , r. We denote a p-stabilization of f by f(γi), where (γi) is an r-tuple
such that Upj

f(γi) = γjf(γi) for j = 1, · · · , r. A p-stabilization of f is obtained in
the same way as it is obtained in the F = Q case. So, γi is either αpi

or βpi
and

non-zero for all 1 ≤ i ≤ r. Thus, there are at most 2r p-stabilizations of f . As
f is of parallel weight 1, it follows that a U(pi)-eigenvalue of any p-stabilization
of f is either a p-adic unit or 0. Thus, if there exists a p-stabilization of f with
finite slope, then by [23], ρf is ordinary at pi for all i. If f is regular at p, then a
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U(pi)-eigenvalue of any p-stabilization is a p-adic unit (see [20], [19], [23]). Hence,
when f is regular at p, ρf is ordinary at pi for i = 1, · · · , r.

Fix a classical, cuspidal Hilbert modular eigenform f over F of parallel weight one
and tame level N such that it is also regular at p. Let ρ be the Galois representation
attached to f as above. So, ρ|GFpi

is an extension of an unramified character ψ′′
i

by a distinct character ψ′
i for every 1 ≤ i ≤ r. For any local Artinian ring A with

maximal ideal mA and residue field Qp, let D(A) be the set of strict equivalence
classes of representations ρA : GF → GL2(A) such that ρA (mod mA) = ρ and
which are nearly ordinary at p in the sense that: for every 1 ≤ i ≤ r, we have

ρA|GFpi
=

(
(ψ′

i)A ∗
0 (ψ′′

i )A

)
,

where (ψ′′
i )A : GFpi

→ A× is a character lifting ψ′′
i (nearly ordinary deformation

functor). Let D0 be the subfunctor of D of deformations such that (ψ′′
i )A is an

unramified character of GFpi
for every 1 ≤ i ≤ r (ordinary deformation functor).

Let D′ be the subfunctor of D0 of deformations with constant determinant (ordinary
deformation functor with constant determinant). We denote the tangent spaces of
D, D0, D′ by tD, tD0

, and tD′ , respectively.
Let G be the projective image of ρ. Denote by adρ the adjoint representation

of ρ and by ad0ρ the subspace of adρ of trace zero matrices. Moreover, assume
that G is isomorphic to a non-abelian dihedral group. Thus, there exists a unique
extension K of F of degree 2 and a finite order character χ : GK → (Q)× such that

ρ � IndGF

GK
χ. So, we have

ad0ρ � εK ⊕ IndGF

GK
(χ/χσ),

where σ is the non-trivial element of Gal(K/F ), εK is the quadratic character
corresponding to K, and χσ is the character of GK given by χσ(g) = χ(σ−1gσ).

Let n be [F : Q], the degree of F over Q. So, [K : Q] = 2n. Denote by ei the
index of ramification and by fi the inertial degree of pi for every 1 ≤ i ≤ r. Let S
be the set of primes of F lying above p which are split in K and let S′ be the set
of primes of F which are either inert or ramified in K.

We now recall the p-adic Schanuel conjecture:

Conjecture 1 (p-adic Schanuel conjecture). Let α1, · · · , αn be n non-zero alge-
braic numbers contained in a finite extension E of Qp. Let logp : E∗ → E be the
p-adic logarithm normalized so that logp(p) = 0. If logp α1, · · · , logp αn are lin-
early independent over Q, then the extension field Q(logp α1, · · · , logp αn) ⊂ E has
transcendence degree n over Q.

(See Conjecture 3.10 of [8].)

Theorem 1. Under the assumptions and notation above, we have Table 1 below.

Remark 1.

(1) From the proof of the theorem above, it will follow that assuming the
Leopoldt conjecture forK is not necessary to get the inequalities

∑
pi∈S eifi

≤ dim tD′ when K is totally real and (
∑

pi∈S eifi)− 1 ≤ dim tD′ ≤ (n− 1)

when K has exactly 2(n − 1) real embeddings. Moreover, the proof also
implies that the result of Theorem 1 in the first case above, where K is
totally real, also holds when G is isomorphic to Z/2Z × Z/2Z under the
same assumptions and conditions given in Table 1.
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Table 1

Condition
on the
degree n

Condition on
K at ∞

Condition on
K at p

Transcendence
conjecture as-
sumed

dim tD dim tD′ dim tD0

-
K has 2n real
embeddings

-
Leopoldt con-
jecture for K

n + 1
∑

pi∈S eifi
max
{
∑

pi∈S eifi, 1}

-
K has exactly
2(n−1) real
embeddings

-
Leopoldt con-
jecture for K

n + 1

(
∑

pi∈S eifi)−
1 ≤ dim tD′ ≤
(n − 1)

max{1, dim tD′}
≤ dim tD0

≤
dim tD′ + 1

-
K has exactly
2(n−s) real
embeddings

∑
pi∈S eifi

= n

p-adic
Schanuel
conjecture

n + 1 n − s
max{1, n− s} ≤
dim tD0

≤ (n −
s) + 1

n = 2
K has exactly
2 real embed-
dings

∑
pi∈S eifi

≥ 1
- 3

(
∑

pi∈S eifi)

− 1
1

(2) The fourth case of Theorem 1 above, where K is a real quadratic field and∑
pi∈S eifi ≥ 1, is a special instance of the second case, whereK has exactly

2(n−1) real embeddings. Since OK
×⊗ZQ � 1⊕εK as a G-representation, it

follows from [12, proof of Theorem 1] that the Leopoldt conjecture is indeed
true for K. So, we don’t keep that condition in the fourth case. Moreover,
in contrast with the second case, we compute the exact dimension of tD0

in
the fourth case without assuming any transcendence conjecture.

(3) Observe that to compute the dimensions of the tangent spaces in the cases
considered in Theorem 1 above, we need to assume the Leopoldt conjecture
for K at the very least. But, in [4], Belläıche and Dimitrov compute the
dimensions of these tangent spaces in all the cases when F = Q without
any conditions. Note that when F = Q and f is an eigenform such that

ρf � Ind
GQ

GK
χ as above, K is either a real quadratic field or a quadratic

imaginary field. Thus, rankZ(OK
×) is either 0 or 1, and hence, the Leopoldt

conjecture is true for K. Therefore, Belläiche and Dimitrov don’t need to
keep that assumption to compute the dimensions in those cases.

Let f(γi) be a p-stabilization of f . So, the local ring T of E at f(γi) is a complete

local noetherian ring with residue field Qp, and its Krull dimension is n+ 1. From
[1, Theorem 5.1] and the work of Hida ([14]), it follows that there is a nearly ordinary
representation ρT : GF → GL2(T ) deforming ρ. This induces a map R → T , where
R is the universal deformation ring parameterizing nearly ordinary deformations of
ρ. Moreover, using results of [14] and arguments of [4] (used in Sections 5 and 6 of
[4]), we see that this map is surjective. We know that the largest quotient of T on
which we get an ordinary deformation of ρ with constant determinant is the algebra
T ′ of the fiber of κ at f(γi) and, hence, is of Krull dimension 0. Thus, we get a
surjective map R′ � T ′, where R′ is the universal deformation ring parameterizing
ordinary deformations of ρ with constant determinant.

Let T0 be the local ring of Ccusp at f(γi). By similar arguments as above, we get
an ordinary deformation ρT0

: GF → GL2(T0) of ρ and a surjective map R0 � T0,
where R0 is the universal deformation ring parameterizing ordinary deformations of
ρ. Since C has dimension 1, T0 is a complete local noetherian ring with residue field
Qp and Krull dimension 1. As Ccusp can be identified with the closed subspace of
E obtained after keeping all the weights the same, we get a surjective map T � T0
such that the surjective map T � T ′ factors through it and it is the largest quotient
of T on which we get an ordinary deformation of ρ.
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Hence, using Theorem 1 along with the discussion in the preceding paragraphs,
we obtain the following results regarding the geometry of E and Ccusp at f(γi)

satisfying the conditions of Theorem 1:

Theorem 2. Suppose K has at least 2(n − 1) real embeddings and the Leopoldt
conjecture is true for K. Then, the eigenvariety E is smooth at f(γi). Moreover:

(1) If K is totally real, then the weight map κ is étale at f(γi) if and only if∑
pi∈S eifi = 0 (i.e., no prime of F lying above p is split in K), and the

parallel weight cuspidal eigenvariety Ccusp is smooth at f(γi) if and only if∑
pi∈S eifi ≤ 1.

(2) If K has exactly 2(n − 1) real embeddings, then the weight map κ is not
étale at f(γi) if

∑
pi∈S eifi ≥ 2, and the parallel weight cuspidal eigenvariety

Ccusp is not smooth at f(γi) if
∑

pi∈S eifi ≥ 3.

Theorem 3. Suppose all the primes of F lying above p are split in K and the p-adic
Schanuel conjecture is true. Then the eigenvariety E is smooth at f(γi). The weight
map κ is étale at f(γi) if and only if K is a CM field. The parallel weight cuspidal
eigenvariety Ccusp is not smooth at f(γi) if K has at least 4 real embeddings.

Theorem 4. Suppose F is a real quadratic field. If K is not a totally real or CM
field and

∑
pi∈S eifi ≥ 1, then the eigenvarieties E and Ccusp are smooth at f(γi).

The weight map κ is étale at f(γi) if and only if
∑

pi∈S eifi = 1.

We recently learned that in [5] A. Betina has announced results similar to part
1 of Theorem 2 and Theorem 3, using methods which are different from the ones
presented here.

The non-smoothness of Ccusp at f(γi) implies the non-smoothness of C at f(γi).
Note that we can use the arguments of [4, Section 7] in the cases considered above
to prove that local rings of the full eigenvarieties E full and (Ccusp)full at f(γi) are
isomorphic to T and T0, respectively. However we need the results of [9], [22], [20],
[19], and [15] to use the arguments of [4]. This allows us to conclude that there is a
unique, up to Galois conjugacy, nearly ordinary Hida family passing through f(γi)

satisfying the conditions of Theorem 1, and we may also get examples of f(γi) with
only one Galois orbit of ordinary Hida families passing through it (smooth points
of C). Moreover, the existence of non-smooth points of C indicates the possibility
of getting examples of f(γi) with at least two non-Galois conjugate ordinary Hida
families passing through it.

In [11], Darmon, Lauder, and Rotger used the non-étaleness of the weight map
of the p-adic Coleman-Mazur eigencurve at classical, regular weight one points with
real multiplication by a quadratic real field F in which p is split (which is proved
by Cho-Vatsal ([10]) and Belläıche-Dimitrov ([4])) to find overconvergent p-adic
modular forms of weight 1 whose Fourier coefficients can be expressed as p-adic
logarithms of algebraic numbers lying in ring class fields of F . The non-étaleness
results that we obtain here could be used to get results in a similar direction for
number fields of higher degree over Q which are not necessarily totally real (in fact
a similar result for totally real fields has been announced by Betina in [5]).

Taking inspiration from Theorem 1, we make the following conjecture:

Conjecture 2. Keeping the assumptions and notation established just before The-
orem 1, suppose K has exactly 2(n− s) real embeddings. Then, dim tD = n+1 and
dim tD′ = max{(

∑
pi∈S eifi)− s, 0}.
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As a consequence of the conjecture above, we get the following result: Let f be
a Hilbert modular eigenform over F satisfying the properties of Conjecture 2 and
let f(γi) be a p-stabilization of f . Then, the eigenvariety E is smooth at f(γi). The
weight map κ is étale at f(γi) if and only if (

∑
pi∈S eifi)− s ≤ 0.

Let us give an outline of the techniques used to prove Theorem 1. We identify tD′

as a certain subspace ofH1(F, ad0ρ) and tD0
, tD as certain subspaces of H1(F, adρ).

As ρ has finite image, following [4], we apply the inflation-restriction sequences to
see the tangent spaces as subspaces of (Hom(GH ,Qp) ⊗ adρ)G, where H is the
finite Galois extension of F cut out by adρ. We use the fact that G is a non-abelian
dihedral group to get an explicit description of the possible elements of these spaces
in the cases mentioned in Theorem 1. After getting the explicit description, we
employ the technique of using the algebraic subspace of Hom(GH ,Qp) of [4] to
get an upper bound on the dimension of tangent spaces and use the structure of
O×

H ⊗Z Q as a G-representation to get a lower bound on the dimension of tangent
spaces whenever possible. In some cases, this already gives us the dimension of some
tangent spaces, for instance, the dimension of tD′ in the second case of Theorem 1
when all primes of F lying above p are split in K. We then compute the dimensions
of remaining tangent spaces with the help of an explicit description of the elements
of tangent spaces, techniques of [4], and some transcendence results.

The transcendence results that we use to compute the dimension are the Baker-
Brumer theorem, the Leopoldt conjecture, and the p-adic Schanuel conjecture.
They can be ordered from weakest to strongest, with the Baker-Brumer theorem
being the weakest and the p-adic Schanuel conjecture being the strongest. In fact,
the p-adic Schanuel conjecture implies the Leopoldt conjecture (see Theorem 6.4 of
[17]). We use only one of the Baker-Brumer theorem, the Leopoldt conjecture, and
the p-adic Schanuel conjecture depending on the case in hand. More specifically,
we try to give the proofs using the weakest possible results of the above. It turns
out that in some cases the weakest of the transcendence results (the Baker-Brumer
theorem) is sufficient, but in some cases we have to assume the strongest of the
transcendence results (the p-adic Schanuel conjecture) to conclude our results.

2. Tangent spaces of nearly ordinary

and ordinary deformation problems

We keep the notation from the previous section. Even though all our main the-
orems are for finite image representations (coming from classical, cuspidal Hilbert
modular eigenforms of parallel weight 1 which are regular at p) with dihedral pro-
jective image, the results that we state here and in the next sections (§3 and 4)
will also hold for a general finite image representation (coming from classical, cusp-
idal Hilbert modular eigenforms of parallel weight 1 which are regular at p) unless
specified otherwise. So, in what follows, we keep all the assumptions on ρ from the
previous section except the assumption of projective dihedral image. We will be
following [4] closely in this section and in the next two sections.

2.1. Relations with the cohomology groups. As ρ has finite image, it is equiv-
alent to a representation whose image is in GL2(Q). Using the embedding ip, we

can see ρ as a representation of GF on a 2-dimensional Qp-vector space V . Recall
that for a prime pi of F lying above p, ρ|GFpi

is an extension of an unramified

character ψ′′
i by a distinct character ψ′

i. Since ρ has finite image, we can fix a basis
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(e1,i, e2,i) of V for which ρ(GF ) ⊂ GL2(Q) and such that ρ|Gpi
acts by the char-

acter ψ′
i on Qpe1,i and by ψ′′

i on Qpe2,i. This basis is well-defined up to a scaling

in the sense that if (f1,i, f2,i) is another such basis, then there exist xi, yi ∈ (Q)×

such that f1,i = xie1,i and f2,i = yie2,i. Note that this basis may be different for
different primes of F lying above p. Thus, we have a set of r possibly distinct bases,
one for each prime of F lying above p.

Choosing each basis (e1,i, e2,i) of V as above, we can identify EndQp
(V ) with

M2(Qp). Hence, we get four continuous maps Ai, Bi, Ci, Di : EndQp
(V ) → Qp

given by the upper-left, upper-right, lower-left, and lower-right entries of matrices,
respectively. By definition of the basis (e1,i, e2,i), these maps are morphisms of
GFpi

as follows:

Ai : (adρ)|GFpi
→ Qp, Bi : (adρ)|GFpi

→ Qp(ψ
′
i/ψ

′′
i ),

Ci : (adρ)|GFpi
→ Qp(ψ

′′
i /ψ

′
i), Di : (adρ)|GFpi

→ Qp,

where Qp(ψ
′′
i /ψ

′
i) denotes the 1-dimensional representation of GFpi

on Qp coming

from the character ψ′′
i /ψ

′
i and Qp(ψ

′
i/ψ

′′
i ) is defined similarly.

Recall that we have chosen an embeddingGFpi
↪→ GF by fixing iP , which gives us

the restriction morphism H1(F, adρ) → H1(Fpi
, adρ). Composing this restriction

morphism with the map H1(Fpi
, adρ) → H1(Fpi

,Qp(ψ
′′
i /ψ

′
i)) induced by Ci, we

get a homomorphism

Ci,∗ : H1(F, adρ) → H1(Fpi
,Qp(ψ

′′
i /ψ

′
i)).

Denote by Ipi
the inertia group at pi. By composing the restriction morphism

H1(F, adρ) → H1(Ipi
, adρ) with the map H1(Ipi

, adρ) → H1(Ipi
,Qp) induced by

Di, we get a homomorphism

Di,∗ : H1(F, adρ) → H1(Ipi
,Qp).

As in the introduction, let D, D0, D′ be the nearly ordinary deformation func-
tor, ordinary and ordinary deformation functor with constant determinant of ρ,
respectively, and their tangent spaces be tD, tD0

, and tD′ , respectively.

Lemma 1. We have:

(1) tD′ = ker(H1(F, ad 0ρ)
((Ci,∗),(Di,∗))−−−−−−−−−→

⊕r
i=1 H

1(Fpi
,Qp(ψ

′′
i /ψ

′
i))

⊕
⊕r

i=1 H
1(Ipi

,Qp)).

(2) tD0
= ker(H1(F, adρ)

((Ci,∗),(Di,∗))−−−−−−−−−→
⊕r

i=1 H
1(Fpi

,Qp(ψ
′′
i /ψ

′
i))

⊕
⊕r

i=1 H
1(Ipi

,Qp)).

(3) tD = ker(H1(F, adρ)
(Ci,∗)−−−−→

⊕r
i=1 H

1(Fpi
,Qp(ψ

′′
i /ψ

′
i))).

Proof. Same as the proof of Lemma 2.3 of [4]. We just need to repeat their argument
for every prime pi of F lying above p. �

2.2. Application of inflation-restriction. Let H be a finite Galois extension of
F with G = Gal(H/F ). The choice of decomposition group at every prime pi of F
above p singles out a prime wi among the primes of H lying above pi along with
embeddings GHwi

⊂ GH and GHwi
⊂ GFpi

. Let W be a GF -representation on a

finite-dimensional Qp-vector space.
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Lemma 2. For every i between 1 and r, let W1,i be a quotient of W as a GFpi
-

representation and let W2,i be a quotient of W as an Ipi
-representation. Then the

restriction morphism yields the following isomorphisms:

(1) ker(H1(F,W ) →
⊕r

i=1 H
1(Fpi

,W1,i) ⊕
⊕r

i=1 H
1(Ipi

,W2,i))
�−→ ker(H1(H,W )G →

⊕r
i=1 H

1(Hwi
,W1,i)⊕

⊕r
i=1 H

1(Iwi
,W2,i)).

(2) ker(H1(F,W ) →
⊕r

i=1 H
1(Fpi

,W1,i))
�−→ ker(H1(H,W )G →

⊕r
i=1 H

1(Hwi
,W1,i)).

Proof. Same as the proof of Lemma 2.4 of [4], which works because H is a finite
extension of F . �

Now we take H to be the subfield of Q fixed by ker(adρ). Then G = Gal(H/F )
is naturally identified with the projective image of ρ, which we will call Proj(ρ).
We will now fix this notation for the rest of the paper. After choosing a suitable
basis (v1, v2), we can view Proj(ρ)(g) as an element of PGL2(Q) for every g ∈ G.

For a matrix Y ∈ M2(Qp), by abuse of notation, we shall denote by ρ(g)Y ρ(g)
−1

the image of Y by the adjoint action of Proj(ρ)(g).
As ρ(H) = 1, it follows that H1(H, adρ) = H1(H,Qp) ⊗Qp

adρ. We can write

an element of H1(H,Qp) ⊗Qp
adρ as

(
a b
c d

)
, where a, b, c, d ∈ H1(H,Qp). The

natural left action of G on H1(H,Qp)⊗Qp
adρ is given by

g.

(
a b
c d

)
= ρ(g)

(
g.a g.b
g.c g.d

)
ρ(g)−1.

Hence, as H1(F, adρ) � (H1(H,Qp) ⊗Qp
adρ)G, an element of H1(F, adρ) is just

a matrix

(
a b
c d

)
as above which is G-invariant. Note that if we change the basis

(v1, v2), then it may change the image of Proj(ρ) in PGL2(Qp). Thus, this may
also change the matrix presentation of elements of H1(F, adρ) given above. To be
precise, if we choose a different basis (v′1, v

′
2) and if P is the change of basis matrix,

then an element ofH1(F, adρ) represented by the matrix

(
a b
c d

)
under the original

basis (v1, v2) as above will now be represented by the matrix P

(
a b
c d

)
P−1.

If an element of H1(F, adρ) is represented by

(
a b
c d

)
under the chosen basis

(v1, v2), then denote its matrix presentation under the basis (e1,i, e2,i) by

(
a(i) b(i)
c(i) d(i)

)

for i = 1, · · · , r. From the discussion above, we see that a(i), b(i), c(i), and d(i) are

just Qp-linear combinations of a, b, c, and d for every i. If the image of the change

of basis matrix corresponding to (e1,i, e2,i) in PGL2(Qp) lies in PGL2(Q), then a(i),

b(i), c(i), and d(i) are in fact Q-linear combinations of a, b, c, and d. Combining the
discussion above with the previous two lemmas, we get the following lemma:

Lemma 3. Denote the morphism sending

(
a b
c d

)
∈ H1(H, adρ) to the restriction

of c(i) to GHwi
by φi and the morphism sending the same element to the restriction
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of d(i) to Iwi
by φ′

i. These morphisms yield the following isomorphisms:

tD = ker((H1(H,Qp)⊗Qp
adρ)G

(φi)−−→
r⊕

i=1

H1(Hwi
,Qp)),

tD0
=ker((H1(H,Qp)⊗Qp

adρ)G
((φi),(φ

′
i))−−−−−−−→

r⊕
i=1

H1(Hwi
,Qp)⊕

r⊕
i=1

H1(Iwi
,Qp)),

tD′ =ker((H1(H,Qp)⊗Qp
ad 0ρ)G

((φi),(φ
′
i))−−−−−−−→

r⊕
i=1

H1(Hwi
,Qp)⊕

r⊕
i=1

H1(Iwi
,Qp)).

3. Structure of H1(H,Qp) as a G-representation

We shall denote by OH the ring of integers of H and by Ĝ the set of equivalence
classes of left irreducible representations of G = Gal(H/F ) over Q or over Qp (the
two sets can be identified using the embedding ip). We shall denote the trivial
representation of G by 1.

3.1. Local units. It is known that OH ⊗Z Zp �
∏

w|p OHw
where w runs over all

places of H above p and OHw
is the ring of integers of the completion Hw.

By local class field theory, the image of the restriction homomorphism

Hom(GHw
,Qp) → Hom(Iw,Qp) is isomorphic to Hom(O×

Hw
,Qp). Let logp : Qp

× →
Qp be the standard p-adic logarithm sending p to 0. A continuous homomorphism

O×
Hw

→ Qp is of the form

u �→
∑

sw∈Jw

hswgw(logp(u)) =
∑

sw∈Jw

hsw logp(gw(u))

for some hsw ∈ Qp, where Jw is the set of all embeddings of Hw in Qp.

Let S be the set of all embeddings of H in Q. The commutative diagram

Q Qp

H Hw

ip

s sw

along with the embedding Q ⊂ C defines a partition

(3.1) S =
⊔
w|p

Jw.

Let i′1, · · · , i′n be embeddings of H in Q such that they lift the embeddings
i1, · · · , in of F in Q, and in the partition of S given above, they lie in the set⊔

wi
Jwi

(i.e., when we compose any of these embeddings with ip, the place of H

above p that it chooses in the diagram above is one of the wi’s). The existence of
such embeddings is clear. Note that we also have S =

⊔n
j=1 i

′
1 ◦G. Hence, the Qp

vector space Hom((OH ⊗Z Zp)
×,Qp) has a canonical basis given by (logp(ip ◦ i′j ◦

g⊗1))g∈G,1≤j≤n. As g′ ∈ G acts on the left on this basis sending logp(ip ◦ i′j ◦g⊗1)
to logp(ip ◦ i′j ◦ g′g ⊗ 1), we get a canonical isomorphism of left G-representations:

n⊕
j=1

Qp[G] −→ Hom((OH ⊗ Zp)
×,Qp),
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n∑
j=1

∑
g∈G

hg,jg �→ (u⊗ v �→
n∑

j=1

∑
g∈G

hg,j logp(ip(i
′
j(g

−1(u)))v)).

3.2. Global units and Hom(GH ,Qp). By global class field theory, we have the

following exact sequence of left Qp[G]-modules:

0 → Hom(GH ,Qp) → Hom((OH ⊗ Zp)
×,Qp) → Hom(O×

H ,Qp),

where the first map is dual to the Artin reciprocity map, and the second is the
restriction with respect to the inclusion O×

H → (OH ⊗ Zp)
×, u �→ u ⊗ 1. The

surjectivity of the last map above is equivalent to the Leopoldt conjecture for H.
By Minkowski’s proof of Dirichlet’s unit theorem, we get the following isomor-

phism of left G-representations:

Hom(O×
H ,Qp) �

n⊕
j=1

(IndG{1,τj}1)\1.

For π ∈ Ĝ, let π{+,j} be the subspace of π on which τj acts by 1 and let π{−,j}

be the subspace of π on which τj acts by −1. So, using this notation, we have

Hom(O×
H ,Qp) �

⊕
π∈Ĝ,π 	=1 π

(
∑n

j=1 dimπ{+,j}) ⊕ 1(n−1) as a left G-representation.

Hence, as a left G-representation, we have Hom(GH ,Qp) �
⊕

π∈Ĝ πmπ , with m1 ≥
1 and

∑n
j=1 dimπ{−,j} ≤ mπ ≤ n dimπ if π �= 1.

The Leopoldt conjecture for H at the prime p is equivalent to the equality
mπ =

∑n
j=1 dim π{−,j} for every non-trivial π and m1 = 1. We can use [12, proof

of Theorem 1], which uses the Baker-Brumer theorem on the Q-linear independence
of p-adic logarithms of algebraic numbers, to get:

Lemma 4. Using the notation above, mπ < n dimπ, if π = 1 or if π �= 1 and
dimπ{+,j} �= 0 for some j.

Lemma 5. If the Leopoldt conjecture is true for H, then the dimension of the
Qp-vector space H1(F, ad 0ρ) is 2n.

Proof. We have H1(F, ad 0ρ) = (Hom(GH ,Qp) ⊗Q ad 0ρ)G. Since each irreducible

component summand of ad0ρ is non-trivial, self-dual, and occurs multiplicity one
(see [4, Section 4]), it follows, from Schur’s lemma, that dim(Hom(GH ,Qp) ⊗Q

ad0ρ)G =
∑

mπ, where π runs over all irreducible summands of ad0ρ. As ρ is odd,
the eigenvalues of ad0ρ(τj) are 1, −1, −1 for j = 1, · · · , n. Therefore, for every

summand π of ad0ρ, we have either dimπ{−,j} = dim π or dim π{−,j} = dimπ−1 for
j = 1, · · · , n. If the Leopoldt conjecture for H is true, then mπ =

∑n
j=1 dimπ{−,j}

for all π ∈ Ĝ. Hence, it follows that dim(Hom(GH ,Qp) ⊗Q ad0ρ)G =
∑

mπ =∑∑n
j=1 dimπ{−,j} =

∑n
j=1 dim(ad0ρ){−,j} = 2n, where the first sum is taken over

all irreducible summands of ad0ρ. This finishes the proof of the lemma. �

4. Bounds on the dimension of tangent spaces

Proposition 1. Suppose the Leopoldt conjecture is true for F . Then we have the
following inequalities:

(1) n+ 1 ≤ dim tD ≤ dim tD′ + n+ 1,
(2) 1 ≤ dim tD0

≤ dim tD′ + 1.
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Proof. Recall that we have the following description of the tangent spaces:

tD′ =ker(H1(F, ad0ρ)
((Ci,∗),(Di,∗))−−−−−−−−−→

⊕r
i=1 H

1(Fpi
,Qp(ψ

′′
i /ψ

′
i))⊕

⊕r
i=1 H

1(Ipi
,Qp)),

tD0
=ker(H1(F, adρ)

((Ci,∗),(Di,∗))−−−−−−−−−→
⊕r

i=1 H
1(Fpi

,Qp(ψ
′′
i /ψ

′
i))⊕

⊕r
i=1 H

1(Ipi
,Qp)),

tD=ker(H1(F, adρ)
(Ci,∗)−−−−→

⊕r
i=1 H

1(Fpi
,Qp(ψ

′′
i /ψ

′
i))).

We know that adρ = ad0ρ ⊕ Qp and dimH1(F,Qp) = 1 as we have assumed
the Leopoldt conjecture to be true for F . Thus, it follows that dimH1(F, adρ) =

dimH1(F, ad0ρ) + 1, and hence, dim tD0
≤ dim tD′ + 1.

From Tate’s local Euler characteristic formula, we get that

dimH1(Fpi
,Qp(ψ

′′
i /ψ

′
i)) = [Fpi

: Qp] = eifi,

where ei is the index of ramification and fi is the inertial degree of pi, for i =
1, · · · , r. From local class field theory it follows that the rank of the restriction
morphism H1(Fpi

,Qp) → H1(Ipi
,Qp) is eifi for i = 1, · · · , r. Thus, it follows that

the rank of both the maps Ci,∗ and Di,∗ is at most eifi, for all i.
From the proof of Lemma 5 along with the discussion preceding the lemma, it

follows that dimH1(F, ad0ρ) ≥ 2n. Since we assume that the Leopoldt conjec-
ture is true for F , we get that dimH1(F, adρ) = 1 + dimH1(F, ad0ρ) ≥ 2n + 1.
Hence, dim tD0

= dimH1(F, adρ)−
∑r

i=1 rank(Ci,∗)−
∑r

i=1 rank(Di,∗) ≥ (2n+1)−∑r
i=1 eifi−

∑r
i=1 eifi = (2n+1)−n−n = 1. Similarly, dim tD = dimH1(F, adρ)−∑r

i=1 rank(Ci,∗) ≥ (2n + 1) −
∑r

i=1 eifi = (2n + 1) − n = n + 1. To conclude the
remaining inequality, it is enough to prove that dim tD − n− 1 ≤ dim tD′ . Observe
that dim tD−n−1 = dim tD−

∑r
i=1 eifi−1 = dimH1(F, adρ)−

∑r
i=1 rank(Ci,∗)−∑r

i=1 eifi − 1 ≤ (dimH1(F, adρ) − 1) −
∑r

i=1 rank(Ci,∗) −
∑r

i=1 rank(Di,∗) ≤
(dimH1(F, ad0ρ))−

∑r
i=1 rank(Ci,∗)−

∑r
i=1 rank(Di,∗) = dim tD′ . Hence, it follows

that dim tD ≤ dim tD′ + n+ 1, and the proof of the proposition is complete. �

Fix an integer i0 such that 1 ≤ i0 ≤ r. Fix the basis (e1,i0 , e2,i0), which we
introduced in Section 1. So, under this basis, the image of ρ|GFpi0

is diagonal. Thus,

from Lemma 3, it follows that under this basis, an element of tD ⊂ (Hom(GH ,Qp)⊗

adρ)G can be written as

(
a b
c d

)
with a, b, c, d ∈ Hom(GH ,Qp). Recall that we

also have Hom(GH ,Qp) ↪→ Hom((OH ⊗Z Zp)
×,Qp) �

⊕n
j=1 Qp[G]. Thus, we can

see a, b, c, d as elements
∑n

j=1

∑
g∈G ag,jg,

∑n
j=1

∑
g∈G bg,jg,

∑n
j=1

∑
g∈G cg,jg,∑n

j=1

∑
g∈G dg,jg of

⊕n
j=1 Qp[G] such that for every g ∈ G and 1 ≤ j ≤ n, we have

(
ag,j bg,j
cg,j dg,j

)
= ρ(g)

(
a1,j b1,j
c1,j d1,j

)
ρ(g)−1.

(Recall that we are abusing the notation by denoting the image of Y ∈ M2(Qp) by

the adjoint action of Proj(ρ)(g) by ρ(g)Y ρ(g)
−1

.)

Proposition 2. The tangent space tD′ has dimension at most n.
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Proof. Let

(
a b
c d

)
be an element of tD′ . By Lemma 3, we have c(i)(GHwi

) = 0 and

d(i)(Iwi
) = 0. We can view the elements a(i), b(i), c(i), d(i) as elements of the sum of

n copies of the group algebra. We will adapt the same notation as the one used for
a, b, c, d above for these elements. Note that we have fixed the basis (e1,i0 , e2,i0),
c(i0) = c, and d(i0) = d. So, the above notation implies that c1,j = d1,j = 0 for all

j such that the corresponding Q-embeddings i′j of H lie in Jwi0
, where Jwi0

is the

subset of the set of all Q-embeddings of H as defined in (3.1).
Let us recall the recipe of c(i) and d(i): If Pi is the change of basis matrix

from (e1,i0 , e2,i0) to (e1,i, e2,i), then

(
a(i) b(i)
c(i) d(i)

)
= Pi

(
a b
c d

)
P−1
i . Thus,(

(a(i))g,k (b(i))g,k
(c(i))g,k (d(i))g,k

)
= Pi

(
ag,k bg,k
cg,k dg,k

)
P−1
i for all 1 ≤ k ≤ n and g ∈ G.

Now, the condition c(i)(GHwi
) = 0 and d(i)(Iwi

) = 0 implies that if i′k ∈ Jwi
,

then (c(i))1,k = (d(i))1,k = 0. Since a = −d, we see that if i′k ∈ Jwi
, then(

(a(i))1,k (b(i))1,k
(c(i))1,k (d(i))1,k

)
=

(
0 (b(i))1,k
0 0

)
. Therefore,

(
a1,k b1,k
c1,k d1,k

)
= P−1

i

(
0 (b(i))1,k
0 0

)
Pi,

and hence,

(
ag,k bg,k
cg,k dg,k

)
= ρ(g)

(
P−1
i

(
0 (b(i))1,k
0 0

)
Pi

)
ρ(g)−1 . We had chosen

i′1, · · · , i′n such that, in the partition of the set of Q-embeddings of H given in (3.1),
{i′1, · · · , i′n} ⊂

⊔
wi

Jwi
. Let us call (b(i))1,k as bk instead to simplify the notation.

So, by combining all the observations above, we see that
(4.1)

n∑
k=1

∑
g∈G

(
ag,k bg,k
cg,k dg,k

)
g =

r∑
i=1

∑
k∈Jwi

∑
g∈G

(
ρ(g)

(
P−1
i

(
0 bk
0 0

)
Pi

)
ρ(g)−1

)
g.

Since the matrices Pi and ρ(g) are fixed (because we have fixed a basis for each

prime), we see that the element

(
a b
c d

)
of tD′ is determined completely by the

n-tuple (bk)1≤k≤n as above. Hence, it implies that dim tD′ ≤ n. �

Remark 2. Note that in the proof above, the bases (e1,i, e2,i) that we are choosing
satisfy the property that under the basis (e1,i, e2,i), the image of ρ|GFpi

is diagonal

and ρ(GF ) ⊂ GL2(Q). Moreover, ρ has finite image. So, we can choose the change
of basis matrices Pi for the bases as above such that Pi ∈ GL2(Q) for all i.

It turns out that, in most cases, we can get a slightly better upper bound on the
dimension of tD′ .

Proposition 3. If there does not exist a totally real field K of degree 2 over F
such that ρ|GK

is reducible, then the dimension of the tangent space tD′ is at most
n− 1.
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Proof. Suppose dim tD′ > n−1. Then, from Proposition 2, it follows that dim tD′ =
n. From the equation (4.1) in the proof of Proposition 2 above, we see that after
fixing a basis (e1,i0 , e2,i0), dim tD′ is equal to the dimension of the subspace of (Qp)

n

consisting of n-tuples (b1, . . . , bn) such that if we substitute them in the RHS of
(4.1), we get a matrix with entries in H1(H,Qp). Hence, the equality dim tD′ = n
implies that the matrix

(∑
g∈G ag,kg

∑
g∈G bg,kg∑

g∈G cg,kg
∑

g∈G dg,kg

)
=

∑
g∈G

(
ρ(g)

(
P−1
i

(
0 1
0 0

)
Pi

)
ρ(g)−1

)
g

is an element of tD′ and, hence, its entries lie in H1(H,Qp) for every 1 ≤ k ≤ n.
Recall that the i in the equation above is such that i′k ∈ Jwi

.

From the remark after Proposition 2, it follows that Pi ∈ GL2(Q) for every
1 ≤ i ≤ r. As ρ(g) ∈ PGL2(Q) for all g ∈ G under the chosen basis for every
prime, we get that ag,k, bg,k, cg,k, dg,k ∈ Q for all g ∈ G and k = 1, · · · , n. So,
we can view

∑
g∈G ag,kg,

∑
g∈G bg,kg,

∑
g∈G cg,kg,

∑
g∈G dg,kg as elements of the

group algebra Q[G] for all k. Note that we also have a structural homomorphism
Q[G] → HomQ(O

×
H ⊗Z Q,O×

H ⊗Z Q), g ∈ G �→ (u ⊗ v �→ g−1(u) ⊗ v). Moreover,

if we give HomQ(O
×
H ⊗Z Q,O×

H ⊗Z Q) a structure of a two-sided G-module in the

following way: for g1, g2 ∈ G and φ ∈ HomQ(O
×
H ⊗Z Q,O×

H ⊗Z Q), (g1.φ.g2)(u ⊗
v) = g−1

2 (φ(g−1
1 (u) ⊗ v)), then the map above is a map of G-bimodules; i.e., it is

equivariant for both right and left actions of G on both sides.
It follows by the argument used in the proof of [4, Theorem 3.5] that as∑
g∈G ag,kg,

∑
g∈G bg,kg,

∑
g∈G cg,kg,

∑
g∈G dg,kg are elements of both H1(H,Qp)

and Q[G], they lie in the kernel of the structural homomorphism above. How-
ever, from the representation theory of finite groups, we know that the kernel of
the structural map is isomorphic to

⊕
π π

dimπ, where the sum is over all π ∈ Ĝ

which do not appear in O×
H ⊗Z Q (see [4, proof of Thm. 3.5]). From the structure

of O×
H ⊗Z Q, as a G-representation (which we know due to Minkowski’s proof of

Dirichlet’s unit theorem and the Baker-Brumer theorem), we see that the kernel is

isomorphic to
⊕

π π
dimπ,where π ∈ Ĝ is such that the only eigenvalue of π(τi) is

−1 for i = 1, · · · , n.
Our assumptions on ρ imply that we are in one of the following cases (see [4] for

more details):

(1) G is isomorphic to either A4, S4, or A5, and ad0ρ is irreducible.
(2) G is a non-abelian dihedral group. In this case, there exists a unique

quadratic extension K of F which is not totally real and a finite order

character χ : GK → Q
×
such that ad0ρ � εK ⊕ IndGF

GK
(χ/χσ) (we are using

the same notation as used in the introduction). Thus, ad0ρ is a sum of two
irreducible representations.

(3) G is isomorphic to Z/2Z × Z/2Z. In this case, there exist three quadratic
extensions K, K ′, and K ′′ of F such that none of them are totally real and
ad0ρ � εK ⊕ εK′ ⊕ εK′′ .
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Note that the subspace W of Q[G] spanned by
∑

g∈G ag,kg,
∑

g∈G bg,kg,∑
g∈G cg,kg,

∑
g∈G dg,kg is G-stable and, as a G-representation, is isomorphic to a

sub-representation of ad0ρ. Moreover, W is non-trivial, as at least one of its gen-
erators is non-zero, and is contained in the kernel of the structure homomorphism.

If we are in the first case, then, as ad0ρ is irreducible and W is non-trivial,
the representation W should be isomorphic to ad0ρ. However, the eigenvalues
of ad0ρ(τj) are 1, −1, and −1 for all τj ’s. Hence, the kernel of the structure

homomorphism does not contain any copies of ad0ρ. Thus, we get a contradiction
in this case.

If we are in the second case, then, as K is not totally real, there exists a τj such

that εK(τj) = −1. Thus, we see that the eigenvalues of IndGF

GK
(χ/χσ)(τj) are 1

and −1 and hence the kernel of the structure homomorphism does not contain any
copy of it. If K is not CM, then there exists a τj′ such that εK(τj′) = 1. So, the
kernel does not contain any copy of εK as well. Thus, W should be 0 in this case.
But we know that W is non-zero. Therefore, we get a contradiction. If K is a CM
field, then εK(τj) = −1 for all j and the eigenvalues of IndGF

GK
(χ/χσ)(τj) are 1 and

−1 for every j. So, in this case, W � εK , and hence it is a 1-dimensional vector
space generated by the non-zero vector

∑
g∈G bg,kg. Since a1,k = c1,k = d1,k = 0

and b1,k �= 0, it follows that
∑

g∈G ag,kg =
∑

g∈G cg,kg =
∑

g∈G dg,kg = 0. This

would imply that the subspace Qpe1,i of ρ is G stable (see [4, proof of Theorem
2.2] for more details). But this is not possible as ρ is irreducible. Thus, we get a
contradiction in this case.

If we are in the third case, then, as none of K, K ′, and K ′′ are totally real, there
exist τj , τj′ , and τj′′ such that εK(τj) = −1, εK′(τj′) = −1, and εK′′(τj′′) = −1.
Thus, the kernel of the structure homomorphism does not contain a copy of any of
these three representations. So, W should be 0. But we know that W is non-zero.
Thus, we get a contradiction in this case also.

The analysis above shows that, under the assumptions of this proposition, we get
a contradiction if we assume dim tD′ > n−1. Hence, it is proved that dim tD′ ≤ n−1
under the assumptions of this proposition. �

We will study the tangent space tD′ in the remaining case, i.e., when there exists
a totally real field K of degree 2 over F such that ρ|GK

is reducible in Section 6.

5. Description of the tangent spaces in the dihedral case

Now suppose that Proj(ρ) = G is a dihedral group. So, there exists a quadratic

extension K of F and a character χ : GK → Q
×

such that ρ � IndGF

GK
χ. If G is

non-abelian, then K is a unique such quadratic extension of F . In this case, ad0ρ �
εK ⊕ IndGF

GK
(χ/χσ), where εK is the quadratic character of K, σ is the non-trivial

element of Gal(K/F ), and χσ is the character of GK given by χσ(g) = χ(σ−1gσ).
In this section, we keep the notation used in the preceding sections.

Fix a basis (v1, v2) of V such that ρ(GF ) ⊂ GL2(Q), ρ|GK
acts by the character χ

on the subspace generated by v1 and by the character χσ on the subspace generated
by v2. Thus such a basis is well-defined up to scaling. If pi is split in K, then we can
take (e1,i, e2,i) to be either (v1, v2) or (v2, v1) depending on whether χσ|GFpi

= ψ′′
i

or χ|GFpi
= ψ′′

i . If pi is inert or ramified in K, then its image in the dihedral group

G contains an element of order 2 which is not contained in the image of GK in G.
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Call this element σi. There exists an �i ∈ Q such that Proj(ρ(σi)) =

(
0 1
�i 0

)
∈

PGL2(Q). Fix a square root
√
�i of �i in Q. So ρ(σi) will be diagonal under the

basis (v1 +
√
�iv2, v1 −

√
�iv2), which means we can take (e1,i, e2,i) to be either

(v1 +
√
�iv2, v1 −

√
�iv2) or (v1 −

√
�iv2, v1 +

√
�iv2). So, we fix the square root

√
�i

so that (e1,i, e2,i) = (v1 +
√
�iv2, v1 −

√
�iv2).

If

(
a b
c d

)
is an element of tD′ under this basis (v1, v2), then by combining the

observations above along with the previous section, we have

n∑
k=1

∑
g∈G

(
ag,k bg,k
cg,k dg,k

)
g =

∑
k∈I1

(
ρ(g)

(
0 bk
0 0

)
ρ(g)−1

)
g

+
∑
k′∈I2

(
ρ(g)

(
0 0
bk′ 0

)
ρ(g)−1

)
g(5.1)

+
∑

k′′∈I′

⎛
⎝ρ(g)

⎛
⎝

bk′′
2

−bk′′

2
√

�i(k′′)
bk′′

√
�i(k′′)
2

−bk′′
2

⎞
⎠ ρ(g)−1

⎞
⎠ g,

where I1 is the subset of {1, · · · , n} such that if k ∈ I1, then i′k ∈ Jwi
with the

prime pi of F below wi is split in K and χσ|GFpi
= ψ′′

i , I2 is the subset of {1, · · · , n}
such that if k ∈ I2, then i′k ∈ Jwi

with the prime pi of F below wi is split in K
and χ|GFpi

= ψ′′
i , I

′ is the subset of {1, · · · , n} such that if k′′ ∈ I ′, then i′k′′ ∈ Jwi

with the prime of F below wi is either inert or ramified in K and for k′′ ∈ I ′, i(k′′)
is such that if i′k′′ ∈ Jwi

, then the prime of F below wi is pi(k′′). Observe that
{1, · · · , n} = I1 � I2 � I ′.

Let C be the image of GK in G and let σ′ be the element of G such that its

image in PGL2(Q) is

(
0 1
1 0

)
under the basis (v1, v2). Thus, from above, we get

the following information:

(1) If k ∈ I1 � I2, then ag,k = 0. If k ∈ I ′, then ag,k = bk
2 if g ∈ C and

ag,k = −bk
2 if g ∈ G\C.

(2) If k ∈ I1, then bg,k = (χ/χσ)(g)bk if g ∈ C and bg,k = 0 if g ∈ G\C. If
k ∈ I2, then bg,k = (χ/χσ)(gσ′)bk if g ∈ G\C and bg,k = 0 if g ∈ C. If k ∈
I ′, then bg,k = (χ/χσ)(g) −bk

2
√

�i(k)

if g ∈ C and bg,k = (χσ/χ)(σ′g)
bk
√

�i(k)

2 if

g ∈ G\C.
(3) If k ∈ I1, then cg,k = (χσ/χ)(gσ′)bk if g ∈ G\C and cg,k = 0 if g ∈ C. If

k ∈ I2, then cg,k = (χσ/χ)(g)bk if g ∈ C and cg,k = 0 if g ∈ G\C. If k ∈ I ′,

then cg,k = (χσ/χ)(g)
bk
√

�i(k)

2 if g ∈ C and cg,k = (χ/χσ)(σ′g) −bk
2
√

�i(k)

if

g ∈ G\C.

(4) As a = −d, if k ∈ I1 � I2, then dg,k = 0. If k ∈ I ′, then dg,k = −bk
2 if g ∈ C

and dg,k = bk
2 if g ∈ G\C.
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Using the same logic that we used in the case of tD′ , we see that if

(
a b
c d

)
is

an element of tD0
under the basis (v1, v2), then

(5.2)

n∑
k=1

∑
g∈G

(
ag,k bg,k
cg,k dg,k

)
g

=
∑
k∈I1

(
ρ(g)

(
ak bk
0 0

)
ρ(g)−1

)
g +

∑
k′∈I2

(
ρ(g)

(
0 0
bk′ ak′

)
ρ(g)−1

)
g

+
∑

k′′∈I′

⎛
⎝ρ(g)

⎛
⎝

ak′′+bk′′
2

ak′′−bk′′

2
√

�i(k′′)
(ak′′+bk′′ )

√
�i(k′′)

2
ak′′−bk′′

2

⎞
⎠ ρ(g)−1

⎞
⎠ g,

and if

(
a b
c d

)
is an element of tD under the basis (v1, v2), then

(5.3)

n∑
k=1

∑
g∈G

(
ag,kg bg,kg
cg,kg dg,kg

)

=
∑
k∈I1

ρ(g)

(
akg bkg
0g dkg

)
ρ(g)−1 +

∑
k′∈I2

ρ(g)

(
dk′g 0g
bk′g ak′g

)
ρ(g)−1

+
∑

k′′∈I′

ρ(g)

⎛
⎝

ak′′+bk′′+dk′′
2 g ak′′−bk′′−dk′′

2
√

�i(k′′)
g

(ak′′+bk′′−dk′′ )
√

�i(k′′)
2 g ak′′+dk′′−bk′′

2 g

⎞
⎠ ρ(g)−1.

Thus, we have a complete description of possible elements of tD′ , tD0
, and tD in

the dihedral case. However, we still need to determine what values of (aj)1≤j≤n,
(bj)1≤j≤n, and (dj)1≤j≤n will actually give an element of tD. We will do this
analysis in the next few sections in order to prove Theorem 1.

Observe that if

(
a b
c d

)
is an element of tD under the basis (v1, v2) chosen above,

then the subspace of Hom(GH ,Qp) generated by a and d is isomorphic to 1 ⊕ εK
as a G-representation. To be more precise, the subspace generated by a + d is
isomorphic to 1, and the subspace generated by a − d is isomorphic to εK as G-
representations. The subspace generated by b and c is isomorphic to IndGF

GK
(χ/χσ)

as a G-representation. If the Leopoldt conjecture is true for F , then it implies that
the trivial representation 1 occurs in Hom(GH ,Qp) with multiplicity one and it is

generated by the element
∑n

k=1

∑
g∈G g of

⊕n
k=1Qp[G]. Thus, this implies that if(

a b
c d

)
is an element of tD under the basis (v1, v2) and if the Leopoldt conjecture

is true for F , then a1 + d1 = · · · = ak + dk = · · · = an + dn, where ak and dk are
defined as in the last equation above. We will find more relations in this spirit in
the next few sections to prove Theorem 1.

6. Proof of Theorem 1 for cases 1 and 2

Suppose that ρ � IndGF

GK
χ and K is totally real; i.e., it has 2n real embeddings.

Here, we do not make the assumption that G is non-abelian. So, it can be Z/2Z×
Z/2Z. Recall that in this case, ad0ρ = εK ⊕ IndGF

GK
(χ/χσ). We fix the basis (v1, v2)
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as in the previous section and also use the notation of the last section. Let C be the
image of GK in G. As K is totally real, G is a dihedral group with order divisible
by 4 and τ1 = · · · = τn = τ , where τ is the unique element of C of order 2.

As εK(τ ) = 1 andK is totally real, εK appears in Hom(O×
H ,Qp) with multiplicity

n. Thus, if the Leopoldt conjecture is true for K, then εK does not appear at all
in Hom(GH ,Qp). On the other hand, IndGF

GK
(χ/χσ) appears with full multiplicity

in Hom(GH ,Qp); i.e., it appears with multiplicity 2n because the eigenvalues of

IndGF

GK
(χ/χσ)(τ ) are −1 and −1.

Suppose the Leopoldt conjecture is true for K. Hence, it is true for F as well. If(
a b
c d

)
∈ tD, then from the last section, we see that a−d generates a representation

isomorphic to εK . As it does not appear in Hom(GH ,Qp), a−d should be 0. Thus,
from (5.3), we have ak = dk if k ∈ I1 � I2 and bk = 0 if k ∈ I ′. Moreover, as the
Leopoldt conjecture is true for F , a1 + d1 = · · · = an + dn, and it follows from
(5.3) that tD is generated by at most n + 1 elements. However, by Proposition 1,
dim tD ≥ n+ 1 if the Leopoldt conjecture is true for F . Thus, dim tD = n+ 1.

Recall that tD′ is the subspace of tD of elements

(
a b
c d

)
such that ck = dk =

ak = 0 for all k. From the last paragraph, we know the generators of tD explicitly.
They are obtained from all the 3n-tuples ((ak), (bk), (dk)) satisfying the relations
ak = dk if k ∈ I1 � I2, bk = 0 if k ∈ I ′, and a1 + d1 = · · · = an + dn as above.
Combining them with the relations ak = dk = 0, we see that the generators are
obtained from all the 3n-tuples ((ak), (bk), (dk)) such that ak = dk = 0 for all k
and bk = 0 for k ∈ I ′. Hence, borrowing the notation from the introduction, we see
that dim tD′ = |I1|+ |I2| =

∑
pi∈S eifi.

Note that as IndGF

GK
(χ/χσ) appears with full multiplicity in Hom(GH ,Qp), we

get the inequality dim tD′ ≥ |I1| + |I2| from the elements obtained above without
the Leopoldt conjecture for K. We need the Leopoldt conjecture for K to establish
the equality. Thus, if all primes of F lying above p are split in K, then we get
dim tD′ = n without the Leopoldt conjecture for K. Suppose there exists at least
one prime of F lying above p which is not split in K. If, in this case, dim tD′ = n,
then we obtain from the description of elements of tD′ found in the previous section
elements of Hom(GH ,Qp) belonging to the isotypic component of εK which are also

elements of Q[G]. The same argument that was used in the proof of Proposition 3
would give us a contradiction in this case. Hence, it follows that, in this case,
dim tD′ ≤ n − 1 without the Leopoldt conjecture. Thus, we see that the results
similar to that of Proposition 3 also hold in the case excluded in the proposition.

If
∑

pi∈S eifi = 0, i.e., dim tD′ = 0, then Proposition 1 implies that dim tD0
= 1.

Suppose
∑

pi∈S eifi ≥ 1, which means dim tD′ ≥ 1. Let

(
a b
c d

)
be an element

of tD0
. Then, we know that d1 = · · · = dn = 0 and, hence, a1 = · · · = an. As

a − d generates εK , we should have a = d. Suppose pj is a prime of F above p
which is split in K. Such a prime exists because

∑
pi∈S eifi ≥ 1. So, a = d implies

that aj = dj . Hence, all ai’s are also 0 and

(
a b
c d

)
∈ tD′ . Thus, in this case,

dim tD′ = dim tD0
. Therefore, dim tD0

= max{
∑

pi∈S eifi, 1}. This finishes the
proof of the first case of the theorem.
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Now suppose that ρ � IndGF

GK
χ, G is non-abelian, and K has exactly 2(n − 1)

real embeddings. Fix the basis (v1, v2) as in the previous section. Retaining the
notation from the previous case, we see that G is a non-abelian dihedral group
with order divisible by 4, (after reordering τi’s if necessary) τ1 = · · · = τn−1 = τ ,
and τn ∈ G\C. If the Leopoldt conjecture is true for K, then εK appears in
Hom(GH ,Qp) with multiplicity 1. On the other hand, from Lemma 4 and the

discussion made just before the lemma, it follows that IndGF

GK
(χ/χσ) appears with

multiplicity 2n− 1 in Hom(GH ,Qp).
Suppose the Leopoldt conjecture is true for K and hence for F . Then, the trivial

representation 1 appears in Hom(GH ,Qp) with multiplicity one. Let

(
a b
c d

)
be an

element of tD. We see from above that a−d generates εK and a+d generates 1. Both
of them occur in Hom(GH ,Qp) with multiplicity 1. So, if W is the subspace of tD
such that a+d = a−d = 0, then, from the above it follows that dim tD ≤ dimW+2.

Thus, if

(
a b
c d

)
∈ W , then a = d = 0, which implies that in (5.3), ak = dk = 0 if

k ∈ I1 � I2, bk′ = 0, and ak′ + dk′ = 0 if k′ ∈ I ′. So, it follows that dimW ≤ n.
Note that W is just a direct sum of some copies of Ind(χ/χσ).

It follows from (5.3) and the discussion above that a general element of W

under the chosen basis is of the form
∑n

k=1

∑
g∈G

(
ρ(g)

(
0 bk
ck 0

)
ρ(g)−1

)
g with

the conditions ck = 0 if k ∈ I1, bk = 0 if k ∈ I2, and �i(k′)bk′ = ck′ if k′ ∈ I ′.

So, W is a subspace of the isotypic component of Hom(GH ,Qp) corresponding to
Ind(χ/χσ) defined by n linear relations. As the dimension of the isotypic component
of Ind(χ/χσ) in Hom(GH ,Qp) is 2n− 1, we get that dimW ≥ 2n− 1− n = n− 1.
If dimW = n, then the description of a general element of W found above gives us
elements of Hom(GH ,Qp) belonging to the isotypic component of Ind(χ/χσ) which

are also elements of Q[G]. Since Ind(χ/χσ) appears in Hom(O×
H ,Qp), the same

argument that was used in the proof of Proposition 3 would give us a contradiction
and hence imply that dimW < n. Thus, dimW = n − 1 and dim tD ≤ n + 1. By
Proposition 1, we have dim tD ≥ n+ 1. Hence, dim tD = n+ 1.

Note that as tD′ is obtained from tD by putting the extra conditions ak = dk = 0
for all k in (5.3), the subspace tD′ ∩ W of W is obtained by putting the extra
conditions ak = dk = 0 for k ∈ I ′ on the elements of W . Thus, dim tD′ ≥ dim(tD′ ∩
W ) ≥ dimW−|I ′| = n−1−|I ′| = |I1|+|I2|−1 =

∑
pi∈S eifi−1. By Proposition 3,

we have dim tD′ ≤ n− 1. This concludes the proof of Theorem 1 for case 2.
Observe that we did not use the Leopoldt conjecture to get this lower bound.

Indeed, we only used the equality dimHomG(Ind
GF

GK
(χ/χσ),Hom(GH ,Qp)) = 2n−

1, along with the descriptions of W and tD′ , all of which are obtained without
using the Leopoldt conjecture. If all primes of F lying above p are split in K,
i.e.,

∑
pi∈S eifi = n, then we have proved above (without assuming the Leopoldt

conjecture) that dim tD′ ≥ n − 1. By Proposition 3, we have dim tD′ ≤ n − 1.
Hence, we get dim tD′ = n − 1 unconditionally if all primes of F above p are split
in K.

7. Proof of Theorem 1 for case 4

Suppose F is a real quadratic field. We are assuming that ρ = IndGF

GK
χ, G is a

non-abelian dihedral group, K has exactly 2 real embeddings, and
∑

pi∈S eifi ≥ 1.
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Therefore, rankZ(O×
K) = 2 and rankZ(O×

F ) = 1. As K is G-stable, O×
K is also

G-stable. As a G-representation, O×
K ⊗Z Q � 1⊕ εK . So, by [12, proof of Theorem

1], it follows that the Leopoldt conjecture is true for K.
If all primes of F above p are split in K, then the observations made in the

previous paragraph imply that we are in the special instance of the second case
of Theorem 1 recorded in the last paragraph of Section 6 with n = 2. Thus, it
follows from the second case of Theorem 1 that dim tD′ = n − 1 = 2 − 1 = 1 and
dim tD = n+ 1 = 2 + 1 = 3.

Fix the basis (v1, v2) as in the previous section. Let

(
a b
c d

)
be an element of

tD0
. As all primes of F above p are split in K, we see, from (5.2), that either(

a b
c d

)
=

2∑
k=1

∑
g∈G

(
ρ(g)

(
ak bk
0 0

)
ρ(g)−1

)
g

or (
a b
c d

)
=

∑
g∈G

(
ρ(g)

(
a1 b1
0 0

)
ρ(g)−1

)
g +

∑
g∈G

(
ρ(g)

(
0 0
b2 a2

)
ρ(g)−1

)
g.

In particular, we see that either a=
∑2

k=1 ak
∑

g∈C g or a=a1
∑

g∈C g+a2
∑

g∈C gσ′

(note that
∑

g∈C and
∑

g∈C gσ′ belong to two different copies of the group algebra).
As the Leopoldt conjecture is true for F , it follows that a1 = a2. So, either
a = a1(

∑2
k=1

∑
g∈C g) or a = a1

∑
g∈C g + a1

∑
g∈C gσ′. Let u be a unit of K

such that with O×
F , it generates a finite index subgroup of O×

K . Suppose a =

a1(
∑2

k=1

∑
g∈C g). As a ∈ Hom(GH ,Qp), a(u) = 0, i.e.,

a1(
∑
g∈C

logp(ip ◦ i′1(g−1u)) +
∑
g∈C

logp(ip ◦ i′2(g−1u))) = 0.

Since C acts trivially on K, we have a1(logp(ip ◦ i′1(u)) + logp(ip ◦ i′2(u))) = 0, and
hence, a1(logp(ip ◦ (i′1(u)i′2(u)))) = 0.

As K has exactly 2 real embeddings, our choice of i′1 and i′2 forces one of them
to be a complex embedding and the other one to be a real embedding. Without
loss of generality, suppose i′1 is a real embedding. Now if (i′1(u)i

′
2(u))

n = 1 for
some n, then we see that i′2(u

n) is real. But i′2 is a complex embedding of K, and
the maximal real subfield of i′2(K) is i2(F ). So, we see that i′2(u

n) ∈ i2(F ), which
implies that un ∈ F . But this contradicts our assumption that u generates a finite
index subgroup of O×

K along with O×
F . So, i′1(u)i

′
2(u) is not a root of unity, which

implies that logp(ip ◦ (i′1(u)i
′
2(u))) �= 0. Thus, we get that a1 = 0. Therefore,(

a b
c d

)
∈ tD′ , and hence, tD0

= tD′ .

Suppose a = a1
∑

g∈C g + a1
∑

g∈G\C gσ′. So, a(u) = 0 means

a1(
∑
g∈C

logp(ip ◦ i′1(g−1u)) +
∑
g∈C

logp(ip ◦ i′2(σ′g−1u))) = 0.

Since C acts trivially on K, we have a1(logp(ip ◦ (i′1(u)i′2(σ′(u))))) = 0. As K has
exactly 2 real embeddings, our choice of i′1 and i′2 forces one of i′1 or i′2 ◦ σ′ to be a
complex embedding and the other one to be a real embedding. Therefore, by the
same logic as in the previous paragraph, we get a1 = 0 and tD0

= tD′ . Therefore,
in both cases, dim tD0

= dim tD′ = 1.
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Suppose that one of the primes of F above p splits in K and the other remains

inert or ramifies in K. Then, (without loss of generality) an element

(
a b
c d

)
∈ tD′

looks like

(
a b
c d

)
=
∑
g∈G

(
ρ(g)

(
0 b1
0 0

)
ρ(g)−1

)
g+

∑
g∈G

⎛
⎝ρ(g)

⎛
⎝

b2
2

−b2
2
√

�i(2)

b2
√

�i(2)
2

−b2
2

⎞
⎠ρ(g)−1

⎞
⎠ g.

In particular, if u ∈ O×
H ,

a(u) =
b2
2
(
∑
g∈C

logp(ip ◦ i′2(g−1(u)))−
∑

g∈G\C
logp(ip ◦ i′2(g−1(u)))).

Note that
∑

g∈C g−
∑

g∈G\C g ∈ Q[G]. The Q-subspace spanned by this element

is G-stable and isomorphic to εK as a G-representation. But we know that εK
appears in Hom(O×

H ,Qp). Hence, from the proof of Proposition 3 and [4, proof of

Theorem 3.5], we see that there exists a unit u0 ∈ O×
H such that∑

g∈C

logp(ip ◦ i′2(g−1(u0)))−
∑

g∈G\C
logp(ip ◦ i′2(g−1(u0))) �= 0.

But as a ∈ Hom(GH ,Qp), a(u) = 0 for all u ∈ O×
H . So, we get that b2 = 0.

So, we have

(
a b
c d

)
=

∑
g∈G

(
ρ(g)

(
0 b1
0 0

)
ρ(g)−1

)
g. Thus, we see that a =

d = 0 and b, c generate a representation isomorphic to IndGF

GK
(χ/χσ). Moreover,

b = b1(b
′) and c = b1(c

′), where b′, c′ ∈ Q[G]. We know that IndGF

GK
(χ/χσ) appears

in Hom(O×
H ,Qp). So, from the proof of Proposition 3, we see that b1 = 0. Hence,

we get dim tD′ = 0. Therefore, from Proposition 1, it follows that dim tD0
= 1 and

dim tD = 3. This concludes the proof of Theorem 1 for the fourth case.

8. Proof of Theorem 1 for case 3

Suppose ρ = IndGF

GK
χ, G is a non-abelian dihedral group, K is a CM field,

and all primes of F above p are split in K. We retain the notation that we have
been using so far. As K is a CM field, τi �∈ C for all i. Thus, IndGF

GK
(χ/χσ)

appears in O×
H ⊗Z Q with multiplicity n. Hence, the subspace Vχ/χσ of O×

H ⊗Z

Q on which C acts by χ/χσ has dimension n. Let x1, · · · , xn ∈ O×
H be such

that
{
(
∑

g∈C(χ/χ
σ)(g)g−1)(x1 ⊗ 1), · · · , (

∑
g∈C(χ/χ

σ)(g)g−1)(xn ⊗ 1)
}
is a basis

of Vχ/χσ (it is clear that we can find such units). Therefore, if the Leopoldt conjec-

ture is true for H, then IndGF

GK
(χ/χσ) appears in Hom(GH ,Qp) with multiplicity

n.
Fix the basis (v1, v2) as in the previous section. As all primes of F above p are

split in K, from the formulas we found earlier, it follows that if

(
a b
c d

)
∈ tD′ , then

a = d = 0, b =
∑

k∈I1
bk(

∑
g∈C(χ/χ

σ)(g)g) +
∑

k∈I2
bk(

∑
g∈C(χ/χ

σ)(g)gσ′), and

c =
∑

k∈I1
bk(

∑
g∈G\C(χ/χ

σ)(σ′g)g) +
∑

k∈I2
bk(

∑
g∈C(χ

σ/χ)(g)g). Now, suppose

b �= 0. It follows that (b1, · · · , bn) �= (0, · · · , 0). As b ∈ Hom(GH ,Qp), then
b(xl) = 0 for l = 1, · · · , n. Thus,

∑
j∈I1

bj
∑

g∈C(χ/χ
σ)(g) logp(ip ◦ i′j(g−1(xl))) +∑

j∈I2
bj

∑
g∈C(χ/χ

σ)(g) logp(ip ◦ i′j(σ
′g−1(xl))) = 0 for l = 1, · · · , n. Hence, the
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n×n matrix (
∑

g∈C(χ/χ
σ)(g) logp(ip◦i′j((g−1(xl))j)))1≤j≤n,1≤l≤n is not invertible,

where (g−1(xl))j = g−1(xl) if j ∈ I1 and (g−1(xl))j = σ′g−1(xl) if j ∈ I2. Thus,
its determinant is zero; that is,

det(
∑
g∈C

(χ/χσ)(g) logp(ip ◦ i′j((g−1(xl))j)))1≤j≤n,1≤l≤n = 0.

We will view all the units above as elements of the Galois closure H ′ of H
over Q. Let M be the Z-submodule of O×

H′ generated by elements of the set{
i′j(g

−1(xl))
}
j∈I1,g∈C,1≤l≤n

∪
{
i′j(σ

′g−1(xl))
}
j∈I2,g∈C,1≤l≤n

and let {u1, · · · , um}
be the subset of

{
i′j(g

−1(xl))
}
j∈I1,g∈C,1≤l≤n

∪
{
i′j(σ

′g−1(xl))
}
j∈I2,g∈C,1≤l≤n

such

that it forms a basis of M ⊗ZQ. So, we can see the determinant as a polynomial in
logp(ip(u1)), · · · , logp(ip(um)) with coefficients in Q. Call the polynomial P which
will be a polynomial in m variables. Recall that the p-adic Schanuel conjecture ([8,
Conjecture 3.10]) states that if α1, · · · , αn ∈ Q are such that logp(α1), · · · , logp(αn)
are linearly independent over Q, then the field Q(logp(α1), · · · , logp(αn)) has tran-
scendence degree n over Q. Now assume that the p-adic Schanuel conjecture
holds. Then it follows that Q(logp(ip(u1)), · · · , logp(ip(um))) has transcendence de-

gree m over Q. But P is a polynomial over Q which is satisfied by
logp(ip(u1)), · · · , logp(ip(um)). Hence, all the coefficients of P are zero. Observe

that on the complex side, we have det(
∑

g∈C(χ/χ
σ)(g) log |i′j((g−1(xl))j)|) =

P (log(|u1|), · · · , log(|um|)). But as all the coefficients of P are zero, we see that the
determinant

det(
∑
g∈C

(χ/χσ)(g) log |i′j((g−1(xl))j)|)1≤j≤n,g∈C,1≤l≤n = 0.

Note that the set of left coset representatives of G/ {1, τj} can be

given by C for j ∈ I1 and by Cσ′ for j ∈ I2. We can identify C
n|G|

2 with G-

representation
⊕n

j=1 Ind
G
{1,τj}1. Indeed, we can label the standard basis of C

n|G|
2 by{

i′j ◦ g
}
j∈I1,g∈C

⋃{
i′j ◦ gσ′}

j∈I2,g∈C
and give the action of G by g′.ei′j◦g = ei′j◦[g′g],

where, if j ∈ I1, then [g′g] is the element in C which represents the left coset of g′g
in G/ {1, τj}, and if j ∈ I2, then [g′g] is the element in Cσ′ which represents the

left coset of g′g in G/ {1, τj}. Let φ : O×
H ⊗ZQ → C

n|G|
2 be the linear map given by

u ⊗ 1 �→ ((log |i′j(g−1(u))|)j∈I1,g∈C , (log |i′j(σ′g−1(u))|)j∈I2,g∈C). By Minkowski’s
proof of Dirichlet’s unit theorem, we know that φ is an injective map which is G-

equivariant and the C-vector space generated by Im(φ) is of dimension n|G|
2 −1 and

is isomorphic to (
⊕n

j=1 Ind
G
{1,τj}1)\1 as a G-representation.

Thus, we see that φ((
∑

g∈C(χ/χ
σ)(g)g−1)x1), · · · , φ((

∑
g∈C(χ/χ

σ)(g)g−1)xn)

are linearly independent vectors and C acts on them by χ/χσ. So, it follows that,
for all j ∈ I1,

φ((
∑
g∈C

(χ/χσ)(g)g−1)xk)i′j◦g′ = (χσ/χ)(g′)(φ((
∑
g∈C

(χ/χσ)(g)g−1)xk)i′j◦1),

for 1 ≤ k ≤ n and g′ ∈ C. Similarly, for all j ∈ I2, φ((
∑

g∈C(χ/χ
σ)(g)g−1)xk)i′j◦g′σ′

= (χσ/χ)(g′)(φ((
∑

g∈C(χ/χ
σ)(g)g−1)xk)i′j◦σ′) for 1 ≤ k ≤ n and g′ ∈ C. So the
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n-tuples

((
∑
g∈C

(χ/χσ)(g) log |i′j(g−1(x1))|)j∈I1 , (
∑
g∈C

(χ/χσ)(g) log |i′j(σ′g−1(x1))|)j∈I2),

· · · , ((
∑
g∈C

(χ/χσ)(g) log |i′j(g−1(xn))|)j∈I1 ,

(
∑
g∈C

(χ/χσ)(g) log |i′j(σ′g−1(xn))|)j∈I2)

are linearly independent (these vectors are obtained by taking (i′j◦1)-th co-ordinates

for j ∈ I1 and (i′j ◦ σ′)-th co-ordinates for j ∈ I2 of the n linearly indepen-
dent vectors given above). Therefore, using the notation introduced above, we
get that the matrix (

∑
g∈C(χ/χ

σ)(g) log |i′j((g−1(xl))j)|)1≤j≤n,1≤l≤n is invertible

and det(
∑

g∈C(χ/χ
σ)(g) log |i′j((g−1(xl))j)|)1≤j≤n,1≤l≤n �= 0. But we already con-

cluded above, after assuming (b1, · · · , bn) �= (0, · · · , 0) and the p-adic Schanuel
conjecture, that det(

∑
g∈C(χ/χ

σ)(g) log |i′j((g−1(xl))j)|)1≤j≤n,1≤l≤n = 0. Thus,

we get a contradiction to our assumption that (b1, · · · , bn) �= (0, · · · , 0) after as-
suming the p-adic Schanuel conjecture. Hence, after assuming the p-adic Schanuel
conjecture, we see that dim tD′ = 0.

If the p-adic Schanuel conjecture is true, then by [17, Theorem 6.4], the Leopoldt
conjecture is also true. Hence, Proposition 1 implies that dim tD0

= 1 and dim tD =
n+ 1.

Suppose ρ = IndGF

GK
χ, G is a non-abelian dihedral group, K has exactly 2(n− s)

real embeddings, and all primes of F above p are split in K. So, we see (after
relabeling, if necessary) that τ1, · · · , τs ∈ G\C and τs+1 = · · · = τn = τ . Thus,

IndGF

GK
(χ/χσ) appears in O×

H ⊗Z Q with multiplicity s and εK appears in it with

multiplicity n − s. Hence, the subspace Vχ/χσ of O×
H ⊗Z Q on which C acts by

χ/χσ has dimension s. Let x1, · · · , xs ∈ O×
H be such that a basis of Vχ/χσ is

given by
{
(
∑

g∈C(χ/χ
σ)(g)g−1)(x1 ⊗ 1), · · · , (

∑
g∈C(χ/χ

σ)(g)g−1)(xs ⊗ 1)
}

(it is

clear that we can find such units). Therefore, if the Leopoldt conjecture is true for

H, then IndGF

GK
(χ/χσ) appears in Hom(GH ,Qp) with multiplicity 2n − s and εK

appears in it with multiplicity s.
Fix the basis (v1, v2) as in the previous section. As all primes of F above p are

split in K, from the formulas we found earlier, it follows that if

(
a b
c d

)
∈ tD′ , then

(
a b
c d

)
=

∑
k∈I1

∑
g∈G

(
ρ(g)

(
0 bk
0 0

)
ρ(g)−1

)
g +

∑
k∈I2

∑
g∈G

(
ρ(g)

(
0 0
bk 0

)
ρ(g)−1

)
g.

Hence, we easily see that a = d = 0,

b =
∑
k∈I1

bk(
∑
g∈C

(χ/χσ)(g)g) +
∑
k∈I2

bk(
∑
g∈C

(χ/χσ)(g)gσ′)

and c =
∑

k∈I1
bk(

∑
g∈G\C(χ/χ

σ)(σ′g)g) +
∑

k∈I2
bk(

∑
g∈C(χ

σ/χ)(g)g). Recall

that b and c together generate IndGF

GK
(χ/χσ), which appears in Hom(GH ,Qp) with

multiplicity 2n− s. Each of these (2n− s) copies is obtained by replacing

(
0 bk
0 0

)
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with a suitable matrix

(
0 b′k
ck 0

)
and by replacing

(
0 0
bk 0

)
with a suitable matrix(

0 ck
b′k 0

)
in the equation above and taking the space generated by the resulting b

and c. Thus, the copies of IndGF

GK
(χ/χσ) obtained from tD′ are obtained from these

2n − s copies by putting the n extra conditions that c1 = · · · = cn = 0. Hence,
dim tD′ ≥ (2n− s)− n = n− s.

Now, suppose dim tD′ > n − s; i.e., the dimension of the vector space gener-
ated by (b1, · · · , bn) is greater than n − s. As b ∈ Hom(GH ,Qp), then b(xl) = 0
for l = 1, · · · , s. Thus, we get

∑
j∈I1

bj
∑

g∈C(χ/χ
σ)(g) logp(ip ◦ i′j(g

−1(xl))) +∑
j∈I2

bj
∑

g∈C(χ/χ
σ)(g) logp(ip ◦ i′j(σ

′g−1(xl))) = 0 for l = 1, · · · , s. Hence, the

rank of the s × n matrix (
∑

g∈C(χ/χ
σ)(g) logp(ip ◦ i′j((g

−1(xl))j)))1≤j≤n,1≤l≤s is

less than s, where (g−1(xl))j = g−1(xl) if j ∈ I1 and (g−1(xl))j = σ′g−1(xl) if
j ∈ I2. As a consequence, the determinant of every s× s minor of this matrix is 0.
In particular, det(

∑
g∈C(χ/χ

σ)(g) logp(ip ◦ i′j((g−1(xl))j)))1≤j≤s,1≤l≤s = 0. Using
the same logic as used in the CM case above, we see that, after assuming the p-adic
Schanuel conjecture, det(

∑
g∈C(χ/χ

σ)(g) log |i′j((g−1(xl))j)|)1≤j≤s,1≤l≤s = 0.

As in the previous subcase (CM case) above, we can label the standard basis of

C
n|G|

2 by
{
i′j ◦ gj

}
1≤j≤n,gj∈G/{1,τj}

and give the action of G by g′.ei′j◦gj = ei′j◦[g′gj ]

where [g′gj ] is the element in G/ {1, τj} which represents the left coset of g′gj in

G/ {1, τj}. This identifies C
n|G|

2 with
⊕n

j=1 Ind
G
{1,τj}1 in a way that makes the linear

map φ : O×
H ⊗Z Q → C

n|G|
2 given by u⊗ 1 �→ (log |i′j(g−1

j (u))|)1≤j≤n,gj∈G/{1,τj} G-

equivariant. Note that the set of left coset representatives of G/ {1, τj} can be
given by C for all 1 ≤ j ≤ s such that j ∈ I1 and by Cσ′ for all 1 ≤ j ≤ s such
that j ∈ I2, so we will use it for coset representatives for 1 ≤ j ≤ s in the map
above. From Minkowski’s proof of Dirichlet’s unit theorem, we know that this map

is injective and the C-vector space generated by Im(φ) has dimension n|G|
2 − 1 and

is isomorphic to (
⊕n

j=1 Ind
G
{1,τj}1)\1 as a G-representation.

Thus, we see that φ((
∑

g∈C(χ/χ
σ)(g)g−1)x1), · · · , φ((

∑
g∈C(χ/χ

σ)(g)g−1)xs)

are linearly independent vectors and C acts on them by χσ/χ. Thus,

φ((
∑
g∈C

(χ/χσ)(g)g−1)xk)i′j◦g′ = (χσ/χ)(g′)(φ((
∑
g∈C

(χ/χσ)(g)g−1)xk)i′j◦1)

for all j ∈ I1 with 1 ≤ j ≤ s, 1 ≤ k ≤ s and g′ ∈ C and

φ((
∑
g∈C

(χ/χσ)(g)g−1)xk)i′j◦g′σ′ = (χσ/χ)(g′)(φ((
∑
g∈C

(χ/χσ)(g)g−1)xk)i′j◦σ′)

for all j ∈ I2 with 1 ≤ j ≤ s, 1 ≤ k ≤ s, and g′ ∈ C. Note that the sub-

representation of C
n|G|

2 given by
⊕n

j=s+1 Ind
G
{1,τj}1, which is generated by co-

ordinates corresponding to i′j ◦ gj′ with s + 1 ≤ j ≤ n and gj′ ∈ G/ {1, τj}, does
not contain IndGF

GK
(χ/χσ). Thus, it does not contain any non-zero vector on which

C acts like χ/χσ. So, φ((
∑

g∈C(χ/χ
σ)(g)g−1)xk)i′j◦gj′ = 0 for all 1 ≤ k ≤ s,

s+ 1 ≤ j ≤ n, and gj′ ∈ G/ {1, τj}.
So, we see that the s-tuples (

∑
g∈C(χ/χ

σ)(g) log |i′j((g−1(x1))j)|)1≤j≤s, · · · ,
(
∑

g∈C(χ/χ
σ)(g) log |i′j((g−1(xs))j)|)1≤j≤s are linearly independent (these vectors
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are obtained by taking (i′j ◦1)-th co-ordinates for j ∈ I1 with 1 ≤ j ≤ s and by tak-
ing (i′j ◦ σ′)-th co-ordinates for j ∈ I2 with 1 ≤ j ≤ s of the s linearly independent
vectors given above). Therefore, the matrix

(
∑
g∈C

(χ/χσ)(g) log |i′j((g−1(xl))j)|)1≤j≤s,1≤l≤s

is invertible and det(
∑

g∈C(χ/χ
σ)(g) log |i′j((g−1(xl))j)|)1≤j≤s,1≤l≤s �= 0. But we

already concluded above that det(
∑

g∈C(χ/χ
σ)(g) log |i′j((g−1(xl))j)|)1≤j≤s,1≤l≤s

= 0. Thus, we get a contradiction to our assumption that dim tD′ > n − s after
assuming the p-adic Schanuel conjecture. Hence, after assuming the p-adic Schanuel
conjecture, we see that dim tD′ = n− s.

As all primes of F above p are split in K, from (5.3), it follows that if

(
a b
c d

)
∈

tD, then(
a b
c d

)
=

∑
k∈I1

∑
g∈G

(
ρ(g)

(
ak bk
0 dk

)
ρ(g)−1

)
g+

∑
k∈I2

∑
g∈G

(
ρ(g)

(
dk 0
bk ak

)
ρ(g)−1

)
g.

Recall that a+d generates the trivial representation 1, while a−d generates εK and
their expressions do not involve bk’s. So, if ak’s, bk’s, and dk’s are giving an element
of tD after their substitution in the formula above, we should get an element of tD
after making all the bk’s 0.

If the p-adic Schanuel conjecture is true, then by [17, Theorem 6.4], the Leopoldt
conjecture is also true. So, εK appears in Hom(GH ,Qp) with multiplicity s and 1
appears with multiplicity one. So, we see that a1 + d1 = · · · = an + dn and the
vector space generated by n-tuples ((aj − dj)j∈I1 , (dj − aj)j∈I2) coming from all
possible ak’s and dk’s should have dimension s. Hence, the dimension of the space
generated by the 2n-tuples (a1, · · · , an, d1, · · · , dn) which give rise to an element of
tD when substituted in the equation above with b1 = · · · = bn = 0 has dimension
s+ 1.

Thus, combining all the observations above, we see that dim tD = dim tD′ + s+
1 = (n− s) + s+1 = n+1. It follows from Proposition 1 that dim tD0

≤ n− s+1,
and from the computation of dim tD′ above, we see that dim tD0

≥ n − s. This
concludes the proof of Theorem 1 for the third case.

9. Ordinary locus of the eigenvariety and its properties

As in the introduction (Section 1), let E be the p-adic eigenvariety parameter-
izing cuspidal Hilbert modular eigenforms of tame level N defined over F . It is
constructed using the Hecke operators Upi

for pi|p and T (q) for primes q � Np. It
is reduced, and there is a locally finite morphism κ : E → W , known as the weight
map such that, for x ∈ E , the local ring of E at x is a torsion-free module of finite
type over the local ring of W at κ(x) (see [1] for more details about the construc-
tion). Note that by [7, Lemma 5.8], E is equidimensional of dimension n + 1 (see
[1, Theorem 5.1]). By construction, we have analytic functions U(pi) ∈ O(E)× for
pi|p and T (q) ∈ O(E) for q � Np. By [1, Theorem 5.1], there exists a continuous
pseudo-character GF → O(E) which sends Frobq to T (q) for all primes q � Np.
This pseudo-character is obtained by the techniques illustrated in [3] using other
properties of the eigenvariety.
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If p =
∏r

i=1 pi
ei is the prime decomposition of p in OF , then let U(p) =∏r

i=1 U(pi)
ei ∈ O(E)×. The locus where |U(p)|p = 1 is both open and closed

in E , and we call it the ordinary locus of the eigenvariety. It is closely related to
nearly ordinary Hida families. The system of eigenvalues of a refinement f(γi) of f

(as in the introduction) corresponds to a point x ∈ E(Qp) such that κ(x) has finite
order. As U(pi)(x) = γi is a p-adic unit for every 1 ≤ i ≤ r, x lies on the ordinary
locus of E . Let T be the local ring of E at x and let m be its maximal ideal. So,
the Krull dimension of T is n+ 1.

The construction of the eigenvariety E in the parallel weight case is equivalent
to the parallel weight eigenvariety C constructed by Kisin and Lai in [16]. Thus,
Ccusp, the cuspidal part of C, can be seen as a closed subvariety of E . This gives a
map α : O(E) → O(Ccusp) which induces a surjective map OE,x′ � OCcusp,x′ for all
x′ ∈ E with parallel weights, where OE,x′ is the local ring of E at x′ and OCcusp,x′

is the local ring of Ccusp at x′. Indeed, the map on local rings is surjective as both
of them are generated by the Hecke operators T (q) for primes q � Np and U(pi)
for primes pi|p and the map α is the restriction map. All the properties of E listed
above also hold for Ccusp (after changing the weight space suitably) and x lies in
Ccusp. In particular, we get a continuous pseudo-character GF → O(Ccusp) which
sends Frobq to T (q) for all primes q � Np. We can define the ordinary locus of Ccusp

in the same way. It will be an open and closed subspace of Ccusp, and moreover, x
lies in the ordinary locus of C. Let T0 be the local ring of Ccusp at x with maximal
ideal m0. Thus, we have a surjective map T � T0. The Krull dimension of T0 is 1.

Proposition 4.

(1) There exists a continuous representation ρT : GF → GL2(T ), such that
Tr(ρT (Frobq)) = T (q) for all primes q � Np. The reduction of ρT modulo
m is ρ. As f is regular at p, ρT is nearly ordinary at every pi|p in the sense

that (ρT )|GFpi
�

(
(ψ′

T )i ∗
0 (ψ′′

T )i

)
and there exists a lift of Frobpi

in GFpi

which gets mapped to U(pi) under the character (ψ′′
T )i : GFpi

→ T × for all
1 ≤ i ≤ r.

(2) The continuous representation ρT0
: GF → GL2(T0), obtained by compos-

ing ρT with the surjective map T � T0, is ordinary at every pi|p in the

sense that (ρT0
)|GFpi

�
(
(ψ′

T0
)
i

∗
0 (ψ′′

T0
)
i

)
and (ψ′′

T0
)
i
: GFpi

→ T0× is the

unramified character sending Frobpi
to U(pi) for all 1 ≤ i ≤ r.

Proof. Same as the proof of Proposition 5.1 of [4]. We get the representation
ρT from the pseudo-character GF,Np → T obtained by composing the pseudo-
character GF,Np → O(E) with the map O(E) → T . To prove that ρT is nearly
ordinary at every pi, we can use the exact same argument that is given in the proof
of Proposition 5.1 of [4] for every prime pi by replacing [23, Theorem 2.2.2] with
[14, Proposition 2.3] in their argument. Note that we can use their argument for
all primes pi because we have assumed that f is regular at every pi. To prove
part (2), we can again use the exact same argument of [4] mentioned above and we
don’t even need to use [14, Proposition 2.3] instead of [23, Theorem 2.2.2], as we
are dealing with parallel weight Hilbert modular forms. �

Let Λ be the completed local ring of W at κ(x) and let mΛ be its maximal
ideal. It is isomorphic to a power series ring in n + 1 variables over Qp. The
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weight map κ induces a finite homomorphism Λ → T of local reduced complete
rings. The algebra of the fiber of κ at x is given by T ′ := T /mΛT , and it is a
local Artinian Qp-algebra. Observe that the kernel of the surjective map T � T0 is
contained in mΛT and hence the surjective map T � T ′ factors through T0. Thus,
using the arguments of [4, Section 6] along with Proposition 4, we see that the
representation ρT ′ : GF → GL2(T ′), obtained by composing ρT with the surjective
map T � T ′, is an ordinary deformation of ρ with constant determinant; i.e., ρT ′

is ordinary at every prime pi|p, its reduction modulo the maximal ideal is ρ, and
det(ρT ′) = det(ρ).

Let D, D0, and D′ be the deformation functors described in the introduction
(Section 1) associated to ρ and the unramified characters ψ′′

i such that ψ′′
i (Frobpi

)
is the U(pi)-eigenvalue of f(γi) for i = 1, · · · , r; i.e., ψ′′

i (Frobpi
) = γi for all i. As

in the introduction (Section 1), let R, R0, R′ be the universal deformation rings
representing the functors D, D0, and D′, respectively. From Proposition 4 along
with the discussion in the previous paragraph, we get continuous morphisms of
local complete noetherian Qp-algebras R → T , R0 → T0, and R′ → T ′.

Proposition 5. The morphisms R → T , R0 → T0, and R′ → T ′ are surjective.

Proof. Same as that of Proposition 6.1 of [4], as we have established Proposition 4
above which is an analogue of [4, Proposition 5.1]. To be precise, we know that
Tr(ρT )(Frobq) = T (q) and for every 1 ≤ i ≤ r, there exists a yi ∈ Fpi

× such that

(ψ′′
T )i ◦ Artpi

(yi) = U(pi), where Artpi
: Fpi

× → Gal(F ab
pi

/Fpi
) is the local Artin

map (F ab
pi

is the maximal abelian extension of Fpi
). This means that the image of

the map R → T contains T (q) for primes q � Np and U(pi) for 1 ≤ i ≤ r, which
together generate T . Hence, the map R → T is surjective. The surjectivity for the
other two maps follows similarly. �

Recall that f and hence x is a point with parallel weights. From [14, Proposition
2.3], it follows that the largest quotient T ord of T such that the composition of ρT
with the quotient map T � T ord is an ordinary deformation of ρ should have “par-
allel weights”, which means, following the notation of [1], the weights ν should be
0, and hence, the quotient map T → T ord factors through T0. From Proposition 4,
it follows that the quotient map T � T0 factors through T ord. Hence, we get
T ord = T0. From the arguments of [4, Section 6], we see that the largest quotient
of T0 such that the composition of ρT0

with the quotient map is a deformation
of ρ with constant determinant is T ′. Hence, the largest quotient of T such that
the composition of ρT with the quotient map is an ordinary deformation of ρ with
constant determinant is T ′.

10. Proofs of Theorems 2, 3, 4

We retain the notation of the previous sections here. So in particular, let f be
a classical, regular Hilbert modular eigenform of parallel weight 1 defined over F
satisfying the conditions of one of the Theorems 2, 3, 4 and let ρ be the Galois
representation attached to it. Let f(γi) be a p-stabilization of f and let x be the
corresponding point of E as in the previous section. Let T , T0, and T ′ be the rings
associated to x that we introduced in the previous section.

Recall that each case of Theorem 1 corresponds to one of the Theorems 2, 3,
and 4. The transcendence conjecture assumed in each case of Theorem 1 is also
retained in its corresponding theorem. Hence, by Theorem 1, the tangent space
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dimension of the universal nearly ordinary deformation ring R of ρ occurring in
Theorems 2, 3, 4 is n+1, under the corresponding assumptions. By Proposition 5,
we have a surjective map R � T . As T has Krull dimension n+ 1, it follows that
the morphism R � T is an isomorphism of regular local rings of Krull dimension
n+1. Therefore, this proves the part of Theorems 2, 3, 4 regarding the smoothness
of E at x.

As we have established R � T in the cases considered in Theorems 2, 3, 4, it
follows from the last paragraph of the last section that R0 � T0 and R′ � T ′ in
those cases under the corresponding assumptions. Recall that the Krull dimension
of T ′ and T0 is 0 and 1, respectively. Therefore, combining the discussion above, we
see that Ccusp is smooth at x if and only if the dimension of the tangent space of R0

is 1 and the weight map κ is étale at x if and only if the tangent space dimension
of R′ is 0. We have calculated the dimensions of the tangent spaces of R0 and R′

in Theorem 1 in those cases under the same assumptions. Hence, we can conclude
the parts of Theorems 2, 3, 4 regarding the étaleness of κ and the smoothness of
Ccusp at x from Theorem 1. This concludes the proofs of Theorems 2, 3, 4.
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[2] B. Balasubramanyam, E. Ghate, and V. Vatsal, On local Galois representations associated
to ordinary Hilbert modular forms, Manuscripta Math. 142 (2013), no. 3-4, 513–524, DOI
10.1007/s00229-013-0614-1. MR3117174
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